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Abstract

Current systems for cover song detection are based on
a model-free approach: they basically search for similar-
ities in descriptor time series reflecting the evolution of
tonal information in a musical piece. In this contribution
we propose the use of a model-based approach. In par-
ticular, we explore threshold autoregressive models and
the concept of cross-prediction error, i.e. a measure of to
which extent a model trained on one song’s descriptor
time series is able to predict the covers’. Results indi-
cate that the considered approach can provide compet-
itive accuracies while being considerably fast and with
potentially less storage requirements. Furthermore, the
approach is parameter-free from the user’s perspective,
what provides a robust and straightforward application
of it.

1 Introduction

Cover songs are alternative renditions of the same un-
derlying musical piece. The automatic detection of cover
songs based on the audio content has been a very ac-
tive area of study within the music information retrieval
(MIR) community over the last years [11]. This is clearly
due to the revolution which has lashed this field, intrinsi-
cally related to the introduction of digital ways to share
and distribute information, which challenges the search
and organization of musical contents [2, 3].

Cover song detection is a very simple task from a user’s
perspective: a query song is provided and the system
is asked to retrieve all versions of it that are found in
a given music collection. However, from an MIR per-
spective it becomes a very challenging task, since cover
songs might differ from their originals in several musical
aspects such as timbre, tempo, song structure, key, ar-
rangement, lyrics, or language of the vocals. In spite of
these differences, cover songs might retain a considerable
part of their tonal evolution (or harmonic progression).
Indeed, the big majority of current approaches are based
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on the detection of common patterns in time series of
tonal descriptors [11].

Another major characteristic that is shared among
state-of-the-art approaches for cover song detection is the
lack of specific modeling strategies for tonal descriptor
time series. In the present contribution we proceed in
this direction by introducing a model-based system for
cover song detection. In particular, we study a model-
based forecasting approach, where we employ the concept
of cross-prediction error. Intuitively, once a model has
learned the patterns found in the time series of a given
query song, one should expect the average prediction er-
ror to be relatively small when the time series of a candi-
date cover song is used as input. Otherwise, i.e. when an
unrelated (non-cover) candidate song is considered, the
prediction error should be higher.

Our approach consists of training a threshold autore-
gressive (TAR) model [13] to learn the characteristics of
a query song’s descriptor time series, and then assessing
the predictions of the model when a target time series
of a candidate song is considered. We show that the
approach is very promising in the sense that it achieves
competitive accuracies and furthermore provides addi-
tional advantages when compared to state-of-the-art ap-
proaches, such as lower computational complexities and
potentially less storage requirements. Perhaps the most
interesting aspect of the proposed approach is that no
parameters need to be adjusted. More concretely, mod-
els’ parameters and coefficients are automatically learned
for each song and descriptor time series individually (no
intervention of the user is needed). Accordingly, the sys-
tem can be readily applied to different music collections
or descriptor time series.

The paper is structured as follows. First, an overview
of the employed time series of tonal descriptors is done
(Sec. 2). Then our approach for cover song detection
is presented (Sec. 3). Some details about our evalua-
tion follow (Sec. 4). We subsequently present our results
(Sec. 5) and discuss our approach (Sec. 6). We end with
some short conclusions and provide an outlook for future
work (Sec. 7).



2 Descriptor time series

We experiment with three descriptor time series reflect-
ing the evolution of the tonal information of a musi-
cal piece. These are extracted from the raw audio sig-
nal using a frame length of 116.1 ms and a hop size of
104.5 ms. The extraction process results in a multidi-
mensional descriptor time series, which we denote as a
matrix S = [s1...sy], where N is the total number of
samples (frames) and s,, is a column vector with D com-
ponents representing a D-dimensional descriptor at sam-
ple n. Therefore, element s, ,, of S represents the magni-
tude of the d-th descriptor component of the n-th frame.
The descriptors we use are:

1) Pitch class profiles (PCP): PCP features [4]
are derived from the frequency dependent energy in a
given range of the frame’s spectrum (typically from 50 to
5000 Hz). This energy is usually mapped into an octave-
independent histogram representing the relative intensity
of each of the 12 semitones of the equal-tempered chro-
matic scale. Important PCP characteristics include [4]:
robustness against non-tonal components, independence
of timbre and the specific instruments used, and indepen-
dence of a musical piece’s loudness and volume fluctua-
tions. We here use harmonic PCPs [4] which, apart from
above properties, reduce the influence of noisy spectral
components, take into account the presence of harmonic
frequencies, and are tuning independent.

