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ABSTRACT

In this paper we describe a new parametric model for syn-
thesizing environmental sound textures, such as running
water, rain, and fire. Sound texture analysis is cast in the
framework of wavelet decomposition and multiresolution
statistical models, that have previously found application
in image texture analysis and synthesis. We stochastically
sample from a model that exploits sparsity of wavelet co-
efficients and their dependencies across scales. By recon-
structing a time-domain signal from the sampled wavelet
trees, we can synthesize distinct but perceptually similar
versions of a sound. In informal listening comparisons our
models are shown to capture key features of certain classes
of texture sounds, while offering the flexibility of a para-
metric framework for sound texture synthesis.

1. INTRODUCTION

Many sounds in our surroundings have textural properties—
yet sound texture is a term difficult to define, because these
sounds are often perceived subconsciously and in a context-
dependent way. Sound textures exhibit some of the statis-
tical properties that are normally attributed to noise, but
they arguably do convey information; not so much in an
information theoretic sense, but rather as a carrier of emo-
tional and situational percepts [1]. Indeed, sound texture—
often denoted atmosphere—forms an important part of the
sound scene in real life, in movies, games and virtual envi-
ronments.

In this work our goal is to synthesize environmental
sounds with textural properties, such as running water, waves,
fire, crowd noises, etc. Eventually, we intend to provide a
building block for an application that automatically gen-
erates soundscapes for virtual environments. Our work is
in the context of stochastic sound synthesis: given a tex-
tural analysis or target sound with statistical characteris-
tics sufficiently close to stationarity, we want to synthe-
size stochastic variations that are perceptually close in their
characteristics to the original but are not mere reproduc-
tions. In a data-driven approach we build a model by
statistical signal analysis. The distributions captured by
the model are then used to synthesize perceptually similar
sounds by stochastic sampling.
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Previous research suggests that textural sounds are per-
ceived by human listeners in terms of the statistical proper-
ties of constituent features, rather than by individual acous-
tic events [2, 3]. The ability to model texture in a statistical
sense, without detailed knowledge or assumptions about
the structure of the source material, leads to several desir-
able properties that a texture model should possess:

• Compactness of representation: The model should
require significantly less parameters than the origi-
nal coded audio.

• Statistical properties: The signal statistics should
be discoverable using a limited amount of training
data.

In general a texture model for synthesis can be split in
an analysis part and the actual synthesis part. The goal of
the analysis phase is to estimate the joint statistics of sig-
nal coefficients in some decomposition space and combine
them in a parametric or non-parametric model by statisti-
cal analysis. For audio signals, we typically need to es-
timate not only the vertical coefficient relationships, i.e.
their interdependencies across the frequency axis, but also
their horizontal dependencies across time. During the syn-
thesis phase, a new time series of decomposition coeffi-
cients is generated by stochastic sampling from the model.
If our model sufficiently captured the structural coefficient
dependencies, then after transforming the sampled coeffi-
cients to the time domain, we obtain a signal that percep-
tually resembles the original but is not exactly the same.

Multiresolution (MR) signal analysis methods, and in
particular the discrete wavelet transform, have been shown
to be well suited for modeling the dynamics of sound tex-
tures, where important perceptual details are present in var-
ious frequency bands and on different time scales [4, 5, 6].
Even though the wavelet transform can be considered al-
most sparse for many natural signals [8], the coefficients
retain inter- and intra-scale dependencies that have to be
taken into account in a statistical decomposition and syn-
thesis model. It has been shown that for natural signals
like 2D images, the wavelet coefficients themselves are
non-Gaussian, but approximately Gaussian conditioned on
their context, i.e. neighboring coefficients in scale and lo-
cation [7]. The hidden Markov tree (HMT) model [8] is
a parametric statistical model, that captures inter-scale de-
pendencies and is particularly suited to be applied to tree
structured data like wavelet transform coefficients.

