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ABSTRACT

In this paper we apply nonlinear signal analysis to a music informa-
tion retrieval task. More concretely, we apply the concept of recur-
rence plots and recurrence histograms to extract information from
music audio frames. We evaluate the effectiveness of this approach
with a typical genre classification framework and compare itagainst
a baseline obtained from standard spectrum-based descriptors. The
accuracy reached by the histogram-based descriptors alonedoes not
surpass the one achieved by the spectral-based descriptors. However,
we show that the combination of both descriptor sources results in
consistent improvements up to 5 absolute percent points. This high-
lights the potential of nonlinear signal analysis for quantitative music
description. In particular, it suggests that the information resulting
from this approach is complementary to the information obtained
through the commonly used spectral representation.

Index Terms— Music Information Retrieval, Nonlinear Time
Series Analysis, Audio Recurrence, Descriptor Extraction

1. INTRODUCTION

The processing of music audio signals is key in music information
retrieval (MIR) and has already led to a variety of real-world appli-
cations [1]. Many such applications are build up from low-level fea-
tures of the musical content extracted from audio. These low-level
features are commonly called music descriptors and, in general, are
obtained from the short-time Fourier transform (STFT) [2].For the
calculation of the STFT, the audio signal is cut into short overlap-
ping frames, a windowing function is applied to each frame, and the
magnitude of the spectrum is taken. For many applications, music
descriptors are fed to data mining or machine learning algorithms,
which exploit the information contained in the descriptors[1, 3]. A
paradigmatic example of this approach is automatic genre classifica-
tion [4].

Audio content-based MIR approaches, and in particular the
genre classification ones, often achieve relatively good accuracy val-
ues [3]. However, they do not reach the highest possible ones. This
fact is commonly called the “glass-ceiling” phenomenon [5]. There-
fore, for tackling this issue and achieving accuracies thatgo beyond
the current “glass ceiling”, alternative or complementarystrategies
shall be considered. In this paper, we focus on the extraction of mu-
sic descriptors. More concretely, we propose the use of two types of
nonlinear recurrence histograms instead of the routinely employed
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magnitude spectrum. While both representations are obtained from
the frame signal, the crucial difference is that recurrencehistograms
are based on techniques from nonlinear signal analysis [6].There is
growing evidence that nonlinear signal analysis can provide useful
information in the context of MIR, both for the processing ofau-
dio signals and the processing of descriptor sequences (seee.g. [7]
and references therein). In particular, Terez reported that nonlinear
recurrence histograms can be used for robust pitch determination
[8].

Given an experimental signal, the framework of nonlinear signal
analysis allows characterizing its underlying dynamics. Afunda-
mental concept in this framework are delay coordinates [6],which
can be used to reconstruct an estimate of these dynamics fromthe
experimental signal. In this reconstruction, each state ofthe dynam-
ics is represented unambiguously by one point in a multidimensional
space. Therefore, to assess the similarity between different states at-
tained at different times, one exploits the spatial proximity between
points. This is formalized by so-called recurrence plots [9], where a
threshold value is applied to the distance between individual points
to decide whether or not two states represent a recurrence ofthe dy-
namics. Histograms of time lags between recurrences can then be
used to assess the predominant time scales of the dynamics.

Importantly, with the aforementioned analysis, recurrences are
taken into account regardless of whether the intervals between them
are all equal or not. Accordingly, no periodicity is required for these
recurrences. Furthermore, the signals can comprise different types
of complicated and irregular waveforms that recur in a non-periodic
way. These features can readily be detected in recurrence plots but
might have a broad-band signature in the power spectrum. Moreover,
for the calculation of recurrence plots, the dynamics is notassumed
to be stationary [9]. Hence, recurrence plots can assess complex fea-
tures that might not be discernible from the power spectrum of the
signal. Music audio signals often comprise such complex features
that recur in an irregular way. Therefore, recurrence plots, and non-
linear signal analysis tools in general, seem as a promisingtool to
characterize these signals.

