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ABSTRACT

In this paper we apply nonlinear signal analysis to a mudarina-
tion retrieval task. More concretely, we apply the concdpeour-
rence plots and recurrence histograms to extract infoometom
music audio frames. We evaluate the effectiveness of thgsoagh
with a typical genre classification framework and compasaginst
a baseline obtained from standard spectrum-based dessrifthe
accuracy reached by the histogram-based descriptors d¢@msenot
surpass the one achieved by the spectral-based descrigtasver,
we show that the combination of both descriptor sourcedtsesu
consistent improvements up to 5 absolute percent points. high-
lights the potential of nonlinear signal analysis for qitative music
description. In particular, it suggests that the informatiesulting
from this approach is complementary to the information ioletz
through the commonly used spectral representation.

Index Terms— Music Information Retrieval, Nonlinear Time
Series Analysis, Audio Recurrence, Descriptor Extraction

1. INTRODUCTION

The processing of music audio signals is key in music infdiona
retrieval (MIR) and has already led to a variety of real-wiappli-
cations [1]. Many such applications are build up from lowelefea-
tures of the musical content extracted from audio. Theselével
features are commonly called music descriptors and, inrgerere
obtained from the short-time Fourier transform (STFT) [Rdr the
calculation of the STFT, the audio signal is cut into shorrtap-
ping frames, a windowing function is applied to each franmel the
magnitude of the spectrum is taken. For many applicationgien
descriptors are fed to data mining or machine learning #lguos,
which exploit the information contained in the descriptfrs3]. A
paradigmatic example of this approach is automatic geassifica-
tion [4].

Audio content-based MIR approaches, and in particular th

genre classification ones, often achieve relatively gocdracy val-
ues [3]. However, they do not reach the highest possible. ortes
fact is commonly called the “glass-ceiling” phenomenon [Hjere-
fore, for tackling this issue and achieving accuracies goabeyond
the current “glass ceiling”, alternative or complementainategies
shall be considered. In this paper, we focus on the extractionu-
sic descriptors. More concretely, we propose the use of ypest of
nonlinear recurrence histograms instead of the routineipleyed
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magnitude spectrum. While both representations are adateiiom
the frame signal, the crucial difference is that recurrdriseograms
are based on techniques from nonlinear signal analysigf@re is
growing evidence that nonlinear signal analysis can peoviseful
information in the context of MIR, both for the processingaaf-
dio signals and the processing of descriptor sequence®(gef’]
and references therein). In particular, Terez reportetrtbalinear
recurrence histograms can be used for robust pitch detatimim
[8].

Given an experimental signal, the framework of nonlinegnai
analysis allows characterizing its underlying dynamics.fuAda-
mental concept in this framework are delay coordinatesviich
can be used to reconstruct an estimate of these dynamicstifiem
experimental signal. In this reconstruction, each stateeflynam-
ics is represented unambiguously by one point in a multidsianal
space. Therefore, to assess the similarity between diffstates at-
tained at different times, one exploits the spatial proigrbetween
points. This is formalized by so-called recurrence ploishere a
threshold value is applied to the distance between indatigoints
to decide whether or not two states represent a recurrertoe off/-
namics. Histograms of time lags between recurrences cankibe
used to assess the predominant time scales of the dynamics.

Importantly, with the aforementioned analysis, recuresnare
taken into account regardless of whether the intervals émtvthem
are all equal or not. Accordingly, no periodicity is requiffer these
recurrences. Furthermore, the signals can comprise eliffeypes
of complicated and irregular waveforms that recur in a neriealic
way. These features can readily be detected in recurreot lplt
might have a broad-band signature in the power spectrumedxer,
for the calculation of recurrence plots, the dynamics isasstumed
to be stationary [9]. Hence, recurrence plots can assesslepfiea-
tures that might not be discernible from the power spectréithe
signal. Music audio signals often comprise such compleiufea
that recur in an irregular way. Therefore, recurrence platsl non-

éinear signal analysis tools in general, seem as a promisiolgto

characterize these signals.