While previous approaches to sound texture synthesis
have mostly been based on non-parametric density estima-
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tion techniques—see Section 2 for an overview—the HMT
has been successfully applied to a wide range of image pro-
cessing problems, leaving room for speculation that it will
also be applicable to sound texture modeling. It thus forms
the basis of our approach to sound texture synthesis. Our
model is similar to previous work in that we also use the
wavelet transform for multiresolution signal analysis and
perform density estimation in wavelet decomposition trees.
Our estimator, however, instead of being based on non-
parametric density estimation, explicitly casts the wavelet
coefficient statistics and their interdependencies in a graph-
ical model within the maximum likelihood framework. As
with parametric models in general, when the modeling as-
sumptions match the signals being modeled fairly well, we
can gain from a principled probabilistic approach, e.g. by
introducing priors, dealing with missing data and perform-
ing inference.

The rest of the paper is structured as follows: In Sec-
tion 2 we give an overview of current approaches to sound
texture modeling and multiresolution statistical analysis.
In Section 3 we introduce the basic building blocks of our
texture model, the discrete wavelet transform and the hid-
den Markov tree model and how these fit together in a
synthesis model. In Section 4 we present results of nat-
ural sound textures synthesized from our model and finally
draw some conclusions and mention possible future work
in Section 5.

2. RELATED WORK

While image texture modeling has been under active inves-
tigation for at least 35 years, sound texture modeling has
begun to find a similarly thorough treatment only relatively
recently; for an overview with a focus on synthesis see [9].

Many approaches to sound texture modeling have been
heavily inspired by methods originally developed for mod-
eling texture images. In [4] the authors describe a non-
parametric sound texture model that learns conditional prob-
abilities along paths in a wavelet decomposition tree. Path
probability densities are estimated first for inter-scale co-
efficient dependencies and in a second step for intra-scale
predecessor probabilities. In a similar fashion, [5] estimate
the sound texture statistics on wavelet tree coefficients by
kernel density estimation and histogram sampling, inspired
by the approach taken by Efros and Leung for image tex-
ture synthesis [10]. The authors report improved results
compared to the ones obtained by [4], but didn’t conduct a
conclusive quantitative evaluation.

A large body of research is devoted to the field of multi-
resolution statistical models, and in particular MR Markov
models, for a comprehensive overview see [11]. The hid-
den Markov tree model has been applied to a wide range of
problems in image and signal processing, such as denois-
ing [8, 12, 13, 14] and texture classification and synthesis
[15].

3. METHODS

3.1 The discrete wavelet transform

The discrete wavelet transform decomposes a one- or multi-
dimensional signal z(t) into atoms of shifted and dilated
bandpass wavelet functions ψ(t) and shifted versions of a
lowpass scaling function φ(t), i.e. the signal is represented
on multiple time scales K and frequency scales J :

ψJ,K(t) ≡ 2−J/2ψ(2−J t−K)

φJ0,K(t) ≡ 2−J0/2φ(2−J0t−K)
J,K ∈ Z

(1)

When designed with certain constraints, the wavelet and
scaling functions form an orthonormal basis with the fol-
lowing signal representation [16]:

z(t) =
∑
K

uKφJ0,K(t) +
J0∑

J=0

∑
K

wJ,KψJ,K(t)

uK =
∫
z(t)φ∗J0,K(t)dt

wJ,K =
∫
z(t)ψ∗J,K(t)dt

(2)

where ∗ denotes complex conjugation. uK and wJ,K

are called scaling and detail coefficients, respectively. In
(1) and (2), J specifies the scale or resolution of analysis
– the smaller J , the higher the resolution. J0 is the lowest
level of resolution, where the analysis yields both detail
coefficients and scaling coefficients. In the case of audio
signals, K denotes the temporal support of analysis, i.e.
the amount of time a wavelet ψ(t) is shifted from its sup-
port at time zero. The detail coefficient wJ,K measures the
signal content at time 2JK and frequency 2−Jf0, where
f0 is the wavelet’s center frequency. The approximation
coefficient uK measures the local mean at time 2J0K. Fol-
lowing [8] and in order to reduce notational overhead, we
will adopt a simplified indexing scheme for basis functions
of the decomposition and the resulting coefficients: instead
of indexing by scale J and shift K, we will use a one-
dimensional mapping J,K 7→ Z, where the indices i ∈ Z
have a fixed but unspecified ordering.