2. NONLINEAR AUDIO RECURRENCE HISTOGRAMS

2.1. Delay coordinates

Let the signals = [s1, . . . sN∗ ]T, whereT denotes transposition, be
theN∗ consecutive audio samples of a given frame, obtained at a
rate ofFs. We construct delay coordinatesxn by

xn =
[

sn, sn−τ , . . . sn−(m−1)τ

]T
, (1)

wherem is the embedding dimension andτ is the time delay [6].
Forn = (m− 1)τ + 1, . . . N∗, this yields a sequence of delay vec-



Fig. 1. Example of a recurrence plotR obtained from an audio frame
of a blues piece. Parametersm = 3, τ = 20, andp = 0.3 were
used. According to the standard representation [9],r1,1 is located in
the lower-left corner.

torsX = [x1 · · · xN ]T, whereN = N∗ − (m − 1)τ . Notice that
for m = 1, Eq. (1) reducesX to the raw signals. For nonlinear sig-
nal analysis, an appropriate choice ofm andτ is crucial to extract
meaningful information from noisy signals of finite length.Recipes
for the estimation of optimal fixed values ofm andτ exist [6]. How-
ever, we here opt to set them manually in order to study their effect
on the final accuracies.

2.2. Recurrence plot

To assess the recurrences found inX , we construct a recurrence plot
R by applying

ri,j = Θ(ε− ‖xi − xj‖) , (2)

for i, j = 1, . . . N , whereΘ(·) is the Heaviside step function
[Θ(z) = 0 if z < 0 andΘ(z) = 1 otherwise],ε is a threshold dis-
tance, and‖·‖ is some norm [9]. We use the squared Euclidean norm
and setε to a percentagep of the mean over all possibleN(N−1)/2
pairwise distances between samples ofX . An example ofR can be
seen in Fig. 1.

2.3. Recurrence time and frequency histograms

To quantify sample lags between recurrences we construct a normal-
ized recurrence histogramh(t) = [h(t)

1 , . . . h
(t)
N−1]

T. The value for the
k-th bin, representing the relative amount of recurrences ata time
lagk, is calculated by

h(t)
k =

1

N − k

N−k
∑

i=1

ri,i+k, (3)

for w < k < N . For k ≤ w, we seth(t)
k = 0. Here we follow

the common practice in nonlinear signal analysis and consider only
recurrences separated by a minimal sample lagw [6, 9]. Samples
that are separated in time by only very short sample lags are very
likely to be still spatially closer thanε. However, these close samples
do not reflect a recurrence because not enough time has passedfor

Fig. 2. Examples ofh(t) (top) andh(f) (bottom). The bottom his-
togramh(f) is zoomed in the low frequency range. Same frame and
parameters as in Fig. 1 were used.

the states to separate. In particular, the above holds for correlated
signals. We therefore use a minimal sample lagw = 30 for all
experiments (i.e.30/Fs sec).

Given the recurrence time histogramh(t), it is straightforward to
convert the abscissa into a frequency axis, resulting in a recurrence
frequency histogramh(f). In particular, the following bin conversion
can be used for a sample lagk:

k′ = argmin
1≤l≤N

(∣

∣

∣

∣

fl −
Fs

k

∣

∣

∣

∣

)

, (4)

wherefl is the central frequency for thel-th bin of the histogram.
We use linearly spaced bins such thatfl = (l − 1)Fs/2N

∗. For
details of the implementation and the normalization procedure for
h(f) we refer to [10]. Examples ofh(t) andh(f) can be seen in Fig. 2.

3. EVALUATION METHODOLOGY

To test the capacity of recurrence time and frequency histograms
to assess musical characteristics we use a common MIR evaluation
framework. In particular, we use a training and testing genre classi-
fication framework [3, 4]. As music material we use the collection
provided by Tzanetakis [11], which is used in a number of works
for evaluating genre classification. The collection is divided into 10
genres of 100 songs each (except the reggae genre, which has 93
songs). This amounts a total of 993 audio files. These files arein
WAV format and have a sampling rateFs = 22050 Hz.

In our evaluation framework, the audio is first cut into shortover-
lapping frames. We use a frame length ofN∗ = 2048 and 50%
overlap. Subsequently, the frame signal serves as input forthe recur-
rence histogram procedures explained above. To compare with the
common methodology, we also test the extraction of music descrip-
tors from the magnitude spectrum. To calculate the STFT we use a
92 dB Blackman-Harris window [2], a frame length ofN∗ = 4096
with 50% overlap, and take the 2048 positive frequencies of the re-
sulting magnitude spectra.

