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ABSTRACT

In this paper we introduce a framework that represents emvir
mental texture sounds as a linear superposition of indegyend
foreground and background layers that roughly corresporeht
tities in the physical production of the sound. Sound sample
decomposed into a sparse representation with the matching p
suit algorithm and a dictionary of Daubechies wavelet atoArs
agglomerative clustering procedure groups atoms intot $reo-
sient molecules. A foreground layer is generated by samplin
these sound molecules from a distribution, whose parasater
estimated from the input sample. The residual signal is hhexdle
by an LPC-based source-filter model, synthesizing the rackagl
sound layer. The capability of the system is demonstratek avi
set of fire sounds.

1. INTRODUCTION

Many sounds in our daily surroundings have textural progert
yetsound texturés a term difficult to define, because these sounds
are often perceived subconsciously and in a context-dependy.
Sound textures exhibit some of the statistical properties are
normally attributed to noise, but they arguably do convégrima-
tion; not so much in an information theoretic sense, buteratts
a carrier of emotional and situational percepts [14]. Inbdeeund
texture—often denotedtmosphere-forms an important part of
the sound scene in real life, in movies, games and virtuat@mv
ments.

Current sound texture synthesis models don’t normally take
the physical and perceptual characteristics of a specificesound
type into account. Concatenative or granular methods, asithe
ones in [7/-1B["16] capture the characteristics of the somae
terial by segmenting the original sound into small segments
reassembling them according to a statistics either estiinabm
the source or based on heuristics. Other models borrow fesm r
lated fields in signal processing, for example by extendmgRC-
based source-filter model with a model of the residual’s tenalp
variations [[1/18] or by learning coefficient sequences inedgt
domain representations| [5]. Parametric statistical nogemise
insight into possible dependencies between a sound’s etace!
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efficients, but can suffer from large parameter spaces aedibv
ting when applied to synthesis| [9].

In [6], the author presents a physically inspired synthesidel
for fire sounds that incorporates the following three maimpo-
nents:lapping “combustion of gases in the airgrackling “small
scale explosions caused by stresses in the fuel'hisxing “regu-
lar outgassing, release of trapped vapdr? ([6], p. 412).unwork
we intend to capture these characteristic elements of finedsoby
modelling them individually. In particular, we model tbeackling
component as a foreground layer represented by atoms irrgespa
decomposition and thappingandhissingcomponents as a back-
ground layer, represented by the linear prediction codgdual of
the sparse decomposition. The motivation behind this satgde
model is the hope to lay the foundation for independent manip
ulation of the different layers during synthesis, therebyaming
meaningful parameterisation for the synthesis model.

In previous work[[8] we have modelled water stream sounds
by first decomposing them in an overcomplete sparse regeesen
tion by using the matching pursuit algorithm[12] and a dictiry
of Gammatone atom5[L1]. The atomic representation is dtetegn
to represent thbubblecomponent of the water stream sounds and
is statistically modelled by estimating a smoothed hisiogiof
atom inter-onset intervals. The residual, representingtiyoin-
correlated water noise is modelled by estimating the sicgiof
filter coefficients in the cascade time-frequency lineadjmtéon
(CTFLP) framework([L].

In this paper we extend this framework to fire sounds; in order
to take into account the cross-atom correlations duringstieep
transients usually found in fire soundsl([6], p. 412), we aypl
a Daubechies wavelet dictionary for obtaining the sparserme
position matrix, which in a second step is subject to an aggle
ative clustering procedure that groups atoms close in tinfeee
guency intomolecules These groups of atoms are then treated as
individual cracklingevents in the statistical modelling component.
The sparse decomposition residual is assumed to contaittymos
coloured noise from thiapping and andhissingcomponents and
is modelled with the CTFLP method mentioned above.

The rest of this paper is organised in the following way: Icrse
tion[2 we introduce the signal representation and estimatieth-
ods that constitute our modelling framework{In 3 we presente
example sounds, the parameters used for modelling theiacha
teristics and synthesis results;[ih 4 we conclude our firslagd
provide an outlook on future work.
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2. METHOD
2.1. Sparse Decomposition via Matching Pur suit d(Bnsdm) = Vwedi(Pn, ¢m)? + wsds(Pn, dm)?  (5)
Following [15], a sparse decomposition of a sampled sougbsi di(Pn, dm) = % (6)
z[t] is a linear combination oV amplitudess,, and sound atoms do(Gny bm)  se(dn)—se(dm) @)
¢n[t] : S\, wm T ss(dn)+ss(dm)
N Heret.(¢), ts(¢) are the temporal centroid and spread of atom
z[t] = &[t] + €[t] = Z Snonlt] + €t], (1) ¢ ands.(¢), ss(¢) are the spectral centroid and spread. By using
el the distance measudknstead of correlation as usedin[17] we can