In practice, the DWT can be implemented with a pyra-
midal filterbank algorithm, where the signal is recursively
split into lowpass and highpass filter responses, that to-
gether form a quadrature mirror filter pair. Both responses
are downsampled by two; the highpass response forms the
detail coefficients, while the lowpass response is used for
further recursive analysis until a maximum depth is reached.

Due to the recursive structure of the DWT and the shift
and dilation relations based on powers of two, the decom-
position can be represented as a forest (list) of binary trees,
where each coefficient in scale J has two children in the
next finer resolution scale. At the coarsest level of detail
the signal is represented as pairs of detail and approxima-
tion coefficients, at which a binary tree of detail coeffi-
cients is rooted. The decomposition of the time-frequency
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Figure 1: Four level wavelet time-frequency decomposition. Shown are two consecutive trees with frequency running
downward and time to the right.

plane into multiple wavelet trees is shown graphically in
Fig. 1.

The recursive shifting and dilation performed by the
DWT is also the reason for some desirable properties for
the analysis of natural sounds [8]: Locality, i.e. each band-
pass atomψi is localized in both time and frequency, which
implies multi-resolution, i.e. a nested set of scales in time
and frequency is analyzed and compression, i.e. the wave-
let coefficient matrices of many real-world signals are near-
ly sparse. These properties are desirable for the goal of es-
timating the statistics of a wavelet decomposition, as will
become evident in the next paragraph.

3.2 Hidden Markov Tree Models

In general, a hidden Markov model introduces hidden state
variables that are linked in a graphical model with Markov
dependencies between the states, as is the case for the wide-
ly used hidden Markov model (HMM). Often the hidden
states can be viewed as encoding a hidden physical cause
that is not directly observable in the signal itself or its
transformation in feature space.

In our research we focus on MR Markov processes that
are defined on pyramidally organized binary trees, in par-
ticular the hidden Markov tree model. In this model, each
node in a wavelet decomposition tree is identified with a
mixture model, i.e. a hidden, discrete valued state variable
with M possible values and an equal number of paramet-
ric distributions (usually Gaussians) corresponding to the
individual values of the hidden state (Fig. 2).

Instead of assuming a Markov dependency on the wave-
let coefficients as in parametric estimation methods (see
Section 2), the HMT model introduces a first order Markov
dependency between a given hidden state and its children.
In other words and for the example tree in Fig. 2, given
their parent state variable s1, the subtrees rooted at the chil-
dren s2 and s3 are conditionally independent. Similarly,
since the wavelet coefficients are modeled by a distribu-
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Figure 2: Hidden Markov tree model. Associated with
each wavelet coefficient at a certain position in the tree
structure (black node) is a hidden state variable (white
node), that indexes into a family of parametric distribu-
tions.

tion that is only dependent on the node’s state, w2 and w3

are also independent of the rest of the tree given their par-
ent state s1. Given enough data for parameter estimation
and by increasing the number of states M , we can approx-
imate the marginal distributions of wavelet coefficients to
arbitrary precision. This allows us to model marginal dis-
tributions that are highly non-Gaussian, but are Gaussian
conditioned on the parent state variable.

Even though the wavelet transform can be considered
a de-correlator and the decomposition is sparse, the wave-
let coefficients of real-world signals can not be considered
independent, and there remain inter-coefficient dependen-
cies that need to be taken into account in a statistical model.
Fig. 3 shows histograms of wavelet coefficients for a par-
ticular scale in natural sound signals. These distributions



are sharply peaked around zero with long symmetric tails,
corresponding to the sparsity property of the wavelet trans-
form: there’s a large number of small and only a few large
coefficients.