2. NONLINEAR AUDIO RECURRENCE HISTOGRAMS

2.1. Delay coordinates

Let the signak = [s1,...sn+]", where' denotes transposition, be

the N* consecutive audio samples of a given frame, obtained at a

rate of Fs. We construct delay coordinatgs by

1)

wherem is the embedding dimension andis the time delay [6].
Forn = (m —1)r+1,... N*, this yields a sequence of delay vec-

T
Xn = [3n7 Sn—Ty. .- Snf(mfl)‘r:l 5
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Fig. 1. Example of a recurrence pl&t obtained from an audio frame
of a blues piece. Parameteis = 3, 7 = 20, andp = 0.3 were
used. According to the standard representation{9],is located in
the lower-left corner.

torsX = [x; ---xn]", whereN = N* — (m — 1)7. Notice that
form = 1, Eq. (1) reducesX to the raw signas. For nonlinear sig-
nal analysis, an appropriate choicerafand is crucial to extract
meaningful information from noisy signals of finite lengfRecipes
for the estimation of optimal fixed values of andr exist [6]. How-

ever, we here opt to set them manually in order to study tHfece
on the final accuracies.

2.2. Recurrence plot

To assess the recurrences foundkinwe construct a recurrence plot

‘R by applying
rij = 0O (=[x —Xl), )

for i,57 = 1,...N, where©(-) is the Heaviside step function
[©(2) =0if z < 0 and©(z) = 1 otherwise] is a threshold dis-

tance, andl - || is some norm [9]. We use the squared Euclidean norm

and set to a percentagg of the mean over all possiblg (N —1)/2
pairwise distances between samplestofAn example ofR can be
seen in Fig. 1.

2.3. Recurrence time and frequency histograms

To quantify sample lags between recurrences we construgrnaat-

ized recurrence histogran?? = [0, ... n9_ 1. The value for the
k-th bin, representing the relative amount of recurrences tine

lag k, is calculated by

N—k
po — 1 3 i
k — N — k 1,04k

i=1

®)

forw < k < N. Fork < w, we seth!) = 0. Here we follow
the common practice in nonlinear signal analysis and censidly
recurrences separated by a minimal sampleud®, 9]. Samples
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Fig. 2. Examples oh® (top) andh® (bottom). The bottom his-
togramh" is zoomed in the low frequency range. Same frame and
parameters as in Fig. 1 were used.

the states to separate. In particular, the above holds foeleted
signals. We therefore use a minimal sample 1ag= 30 for all
experiments (i.e30/ Fs sec).

Given the recurrence time histografl, it is straightforward to
convert the abscissa into a frequency axis, resulting ircarrence
frequency histograrh®. In particular, the following bin conversion
can be used for a sample lag

Is
2l @

k' = argmin ( fi—=

1<I<KN

where f; is the central frequency for thieth bin of the histogram.
We use linearly spaced bins such thfat= (I — 1)Fs/2N*. For
details of the implementation and the normalization procedor
h® we refer to [10]. Examples df® andh® can be seen in Fig. 2.

3. EVALUATION METHODOLOGY

To test the capacity of recurrence time and frequency hiatog
to assess musical characteristics we use a common MIR &ealua
framework. In particular, we use a training and testing gatassi-
fication framework [3, 4]. As music material we use the cdlat
provided by Tzanetakis [11], which is used in a number of \work
for evaluating genre classification. The collection isdiéd into 10

genres of 100 songs each (except the reggae genre, whict3has 9

songs). This amounts a total of 993 audio files. These filesnare
WAV format and have a sampling raf@ = 22050 Hz.