. . have non-zero distances for two close but short non-oveirigp
wheree[t] represents the residual. Each atpnit] isatemporally  41oms; even though the dictionary is not divided into transand
shifted (byr) version of one of the/ atomic prototypes); [t]: tonal atoms. The coefficients; andw, weigh the relative con-

bult] = ¥y, (t — ), @) tributions of the temporal and spectral components, résedg

" to the distance measure. They are model parameters thatdave

Matching Pursuit (MP)12] is an iterative greedy method tha be tuned for each sound in order to obtain the desired shape an
can be used to obtain the decomposition in Equafidns Tland 2. | number of molecules.
each iteration, the atomic functions of the dictionary aneelated All atoms that are pairwise sufficiently close with resperct t
with the signal and the atomic function with the highest etattion their temporal and spectral centroid are collected to foisound
is subtracted, yielding a residual signal. This procesefigated ~ molecule. For this objective, the molecule atoms are weijhyy
with the residual until a stopping criterion, in our case edafined their coefficientss,,. Starting from the first row im, for all non-
signal to residual ratio, is reached. zeroan,m, the corresponding coefficient/atom pair is added. Then,
the algorithm looks for the next row sharing non-zero estviéth
the first row and adding the atom/coefficient pairs that ateyab
part of the sum. This is iteratively continued until no moewn
The discrete wavelet transform decomposes a sigftainto atoms ~ atoms can be found.
of shifted and dilated bandpass wavelet functigris) and shifted
versions of a lowpass scaling functign (¢), i.e. the signal is rep-
resented on multiple time scal&S and frequency scaleé

In our work we don’t employ the time dilation structure of the Cascade time frequency linear prediction (CTFLP) is a combi
wavelet transform as in[4], but we use an overcompleteatietiy tion of linear predictive coding (LPC) and frequency domaiear
of J wavelet bandpass functions (¢), that were generated by the  prediction (FDLP) that has been used for coding texturahdey
inverse discrete wavelet transform of a wavelet tree witmgls and [18]. The intention is to capture both the spectrakéope
impulse on each of the scales respectively: characteristics of the source signal by conventional LPC tae

envelope of the temporal fine structure by applying lineadjo-
/2 e tive coding to the LPC residual in the frequency domain.
¥;(t) =27779(2771) 3) The signal is first divided into overlapping frames with frem

size N and hopsizef{. Each frame is multiplied by a smoothing
window and encoded by the LPC to obtain coefficients for an IR
filter that approximates the spectral envelope of the sigjiidlin
the frame. After whitening the signal by applying the ineeen-
velope and the inverse window, the residual is transforroetie¢
frequency domain with the discrete cosine transform. Thke fr
quency domain coefficients are subject to another LPC st&p th
yields filter coefficients for a filter that approximates tlg@are of
the Hilbert envelope of the frame’s temporal structure. \I¢e a
estimate the residual energy after applying CTFLP and sta®
a single coefficient.

The inverse procedure starts by generating a sample of white
noise for each frame, transforming to the frequency domaih w
) ) ) the DCT, imposing the temporal envelope filter, transfogriack
2.2. Sound Moleculesvia Agglomerative Clustering to the time domain with the inverse DCT, windowing and impgsi
the spectral envelope filter.

2.1.1. Daubechies Dictionary

2.3. Cascade TimeFrequency Linear Prediction

The filters approximately span the whole audible frequency
range and have a coupling between the length of their support
in the time and frequency domains, effectively providing lve-
quency narrow band filters with long support and high fregyen
broad band filters with short support along an octave frequen
scale.

Following our work in [9], where a Daubechies wavelet base
provided a good representation for fire sounds, we chose @m ov
complete dictionary of Daubechies wavelets functions wh
vanishing moments 3], evaluated At= 9 scales with dilations
corresponding to all possible shifts of the function (seetifa

2.1).