To extract information from the recurrence time and frequency
histograms, as well as from the magnitude spectra, we use standard



Row Descriptor set Parameters Classifiers
m τ p 1R NN NB MP RF SVMP SVMR LL

1 Spectral - - - 23.5 56.4 50.4 62.0 62.3 63.3 66.0 66.0
2 h(t) 3 7 0.7 24.5 49.5 49.9 51.7 59.4 54.9 57.5 56.5
3 h(t) 12 7 0.7 23.0 47.6 45.9 53.4 56.8 55.9 57.5 57.0
4 h(f) 3 1 0.3 21.0 42.8 40.2 47.0 50.6 45.2 48.7 50.3
5 h(f) 3 1 0.7 21.2 44.4 41.8 46.8 51.6 47.3 51.2 50.7
6 h(t) + h(f) 12 3 0.7 25.7 48.4 47.4 52.5 57.6 54.0 55.5 57.3
7 h(t) + h(f) 12 7 0.7 23.5 49.8 49.1 53.8 59.3 56.0 58.5 58.0
8 Spectral +h(t) 3 7 0.7 24.9 60.0 57.6 65.9 67.1 66.0 69.7 68.7
9 Spectral +h(t) 12 7 0.7 26.0 62.2 57.8 67.7 69.0 68.5 70.9 70.5
10 Spectral +h(f) 3 1 0.7 25.8 58.4 53.0 62.3 64.2 63.7 67.1 66.0
11 Spectral +h(f) 7 1 0.3 26.1 57.7 52.9 62.2 64.3 63.0 66.5 66.7
12 Spectral +h(t) + h(f) 3 7 0.7 26.0 61.1 58.4 66.0 68.1 67.4 70.7 70.1
13 Spectral +h(t) + h(f) 12 7 0.7 26.3 63.8 58.6 66.6 68.6 68.9 71.5 69.8

Table 1. Summary of the best classification accuracies for a given set of extracted features and parameter combination. A windoww = 30 is
used in all cases. The maximal standard deviation across trials for all classifiers was found to be 1.2%. The maximal accuracy we achieved
by randomly choosing one genre for each song was 10%.

music descriptors. More concretely, we use some of the descrip-
tors implemented in the MIRToolbox1 [12]: Mel-frequency cepstral
coefficients, chromas, brightness, roll-off, spectral centroid, spectral
spread, and spectral flatness. For computing these descriptors we
use the default parameters provided in the MIRToolbox, except for
Mel-frequency cepstral coefficients, where we use 50 filtersand 20
coefficients, brightness, where we use 3000 Hz as threshold (278
samples in the case ofh(t)), and roll-off, where we use 80% of the
energy as threshold. We also use statistical moments to describe his-
tograms and spectra: mean, variance, skewness, and kurtosis.

Descriptors are processed using a bag-of-frames approach and
means and variances are taken. This results in a total of 82 descrip-
tors for each song and analysis approach, i.e. 82 descriptors based on
the spectrum, 82 based onh(t), and 82 based onh(f). We also test the
pooling of these three approaches by combiningh(t) andh(f), spectral
andh(t), as well as spectral andh(f), resulting in 164 descriptors each,
and by combining spectral,h(t), andh(f), resulting in 246 descriptors.

Extracted descriptors are input to an attribute selection process
before the final classification is done. For these two tasks weuse
the algorithms provided by the Weka2 data mining software [13].
For attribute selection we proceed in two steps. We first apply cor-
relation feature selection (CFS) and subsequently performprincipal
component analysis (PCA) [14]. A total of 30 principal components
are taken after CFS: the ones covering most of the data variance. In
case CFS leads to less than 30 components, PCA is applied without
preliminary CFS. The attribute selection process is the same inde-
pendently of how many descriptors we consider. Thus we always
end up with 30 components. These components are finally normal-
ized between 0 and 1.

For classification we use several different algorithms provided
by the Weka package [13]. By considering several classifiers, we can
better assess the potential accuracy improvements yieldedby our ap-
proach. Hence we can be sure that the information they conveycan
be exploited for many classifiers and not just by a particularone.
As classifiers we use the following algorithms [14]: naïve Bayes

1Version 1.3:https://www.jyu.fi/hum/laitokset/musiik
ki/en/research/coe/materials/mirtoolbox

2Version 3.6.2:http://www.cs.waikato.ac.nz/ml/weka

(NB), nearest neighbors (NN; denominated IBk in Weka), multilayer
perceptron (MP), random forest (RF), linear logistic regression (LL;
simple logistic in Weka), and support vector machines (SVM;SMO
implementation in Weka). We also use the one-rule classifier(1R),
which provides a classification accuracy based on the most discrim-
inating attribute. We use 5 neighbors for NN, a learning parameter
of 0.6 for MP, 100 trees for RF, the Akaike information criterion for
LL, and two kernels for SVM: a polynomial function (SVMP) and a
radial-basis function (SVMR) with parameter gamma set to 0.6. All
other parameters are left unchanged from their default values2. The
classification accuracies for these algorithms are evaluated 10 times
with 3-fold cross validation and the mean value is taken [14]. The
classification setup remains the same for both the histogram-based
descriptors and the spectrum-based descriptors, and also for combi-
nations of them.