For modeling the non-Gaussian wavelet coefficient mar-
ginal statistics, we use a two-state Gaussian mixture model,
where one state encodes the peaked distribution of small
coefficients and the other state encodes the tailed distribu-
tion of high-valued coefficients. For wavelet coefficients
w = (w1, . . . , wN ) and hidden states s = (s1, . . . , sN ),
the HMT is defined by the parameters

θ = {ps1(m), εmr
i,p(i), µi,m, σ

2
i,m}

m, r ∈ {0, 1}, 1 ≤ i ≤ N
(3)

with:

• ps1(m) = P (s1 = m), the probability of the root
node s1 being in state m,

• εmr
i,p(i) = P (si = m|sp(i) = r), the conditional

probability of child si being in state m ∈ {0, 1}
given the parent sp(i) is in state r ∈ {0, 1},

• µi,m, the mean of the wavelet coefficient wi given si

is in in state m (1 ≤ i ≤ N) and

• σ2
i,m, the variance of the wavelet coefficientwi given
si is in state m (1 ≤ i ≤ N).

3.2.1 Training of the HMT

In order to find the best parameters fitting a given source
sound, we update the model parameters θ given the train-
ing data w = {wi} (a forest of binary wavelet trees, see
Section 3.1) using a maximum likelihood (ML) approach.
The expectation maximization (EM) framework provides
a solid foundation for estimating the model parameters θ
and the probabilities of the hidden states s and has been
formulated for wavelet-based HMM’s in [8]. The objec-
tive function to be optimized is the log-likelihood function
ln f(w|θ) of the wavelet coefficients given the parameters.
The EM algorithm iteratively updates the parameters until
converging to a local maximum of the log likelihood.

In the following we provide a schematic description of
the algorithm. More information on how we initialized our
models and on the convergence criterion can be found in
Section 3.3.

1. Initialization

(a) Select an initial model estimate θ0,

(b) Set iteration counter l = 0.

2. E step: Calculate P (s|w, θl), the probability of the
hidden state variables S, yielding the expectation

Q(θ|θl) =
∑

s∈{0,1}N

P (s|w, θl) ln f(w,s|θ). (4)

3. M step: Update parameters θ, in order to maximize
Q(θ|θl):

θl+1 = arg max
θ
Q(θ|θl). (5)

4. Convergence: Set l = l+1. If converged, then stop;
else, return to E step.

3.2.2 E Step

The formulas for solving the hidden Markov tree E step
presented in [8] are susceptible to underflow due to the
multiplication of a large number of probabilities smaller
than one. In [13] the authors develop an algorithm that is
immune to underflow and computes the probabilities p(si =
m|w, θ) directly, instead of deriving them from p(si =
m,w = w). The probabilities p(si = m, sρ(i) = n|w, θ),
needed for computing the conditional state probabilities,
can also be extracted directly from their algorithm. Similar
to the original algorithm in [8], the above-mentioned prob-
abilities are computed in separate upward and downward
recursions, comparable to the computation of forward and
backward variables in conventional hidden markov mod-
els. The algorithm has a slightly higher computational
complexity than the one in [8], although it is still linear
in the number of observation trees. For a more thorough
treatment of the computations involved see [13].

3.2.3 M Step

After having calculated P (s|w, θl) in the E step, the M
step consists in straight-forward closed-form updates of the
conditional state probabilities and the parameters of the ob-
servation distributions.

First we calculate the probability of node i being in state
m

psi(m) =
1
K

K∑
k=1

P (sk
i = m|wk, θl) (6)

Then we update the model parameters by averaging over
the quantities computed in the E-step for each of the K
training examples:

εmr
i,p(i) =

∑K
k=1 P (sk

i = m, sk
p(i) = r|wk, θl)

Kpsp(i)(r)
(7)

µi,m =
∑K

k=1 w
k
i p(s

k
i = m|w, θl)

Kpsi(m)
(8)

σ2
i,m =

∑K
k=1(w

k
i − µi,m)2P (sk

i = m|wk, θl)
Kpsi(m)

(9)

3.3 Application to Sound Texture Synthesis

In this section we describe how the hidden Markov Tree
model is adapted to a sound texture synthesis application. 1