In our evaluation framework, the audio is first cut into Sloer-
lapping frames. We use a frame length/éf = 2048 and 50%
overlap. Subsequently, the frame signal serves as inpthidaecur-
rence histogram procedures explained above. To compalnethreit
common methodology, we also test the extraction of musicrges
tors from the magnitude spectrum. To calculate the STFT weaus
92 dB Blackman-Harris window [2], a frame length T = 4096
with 50% overlap, and take the 2048 positive frequencied®fre-

that are separated in time by only very short sample lagseme v sulting magnitude spectra.

likely to be still spatially closer than However, these close samples

To extract information from the recurrence time and freqyen

do not reflect a recurrence because not enough time has fassed histograms, as well as from the magnitude spectra, we usdasth



Row Descriptor set Parameters Classifiers
m T p IR NN NB MP RF SVM SVMg LL
1 Spectral - - - 235 56.4 504 620 623 633 66.0 66.0
2 ho 3 7 07 245 495 499 517 59.4 549 575 56.5
3 ho 122 7 07 23.0 476 459 534 568 559 575 57.0
4 hO 3 1 03 21.0 428 40.2 47.0 50.6 452 48.7 50.3
5 ho 3 1 07 212 444 418 468 516 47.3 51.2 50.7
6 h® + h® 12 3 07 25.7 484 474 525 57.6 54.0 555 57.3
7 h®O+h® 122 7 07 235 498 49.1 538 593 56.0 585 58.0
8  Spectral +h® 3 7 07 249 600 57.6 659 67.1 66.0 69.7 68.7
9  Spectral ® 12 7 07 26.0 622 57.8 677 69.0 685 709 705
10  Spectral h® 3 1 07 25.8 584 53.0 623 642 637 67.1 66.0
11 Spectral ® 7 1 03 26.1 57.7 529 622 643 63.0 66.5 66.7
12 Spectral h® + h" 3 7 07 260 611 584 660 681 67.4 70.7 70.1
13 Spectral +h® + h® 12 7 07 26.3 638 586 66.6 686 68.9 715 69.8

Table 1. Summary of the best classification accuracies for a giveofstracted features and parameter combination. A window 30 is
used in all cases. The maximal standard deviation acrags far all classifiers was found to be 1.2%. The maximal amuwe achieved

by randomly choosing one genre for each song was 10%.

music descriptors. More concretely, we use some of the igescr
tors implemented in the MIRToolbd%12]: Mel-frequency cepstral
coefficients, chromas, brightness, roll-off, spectraltasd, spectral
spread, and spectral flatness. For computing these dessripe
use the default parameters provided in the MIRToolbox, it
Mel-frequency cepstral coefficients, where we use 50 fikes 20
coefficients, brightness, where we use 3000 Hz as thresRal@ (
samples in the case hf‘)), and roll-off, where we use 80% of the
energy as threshold. We also use statistical moments toible $is-
tograms and spectra: mean, variance, skewness, and kurtosi

(NB), nearest neighbors (NN; denominated IBk in Weka), ifayler
perceptron (MP), random forest (RF), linear logistic regien (LL;
simple logistic in Weka), and support vector machines (S\@MO
implementation in Weka). We also use the one-rule clasgifiey,
which provides a classification accuracy based on the msetinti-
inating attribute. We use 5 neighbors for NN, a learning peatzr
of 0.6 for MP, 100 trees for RF, the Akaike information criter for
LL, and two kernels for SVM: a polynomial function (S\Wyland a
radial-basis function (SVM) with parameter gamma set to 0.6. All
other parameters are left unchanged from their defauleglThe

Descriptors are processed using a bag-of-frames approath aclassification accuracies for these algorithms are evedus® times

means and variances are taken. This results in a total of 82ide
tors for each song and analysis approach, i.e. 82 desipased on
the spectrum, 82 based bf, and 82 based on. We also test the
pooling of these three approaches by combitifigandh®, spectral
andh®, as well as spectral a, resulting in 164 descriptors each,
and by combining spectrat®, andh®”, resulting in 246 descriptors.
Extracted descriptors are input to an attribute selectiocgss
before the final classification is done. For these two taskasee
the algorithms provided by the Wekaata mining software [13].
For attribute selection we proceed in two steps. We firstyappi-
relation feature selection (CFS) and subsequently perfointipal
component analysis (PCA) [14]. A total of 30 principal compats
are taken after CFS: the ones covering most of the data e&ridn
case CFS leads to less than 30 components, PCA is appliedutvith
preliminary CFS. The attribute selection process is theesite-

with 3-fold cross validation and the mean value is taken.[T#je
classification setup remains the same for both the histodpased
descriptors and the spectrum-based descriptors, andalsorhbi-
nations of them.