2) Tonal centroid (TC): PCP features are mapped
to the interior space of a 6-dimensional polytope, where
perceptually close harmonic relations appear as small Eu-
clidean distances [5]. This mapping is obtained by mul-
tiplying each PCP vector by a suitable transformation
matrix and then normalizing by the L; norm of the for-
mer.

3) Harmonic change (HC): The harmonic change
detection function [5] is simply defined as the Euclidean
distance between pairs of consecutive TC samples.

3 Model-based cover song
detection

3.1 State space reconstruction

Since an isolated sample s,, might not contain the neces-
sary information for a reliable prediction at some future
time step h, one might consider information from past
samples. As a notational representation of the present
and recent past of a time series we use the concept of
delay coordinate state space embedding, a tool that is
routinely employed in nonlinear time series analysis [6].
Noticeably, there is evidence that nonlinear time series
analysis tools can be beneficial for music retrieval sys-
tems (see our previous work [12] and references therein).

In our case, for multidimensional samples s,,, we con-
struct delay coordinate state space vectors s), through

vector concatenation, i.e.

r T
Sn—(m—l)-r) ) (1)
where superscript 7 denotes vector transposition, m is
the embedding dimension, and 7 is the time delay [6].
The sequence of these reconstructed samples yields again
a multidimensional time series S* = [s},,; ...s} |, where
w = (m — 1)7 corresponds to the so-called embedding
window. Notice that Eq. (1) still allows for the use of
the raw time series samples (i.e. if m = 1 then S* = §).

3.2 Autoregressive (AR) models

A widespread way to model linear time series data is
through an AR process, where predictions are based on
a linear combination of m previous measurements [1]. We
here employ a multivariate AR model [7] and the previ-
ous state space representation [Eq. (1)]. In particular,
we first construct delay coordinate state space vectors
sy and then express the forecast 8,1, at h steps ahead
from the n-th sample s,, as

(2)

where A is the D x mD coefficient matrix of the mul-
tivariate AR model. By considering samples n = w +
1,... N — h, one obtains an overdetermined system

S=AS8"

A *
Sn4+h = A Sps

(3)

which, by ordinary least squares fitting [10], allows to
estimate A.

3.3 Threshold
models

autoregressive (TAR)

TAR models generalize AR models by introducing non-
linearity [13]. A single TAR model consists of a collection
of AR models where each single one is valid only for cer-
tain time series samples, which are grouped according
to their similarities (piecewise linearization [6]). For de-
termining all TAR coefficients we group the samples of
S* into K clusters with a K-medoids algorithm?! [9] and
determine, independently for each partition, AR coeffi-
cients as above [Egs. (2,3)]. Importantly, each AR model
is associated to the corresponding cluster medoid. When
forecasting, we again construct delay coordinate state
space vectors s}, from each input sample s,, and calcu-
late their Euclidean distance to all £k = 1,... K medoids.
The forecast at horizon h is then

~ k'
Sp+h = A( ) S;kw

(4)

where AX®") is the D xmD coefficient matrix of the multi-
variate AR model associated to the cluster medoid closest
to s%, being k' the index of this medoid.