1 All of the algorithms used in this work were implemented in the
functional programming language Haskell and a link for download-
ing the package can be found at http://mtg.upf.edu/people/
skersten?p=Sound%20Texture%20Modeling

http://mtg.upf.edu/people/skersten?p=Sound%20Texture%20Modeling
http://mtg.upf.edu/people/skersten?p=Sound%20Texture%20Modeling
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Figure 3: Histograms of wavelet coefficients on the first (finest) scale of a five-level decomposition for two natural sounds,
fire (left) and running water (right). The wavelet coefficient statistics for fire are clearly non-Gaussian, while for running
water the statistics approach the Gaussian distribution.

3.3.1 Wavelet decomposition

The signal is first decomposed into wavelet coefficients on
different scales, using Daubechies wavelet functions with
five and ten vanishing moments [16].

The wavelet decomposition yields a forest of binary trees,
each rooted at one of the corse scale wavelet coefficients.
The length of the window corresponding to an individual
tree depends on the depth of the wavelet decomposition.
In our experiments, we chose a decomposition depth of 15
and 16, respectively, which corresponds to a context length
of 215 = 32768 (or 0.74s at a sample rate of 44100) and
216 = 65536 (or 1.5s). In order to yield an even num-
ber of trees, the signal was truncated to an integer multi-
ple of the context length in samples, i.e. from a signal of
length n with a decomposition depth ofm we used the first
b n

2m c ∗ 2m samples. We worked exclusively with mono-
phonic sounds and extracted the left channel from sounds
that have originally been recorded in stereo.

3.3.2 Model construction

The wavelet decomposition tree structure is mapped to a
HMT by associating each coefficient i with a hidden state
variable si that can take one of two discrete values, de-
pending on the value of the parent’s state variable sρ(i)

(see Section 3.2). Together with one normal observation
distribution per state value, each node forms a Gaussian
mixture model that approximates the statistics of a coeffi-
cient at a certain position in the tree. The model has the
same number of nodes as a single wavelet tree and all the
trees in a decomposition forest are regarded to be indepen-
dent samples from the same underlying distribution which
corresponds to the parameter tying across trees described
in [8].

In order to simplify the model, we don’t take the ap-
proximation coefficient corresponding to each corse scale

coefficient into consideration, although an extension to a
two-dimensional Gaussian mixture for the root node would
be straight-forward.

3.3.3 Model initialization and training

Since the EM algorithm only converges to a local mini-
mum of the likelihood function (see Section 3.2), it is im-
portant to find a good initial estimate of the model’s param-
eters. Following [17], we initialize the conditional state
probabilities and the Gaussian distribution parameters by
fitting a two-state Gaussian mixture model (GMM) to each
level of the wavelet decomposition (the corresponding lev-
els of all trees are concatenated). Once the GMM param-
eters have been found by the EM algorithm for Gaussian
mixtures [18], an initial estimate of the conditional state
probabilities εmr

i,p(i) is found by averaging over the number
of joint state occurrences for each tree node

εmr
i,p(i) =

#(si = m and sρ(i) = n)
#(sρ(i) = n)

(10)

During training, each tree of the decomposition forest
is presented to the HMT model as an independent training
example. In the E-step, the probabilities P (Si = m|θ, wi)
and P (Si = m,Sρ(i) = n|θ, wi) are determined as de-
scribed in Section 3.2.2. The M-step then proceeds to up-
date the model parameters according to (7), averaging over
all of the trees in the training set.

We trained our models until the training data log likeli-
hood under the updated model in step l + 1 was within a
margin t of 0.001 of the log likelihood under the model in
step l or when a maximum number n of iterations had been
reached:

rl ≡
ln f(w|θl+1)− ln f(w|θl+1)

ln f(w|θl+1)
(11)



terminate when 0 ≤ t ≤ rl ∨ l ≥ n.