Let z[t] be a sound decomposed according to Equéfion 1. Follow-
ing [17], for a distance threshol@lwe build the upper-triangular

adjacency matriA, defined by: 2.4, Foreground event density estimation
1, d(én,dm) <0, For modelling the foreground layer we assume that the doesti
Onm = { 0 else. (4) events are produced by a Poisson process, i.e. that théudistr
tion of inter-event intervals —or conversely, teeent densityer
wherel < j,n < N,n < m < N andd(¢n, ¢m), the dis- time interval— is independent of all other events and, incage,
tance measure based on temporal/spectral centroid/spfehd stationary. We estimate the inter-event distribution bplgpg
two atoms[(¥). kernel density estimation to the time intervals measurethfthe
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SNR ¢ Wy Ws
firel 18 40 1 1
fire2 6 600 1 1
fire3 18 200 1 1
fire4 15 200 1 2
fire5 18 250 1 4
fire6 6 200 1 1

Table 1: Sparse decomposition and agglomerative clugtg@@
rameters for each of the six fire sounds: Signal-to-noise IR
in dB, distance function threshotd temporal distance weighi;
and spectral distance weigtt, .

events built in the molecule agglomeration step from Said.
Note that for estimating inter-event intervals we measheedis-
tance between two events’ temporal centroids, not theietsns

3. EXAMPLES

N H Ns N: w(n)

1024 256 20 20 0.5 (1 - cos 222 )

Table 2: CTFLP parameters used for encoding the residuaimér
size N, hop sizeH, number of spectral envelope coefficie{s,
number of temporal envelope coefficients a and the window
functionw(n) (Hann).

The residual, in the ideal case containing only colouredbac
ground noise, is first coded by the CTFLP process described in
sectionZ.B, yielding a total of 41 filter coefficients pemfia (20
for describing the spectral envelope, 20 for the temporatlepe
and one for the residual noise energy). Téble 2 lists thenpeters
used in the encoding process.

During resynthesis new CTFLP frames were drawn indepen-
dently from the set of all analysed frames, concatenatedcand
verted to the time domain by the inverse CTFLP. Both syn#eesi
signals, foreground events and background noise, werestiysaT-
imposed to obtain the final synthesized result. All of thenstsu

For our experiments we chose six samples of fire sounds. We ex-are available onlitin four versions: The original sound, the syn-
tracted the first 10 seconds of the left channel of each sound i thesized foreground g.way and background (og.way individ-

order to limit processing time. All sounds were sampled airth
original sampling frequency af4.1kHz.

Each sound was then decomposed into an atomic representa-

tion using the Matching Pursuit Toolkit [L0], an efficientpie-
mentation of the Matching Pursuit algorithm described int®a
2. We used a dictionary of = ¢, = 9 Daubechies wavelet
bandpass filters with ten vanishing moments that were gttera

ually and the synthesized mixture of foreground and baakuio
(_fg+bg.way.

Since one of the objectives in our work is to agglomerate atom
from a sparse representation into higher level moleculasdbr-
respond to perceptual foreground events. The signal depénd
distance function threshold and the relative weights ofténepo-

ral and spectral distance function components are of driroia

as described in Sectidi Z1.1. We performed the sparse decomPortance. While in these experiments the parameters hae be

position for each sound individually until a 18 dB ratio betn

tuned by trial and error, heuristically setting the thrddlatose or

the atomic part and the residual was reached. We also retorde slightly above the mean distance of all the atoms in the sepre

during the decomposition process, the signal to noise (Sf\R)
associated with each matching pursuit iteration, in ordéetable
to adapt the actual SNR used when estimating the synthesisimo
parameters to each sound separately.

The atoms obtained in the decomposition step were then gdbup

into higher level molecules using the agglomerative chisteal-
gorithm described in Sectign 2.2. The goal here is to transtbe
atomic sparse representation into a “molecular” sparsesepta-
tion, were molecules correspond to individual foregroumengs
in the source sound. TaHlg 1 lists the parameters used fondec
position and clustering, i.e. the signal to noise ratio efdecom-
position, the distance function threshold that determimbsther
two atoms are considered “close” according to their disteard
the weights for the temporal and spectral components régekyc
of the distance function.

For resynthesis, the resulting molecules were treateddis in
vidual events and a smoothed histogram of the inter-evésmvals
was estimated by kernel density estimation [2]. The geierat-
gorithm then simply draws a molecule uniformly from the skt o
all molecules, reconstructs it at the current point in tich@ws a
delta timedt from the inter-event interval distribution, updates the
current time bydt and proceeds until a maximum output sound
duration has been reacffed

INote that although in our experiments all processing wafopaed
offline, the resynthesis process is causal and readilytseifar realtime
implementation.

tation led to acceptable results.

Figure[d shows three molecules from three different sounds:
The first, fire3, contains relatively isolated events that can also
be identified in the molecules built. The secofick6, contains
mostly low-frequency rumble and the molecules span the maxi
mum length allowed by the agglomeration process. In thel thir
example the molecules span multiple foreground events;iwihi
dicates that the relative weights andw, have not been optimal
for this sound.