IWe re-implement it from the cited reference without fur-
ther modifications.
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3.4 Training and testing

TAR models are completely described by a series of pa-
rameters m (embedding dimension), 7 (time delay), and
K (number of clusters), and a series of coefficients A®*),
k=1,... K. In our experiments these values are learned
independently for each song and descriptor using the en-
tire time series as training set. This learning is done in an
unsupervised way, with no prior information about pa-
rameters and coeflicients. More concretely, for each song
and descriptor time series we calculate the corresponding
model coefficients for different parameter configurations
and then select the solution that leads to the best in-
sample approximation of the data. We perform a grid
search over m € [1, 2, 3,5, 7,9, 12, 15], 7 € [1, 2, 6,
9, 15], and K € [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20,
30, 40, 50]. Intuitively, with such a search for the best
parameter combination for a concrete song’s time series,
part of the time series modeling is also done through the
appropriate parameter setting, since m, 7, and K are pa-
rameters that also define time series’ characteristics [6].
Notice that the prediction horizon h cannot be optimized
in-sample since best approximations would always corre-
spond to h = 1 due to inherent sample correlations. The
impact of h can only be assessed on the out-of-sample
prediction, when the model is applied to the candidate
song.

Since we aim at obtaining compact descriptions of our
time series and we want to avoid overfitting, we limit
the total number of model parameters and coefficients
to be less than 10% of the number of values of the time
series data. This implies that parameter combinations
leading to models with more than (N x D)/10 values are
automatically discarded at the training phase. We also
limit the embedding window to w < N/20.

Once a TAR model is trained on a descriptor time
series for a given query song i, we transpose the time
series of a candidate song j by the optimal transposition
index method [11] in order to match the key of the query
song. Once this preliminary step is done, we perform an
out-of-sample prediction with the i-th song model using
the j-th song time series both as input and target.

To evaluate prediction accuracy we use a normalized
mean squared error measure, both when training our
models (to select the best parameter combination) and
when forecasting. We define

N—h D ~
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where o4 is the variance of the d-th descriptor component
over all samples n = w+ h+1,... N of the target time
series. We use the notation e; ; when a model trained on
song ¢ is used to forecast song j.

4 Evaluation

We use an in-house music collection consisting of 2125
cover songs. This music collection spans a variety of gen-
res and styles and is an extension of the one used in our
previous work [12]. Tt includes 523 groups of covers and
the average number of songs per group is 4.06, ranging
from 2 to 18.

To evaluate the accuracy in detecting cover songs we
proceed as follows. Given a music collection with @
songs, we calculate e; ; for all @ x @ possible pairwise
combinations and then create a symmetric dissimilarity
matrix D, whose elements are d; ; = e;; + €;;. Once
D is computed, we can resort to standard information
retrieval (IR) measures to evaluate the discriminative
power of this information. In particular we use the mean
of average precisions (MAP) measure [8]. This measure,
which ranges between 0 and 1, is routinely employed in
the IR [8] and MIR [3] communities, and specially in
evaluating cover song detection systems [11]. A base-
line MAP across 99 iterations of a random matrix D is
computed for additional assessment of our results.

5 Results

In preliminary trials we saw that the prediction horizon h
had an important impact in system’s performance, so we
decided to study the accuracy for different h values with
a reduced set of 102 arbitrarily selected cover songs (17
groups of 6 versions). The results are shown in Table 1.
We see that accuracies increase with h until they reach a
more or less stable plateau for h > 7 (more than 731 ms).
We hypothesize that this intriguing behavior is due to
strong correlations between subsequent time series sam-
ples which, at short time intervals h, do not allow for the
learning of relevant patterns that can characterize a song
(and thus that could be useful for detecting its covers).
Recall that we are using a hop size of 104.5 ms and that
PCP, TC, and HC values might not change dramatically
in such a short time interval [4]. However, a more thor-
ough understanding of this phenomenon requires further
research.

The final MAP achieved with the full collection (h =
19) is 0.386 for the PCP descriptor, 0.441 for the TC
descriptor and 0.064 for the HC descriptor. We see that
the HC descriptor is much less powerful than the other
two. This is to be expected, since HC compresses tonal
information to a univariate value. Furthermore, tonal
change might be less informative than tonal values them-
selves, which already contain the change information in
their temporal evolution. However, the HC MAP is still
higher than the random baseline, which is 0.006. Apart
from this, we see that TC performs better than PCP.
This does not necessarily imply that TC descriptors pro-
vide a better representation of a song’s tonal informa-
tion (actually they are directly derived from PCPs), but
that TAR models might better capture the essence of
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Table 1: System’s MAP in dependence of the prediction horizon h for the three descriptors tested. Results computed
for a reduced set of 102 songs (see text). The random baseline MAP for 102 songs is 0.085.