3.3.4 Synthesis

Sampling from the model begins by choosing an initial
state for the root of the tree based on the estimated prob-
ability mass function (pmf) and sampling a wavelet coef-
ficient from the gaussian probability distribution function
(pdf) associated with the node and the sampled state. The
algorithm proceeds by recursively sampling state pmfs and
observation pdfs at each node given the state of its imme-
diate parent. After having sampled a number of trees from
the model independently from each other—without any ex-
plicit tree sequence model—the resulting forest of binary
wavelet coefficient trees is transformed to the time domain
by the inverse wavelet transform.

4. RESULTS

For a first qualitative evaluation we selected two textural
sounds, fire and running water, from a commercial collec-
tion of environmental sound effects 2 .

Fig. 4 shows the spectrograms of the fire and the water
sound, respectively (left column). The fire texture is com-
posed of little micro-onsets stemming from explosions of
gas enclosed in the firewood. Inter-onset intervals are in
the range of a few milliseconds. The background is filled
with hisses, little pops and some low frequency noise. The
sound of a water stream on the other hand is characterized
by its overall frequency envelope with a broad peak below
5 kHz and a narrow peak around 12 kHz, while the fine
structure is not clearly discernible in the spectrogram.

Informally evaluating the synthesis results by listening 3

shows that the HMT model is able to capture key depen-
dencies between wavelet coefficients of the textural sounds.
In the case of fire, the model built from an analysis with the
longer wavelet function with ten vanishing moments is not
able to reproduce the extremely sharp transients present in
the signal. All three fire reproductions capture the over-
all perceptual quality of the original. This coherence is
ensured by the HMT model by capturing the across scale
coefficient dependencies. The temporal fine structure how-
ever can deviate significantly from the original: In all three
cases the onset patterns are denser than in the source sound
and lack sequential coherence. This can be explained with
the fact that our model doesn’t capture temporal, i.e. within-
scale dependencies of wavelet coefficients explicitly. This
missing feature roughly corresponds to the autocorrelation
feature found to be important for the perception of textures
in both image and sound [15, 3].

Similar to the sounds of fire, the synthesis of the water
sound shows an overall similar spectral shape to the origi-
nal, although an important spectral peak is missing from
around 12 kHz and the high frequency content is more
noisy in general (Fig. 4). In this sound, clearly noticeable
bubbles form an important part of the temporal fine struc-
ture, and this feature is missing from the synthesis. We

2 Blue Box SFX, http://www.eastwestsamples.com/
details.php?cd index=36, accessed 2010-04-27.

3 The synthesis results of our experiments are available on the
web for reference, http://mtg.upf.edu/people/skersten?
p=Sound%20Texture%20Modeling, accessed 2010-06-14

attribute this, as in the case of fire, to the missing autocor-
relation feature in our synthesis model.

All of the synthesis examples show a repeating pattern
with a length close to the wavelet tree size, i.e. directly
related to the decomposition depth, although there is some
minor within-loop variation. This result is an indication
that the model is overfitted to the source material and can
be explained with the relatively low number of training ex-
amples per tree model (around 7 wavelet trees per 10 sec-
onds of source material). We could alleviate the overfitting
effect in two ways: firstly, by using a significantly larger
training set, and secondly, by tying parameters of corre-
lated wavelet coefficients and thereby reducing the number
of states and the number of mixture components. Simply
tying parameters within one level of the wavelet decompo-
sition however was found to be inadequate, because tem-
poral fine structure gets lost and the synthesis result resem-
bles a noisy excitation with roughly the spectral envelope
of the original.

In order to quantitatively assess the synthesis quality,
we conducted a small listening experiment with eleven sub-
jects. We selected three sound examples for each of the five
texture classes applause, crowd chatter, fire, rain and run-
ning water from the Freesound database 4 . We trimmed
the sounds to the first 20 seconds, selected the left chan-
nel and downsampled this sound portion to a uniform sam-
ple rate of 22.5kHz. We then trained a model for each of
the sounds using a wavelet tree decomposition of a depth
of 16, i.e. an analysis frame length of 1.5s, and stopping
training after 40 iterations. By sampling from the models
we synthesized an eight second audio clip for each original
sound file and presented the examples in random order. In
a forced choice test, the subjects had to assign each syn-
thesized sound to one of the five texture classes.