4. RESULTS AND DISCUSSION

We first evaluate the baseline accuracy for spectral descsijTa-
ble 1, first row). We see that a maximal accuracy of 66% is aekie
both for the LL and SVM classifiers. We then evaluate the accu-
racies for descriptors extracted from the recurrence fiatos for
different values of the parameters, 7, andp. In pre-analysis,
parameters were set empirically, based on visual inspectidis-
tograms and recurrence plots for frames of arbitrarilycelksongs

pendently of how many descriptors we consider. Thus we away[10]. After this visual inspection, combinations of € [3,7,12],
end up with 30 components. These components are finally hormar € [1, 3, 7], andp € [0.2,0.3, 0.7] were used for final testing. The

ized between 0 and 1.

For classification we use several different algorithms led
by the Weka package [13]. By considering several classjfiezsan
better assess the potential accuracy improvements yielgedr ap-
proach. Hence we can be sure that the information they caraey
be exploited for many classifiers and not just by a particolze.
As classifiers we use the following algorithms [14]: naivey@a

Iversion 1.3:htt ps: //ww. j yu. fi/huni | ai t okset/ musi i k
ki / en/ research/ coe/ materi al s/ mrt ool box
2\lersion 3.6.2ht t p: / / www. ¢s. wai kat 0. ac. nz/ m / weka

best accuracies found f&®, h®, and their combinations are re-
ported (Table 1, rows 2 to 7). No drastic change in the acguras
observed for alternative parameter combinations. For rdetails
on our parameter assessment we refer to [10].

We see that the accuracies for histogram approaches domot su
pass the ones achieved by our baseline spectral descriptors-
ever, once information from spectral descriptors is comdimith
recurrence histograms we observe a consistent accura@mieat
(Table 1, rows 8 to 13). This holds particularly whaffi is included.
Improvements are more accentuated for classifiers that shiow
accuracy when only spectral descriptors are used (see themee



NN and NB, row 1 vs. rows 8, 9, 12, and 13). For those classifierso study the effect of a nonlinear spacing of the frequent loif
h®, so that its information is less compressed in a few bins.
solute accuracy improvement of 4 to 5% (see the columns LL and

that performed best with the spectral descriptors we sillan ab-

SVMR, row 1 vs. rows 8, 9, 12, and 13).

In general, poorer accuracies are obtained from approanhes
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at all. This is somehow to be expected, since the informatidn’
is concentrated in a small part of the histogram [the lowesfifency
bins, see Eq. (4) and Fig. 2]. Thus, we hypothesize that, altieet
linear spacing of frequency bins an excessive compres$itire oe-
currence information is taking place.

On the other hand, when information froht? is added to
spectral-based descriptors, accuracies for all classitise without
any exception. More importantly, this holds for differemnbina-
tions of the parameters underlying the calculation of tisédgirams.
In general, no excessive fine-tunning of the parameters egate
to achieve an accuracy improvement. In particular, for #suits
presented here, no exhaustive grid-search was done [1@]m@ght
expect that with such an exhaustive search the accuracigs even
increase further. However, the risk of overfitting the pasters to
the data may be higher [14]. In any case, parameters that uvel fo
to yield the best accuracy values remain to be validated dheu
music collections and classification tasks.

It is also important to note that the bins lof’ represent sam-
ple lags instead of frequencies. However, the extractiqquahtita-

tive information fromh® is done by means of common descriptors

originally developed for frequency-based representatidius, this
might not be the most effective way of extracting the infotiora

contained ich®. Once can envision that new ways to quantify the
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