Descriptor Prediction horizon h
1 4 7 10 13 16 19 22 26 30
PCP 0.292 0.554 0.588 0.592 0.604 0.616 0.623 0.623 0.610 0.607
TC 0.279 0.633 0.694 0.688 0.690 0.692 0.703 0.666 0.658 0.648
HC 0.194 0.314 0.293 0.318 0.293 0.267 0.280 0.280 0.254 0.279

their temporal evolution. Noticeably, the combination of
K =1 and m = 1, what would correspond to a simple
AR model with no state space reconstruction, was never
selected in our experiments. Further trials with K =1
and/or m = 1 yielded worse results.

6 Discussion

It might seem that a MAP around 0.4 is not a big success
for a cover song detection approach. To properly asses
this success one has to compare with the performance
of current systems. According to MIREX [3], the best
accuracy achieved to date within the cover song detection
task corresponds to our previous work [12]. This system
reached a MAP of 0.66 with the MIREX dataset and a
MAP of 0.698 with the music collection used here. Thus
the current approach does not outperform [12]. However,
one should notice that MAP values around 0.4 are in line
with other state-of-the-art accuracies, or even better [11].

Beyond accuracy comparisons, some other aspects can
be discussed. Indeed, another reason for appreciating
the solution obtained here comes from the consideration
of storage capabilities and computational complexities at
the retrieval stage. Since we limit our models to a size
of 10% of the total number of training data, they require
10% of the storage that would be needed for saving the
entire time series (state-of-the-art systems usually store
the full time series for each song). This fact could be
exploited in a retrieval stage, although for doing so one
might have to get rid of the symmetrization of cross-
prediction errors D and use the elements e; ; directly.
Regarding computational complexity, many approaches
for cover song detection (including our previous method
[12]) are quadratic in the length of the time series, requir-
ing at least an Euclidean distance calculation for every
pair of sample points. In contrast, the approach pre-
sented here is linear in the length of the time series: we
just need to do a pairwise distance calculation between
samples and the K medoids, plus a matrix multiplica-
tion and subtraction. More concretely, if we compare
our previous approach [12] with the TAR-based strategy
by considering an average time series length N, we have
that the former is roughly O (Z\_f QmD), while the latter
is O (NmD(K + D)), being K + D < N. To put some
numbers: with N = 2304 (approximately 4 min of mu-
sic), descriptor dimensionality D = 12 (the largest one

among PCP, TC, and HC), and K = 50 (the maximum
allowed), we obtain a minimal relative speed improve-
ment of 2304/(50 + 12) ~ 37 times.

A further and very interesting advantage of the ap-
proach considered here is that it does not need any pa-
rameter optimization by the user, therefore making its
application robust and straightforward. Usually, cover
song detection systems have multiple parameters that
can be dependent, for instance, on the music collection,
the music descriptor time series, or the types of cover
songs under consideration [11]. Our previous method
[12] was not an exception: as we did not have a way
to a priori set its specific parameters, these were set by
trial and error with an independent out-of-sample mu-
sic collection. With the TAR-based approach, the best
parameter configuration is automatically found for each
song and descriptor time series by the minimization of
the in-sample training error e; ;.

7 Conclusions and future work

We see that considering cross-predictions of TAR mod-
els leads to a parameter-free approach for cover song de-
tection. Furthermore, the approach is fast, allows for
reduced storage, and still maintains a highly competi-
tive accuracy when compared to state-of-the-art systems.
Thus, time series modeling strategies stand as a really
promising approach for cover song detection and, by ex-
tension, for music and multimedia retrieval in general
2, 3].

Future research will be devoted to the application of
other common time series models to the cover song detec-
tion task. Moreover, we will focus on how the forecasts of
these models behave as a function of the prediction hori-
zon. This will allow us to study the behavior of music
descriptor time series from a wider perspective. Finally,
we will try to improve model-based approaches by intro-
ducing specific modifications for the cover song detection
task [11] (e.g. taking into account tempo or structural
changes between cover songs).
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