4. RESULTS AND DISCUSSION

We first evaluate the baseline accuracy for spectral descriptors (Ta-
ble 1, first row). We see that a maximal accuracy of 66% is achieved,
both for the LL and SVMR classifiers. We then evaluate the accu-
racies for descriptors extracted from the recurrence histograms for
different values of the parametersm, τ , and p. In pre-analysis,
parameters were set empirically, based on visual inspection of his-
tograms and recurrence plots for frames of arbitrarily selected songs
[10]. After this visual inspection, combinations ofm ∈ [3, 7, 12],
τ ∈ [1, 3, 7], andp ∈ [0.2, 0.3, 0.7] were used for final testing. The
best accuracies found forh(t), h(f), and their combinations are re-
ported (Table 1, rows 2 to 7). No drastic change in the accuracy was
observed for alternative parameter combinations. For moredetails
on our parameter assessment we refer to [10].

We see that the accuracies for histogram approaches do not sur-
pass the ones achieved by our baseline spectral descriptors. How-
ever, once information from spectral descriptors is combined with
recurrence histograms we observe a consistent accuracy increment
(Table 1, rows 8 to 13). This holds particularly whenh(t) is included.
Improvements are more accentuated for classifiers that showa low
accuracy when only spectral descriptors are used (see the columns



NN and NB, row 1 vs. rows 8, 9, 12, and 13). For those classifiers
that performed best with the spectral descriptors we still get an ab-
solute accuracy improvement of 4 to 5% (see the columns LL and
SVMR, row 1 vs. rows 8, 9, 12, and 13).

In general, poorer accuracies are obtained from approachesin-
cluding information fromh(f). Sometimes, the addition of descrip-
tors based onh(f) to the baseline does not result in any improvement
at all. This is somehow to be expected, since the informationin h(f)

is concentrated in a small part of the histogram [the lowest frequency
bins, see Eq. (4) and Fig. 2]. Thus, we hypothesize that, due to the
linear spacing of frequency bins an excessive compression of the re-
currence information is taking place.

On the other hand, when information fromh(t) is added to
spectral-based descriptors, accuracies for all classifiers raise without
any exception. More importantly, this holds for different combina-
tions of the parameters underlying the calculation of the histograms.
In general, no excessive fine-tunning of the parameters is needed
to achieve an accuracy improvement. In particular, for the results
presented here, no exhaustive grid-search was done [10]. One might
expect that with such an exhaustive search the accuracies might even
increase further. However, the risk of overfitting the parameters to
the data may be higher [14]. In any case, parameters that we found
to yield the best accuracy values remain to be validated on further
music collections and classification tasks.

It is also important to note that the bins ofh(t) represent sam-
ple lags instead of frequencies. However, the extraction ofquantita-
tive information fromh(t) is done by means of common descriptors
originally developed for frequency-based representations. Thus, this
might not be the most effective way of extracting the information
contained inh(t). Once can envision that new ways to quantify the
information inh(t) can increment the accuracy improvement reported
here.

5. CONCLUSIONS AND FUTURE WORK

In this paper we test the use of nonlinear recurrence analysis for
quantitative music description. More concretely, we propose the use
of recurrence time and frequency histograms for the extraction of
information from a music audio frame. We evaluate the accuracy
of our approach with a typical genre classification framework and
compare against a baseline of common descriptors obtained from a
spectral representation.

Although the accuracies reached by the histogram-based de-
scriptors alone do not surpass the accuracies achieved by the
spectral-based descriptors, we show that the combination of both
sources can result in substantial improvements. This highlights the
potential of nonlinear recurrence analysis for quantitative music
description. In particular, it suggests that the information resulting
from this process is complementary to the information obtained from
the common spectral representation. Overall, our results underline
that considering complementary strategies to the common audio
processing chain is a promising direction to potentially overcome
(or at least reduce) the “glass-ceiling” of MIR systems [3, 5].

As future work we plan to validate these results with different
music collections, not only with the genre classification task, but also
considering other common MIR classification tasks [3]. Further-
more, a deeper understanding of the information overlap between
histogram-based and spectral-based descriptors is needed. A more
comprehensive study of the effect of parametersm, τ , andp is also
left for further research. In addition, we plan to use specific quan-
tification measures forh(t). These measures should be suitable for
temporal or sample lag-based representations. Finally, wealso want

to study the effect of a nonlinear spacing of the frequency bins of
h(f), so that its information is less compressed in a few bins.
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