Table 1 shows the confusion matrix of the listening ex-
periment and Table 2 lists the per-class accuracy. Appar-
ently our model adequately captures the key perceptual
properties of the respective sound classes except in the
case of water and rain. The rain/water confusion can be
explained with the missing “larger-scale” fine structure in
the water examples (bubbling, whirling) that draws them
closer to the noisy nature of the synthesized rain. While
applause gets confused with rain on a surface because of
the perceptual similarity between the micro-onsets that com-
prise those texture sounds, the vocal quality of the crowd
chatter is a clearly distinguishing feature, even if poorly
synthesized.

5. CONCLUSIONS

In this work we approached the problem of sound tex-
ture synthesis by application of a multi-resolution statis-
tical model. Our contribution is a model that is able to
capture key dependencies between wavelet coefficients for
certain classes of textural sounds. While the synthesis re-
sults highlight some deficiencies that need to be addressed
in future work, a parametric probabilistic approach to sound
texture modeling has important advantages:

4 http://freesound.org

http://www.eastwestsamples.com/details.php?cd_index=36
http://www.eastwestsamples.com/details.php?cd_index=36
http://mtg.upf.edu/people/skersten?p=Sound%20Texture%20Modeling
http://mtg.upf.edu/people/skersten?p=Sound%20Texture%20Modeling
http://freesound.org


Figure 4: Spectrograms of a fire sound (top left), its synthesis (top right) a water stream sound (bottom left) and its synthesis
(bottom right). Both sounds were recorded at a sample rate of 44100 kHz. The spectrum analysis was performed with a
window size of 1024 and a hop size of 256.

Predicted
applause crowd fire rain water

A
ct

ua
l

applause 13 1 0 7 1
crowd 0 24 1 5 2
fire 0 0 30 0 3
rain 1 1 2 17 12
water 6 0 2 19 6

Table 1: Confusion matrix for the listening experiment’s
results with five sound classes of three examples each and
eleven subjects. Due to an error during the model building
process, the applause class contains only two examples.
One user classification for the crowd class was not submit-
ted.

Class
applause crowd fire rain water

Accuracy 0.59 0.75 0.91 0.52 0.18

Table 2: Class accuracies obtained in the listening experi-
ment.

• Probabilistic priors can be used to deal with insuffi-
cient training data or to expose expressive synthesis
control parameters.

• The model can be applied to inference tasks like clas-
sification, segmentation and clustering.

When comparing the synthesized sounds to their origi-
nal source sounds it becomes evident that the model fails to
capture some features that are crucial for auditory percep-
tion of texture, most notably the intra-scale autocorrelation
feature. Another major limitation is the inadequate repre-
sentation of infinite time series, because our model divides
the signal into blocks of a size determined by the model
tree depth, thereby introducing artifacts caused by the po-
sition of the signal relative to the beginning and the end of
the block.

The most intuitive approach to overcome these limita-
tions is to modify the graphical tree model itself, by allow-
ing additional conditional dependencies between nodes on
the same hierarchy level. Because graphs that satisfy cer-
tain conditions on their structure, and in particular on the
cycles formed by their edges, still allow for efficient pa-
rameter estimation in the EM framework—see [19] for a
thorough treatment—it is possible to model within-scale
coefficient dependencies without resorting to Markov-chain
Monte-Carlo or other simulation methods. The significant
increase in the number of parameters needs to be addressed
by aggressive tying, i.e. by using the same parameters for



a set of variables in the model that exhibit the same statis-
tics. While tying within tree levels yields unsatisfactory
results for the model described in this paper, a modified
model might be able to capture just enough temporal cor-
relations to make this tying scheme feasible. By explicitly
modeling dependencies across time, the wavelet decompo-
sition depth wouldn’t be the only way to capture temporal
context any longer and could be decreased significantly,
resulting in a vastly reduced set of parameters.
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