All of the synthesized sounds (except the onefiferl) exhibit
a certain smearing of the sharp transients which can béattd
to the shape of the Daubechies wavelet filters we employeidhwh
don’t seem to be able to capture the full transient content.

The resynthesized residuals exhibit mainly two artefatie
smearing of transients and bursts of noise that are not synicled
with the foreground events and let the resynthesis appeésian”
than the original. The first can be explained by the analysis w
dow frame and hop size for the CTFLP coding, which determines
the tradeoff between uncertainty in the temporal and thetsgle
envelope.

Both artefacts are related to the problem of determiningléie
composition depth, i.e. the SNR threshold at which to st@pssp
coding and start residual coding. Some of the sounds, icpart
lar fire3, contain explosion tails that follow the transient impsglse
but are not captured by the sparse model. Consequently ithere

2http://tinyurl.com cv4unpd
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Figure 1: Molecules found by the agglomerative clusteriragpss from three different soundise3, fire6 andfires.
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to be expected a high correlation between foreground ewers
background residual that would need to be taken into acdount
synthesis, e.g. by making the residual frame distributiepeth-
dent on the energy of the foreground events. Another aspétai
our current model assumes that each CTFLP is independetst of i
predecessors intime, i.e. temporal correlations betwaeressive
residual frames are not captured by the statistical modebrder
to adapt the sparse decomposition threshold to the abilitheo
background model to encode the residual, the thresholddghot
be a fixed SNR, but rather depend on the properties of theuasid
noise after CTFLP coding, e.g. the flatness of its power sperct

4. CONCLUSIONS

In the present work our motivation has been to decomposeaiatu
texture sounds into perceptually meaningful elementsdhatbe
manipulated separately during synthesis in order yield retya

of sounds from a single model. We have cast the objectiveanto
framework that first decomposes a sound into atoms and @gsidu
and applies different resynthesis strategies to both .parts

While the foreground event extraction by agglomeratives<lu
tering works very well for sounds where foreground and back-
ground are clearly separated by the sparse decompositifailsi
to separate sharp transients from background noise whérabet
mixed in the sparse representation.

Our next steps in this line of research will be to formulate-pr
cedures that optimise some of the analysis parameters gnalsi
dependent way. The sparse decomposition threshold shewddtb
in accordance with the ability of the background model to-rep
resent the residual, and the molecule clustering algoritboid
be extended by placing a prior on the shape and density of the
molecules that are to be expected in a given sound.

We also started to apply the framework to the water stream [13]

sounds from[[B], where we hope to improve the synthesis tyuali
for those sounds that are not modelled well by independerd-ba
pass responses.

Finally, in future work we intend to develop meaningful tsan
formations that employ the multi-level representatiomfesavork,
for example by modifying the inter-event interval distrilomn in
order to create fire textures of varying density.

5. ACKNOWLEDGMENTS

Many thanks to the anonymous reviewers and their invaluzdite
ments.

6. REFERENCES

[1] M. Athineos and D. Ellis. Sound texture modelling with
linear prediction in both time and frequency domains. In

Acoustics, Speech, and Signal Processing, 2003. Proceed{18]

ings. (ICASSP '03). 2003 IEEE International Conference on
volume 5, pages V-648-51 vol.5, 2003.

C. M. Bishop. Pattern Recognition and Machine Learning
Information Science and Statistics. Springer, New York, NY
USA, 2006.

I. Daubechies. Orthonormal bases of compactly supdorte
wavelets.Communications on Pure and Applied Mathemat-
ics, 41(7):909-996, 1988.

(2]

(3]

DAFX-5

(10]

(11]

(12]

(14]

(15]

(16]

(17]

[4] L. Daudet. Sparse and structured decompositions ofagsgn
with the molecular matching pursuitAudio, Speech, and
Language Processing, IEEE Transactions d4(5):1808—
1816, 2006.

[5] S. Dubnov, Z. Bar-Joseph, R. El-Yaniv, D. Lischinski,dan
M. Werman. Synthesizing sound textures through wavelet
tree learning. Computer Graphics and Applications, IEEE
22(4):38-48, July 2002.

[6] A. Farnell. Designing SoundOct. 2010.
(71

R. HoskinsonManipulation and Resynthesis of Environmen-
tal Sounds with Natural Wavelet GrainPhD thesis, The

University of British Columbia, 2002.

[8] S. Kersten and H. Purwins. Hybrid sparse models of water
stream texture sounds, Sept. DAFX-11, Tonophonie Work-
shop.

[9] S. Kersten and H. Purwins. Sound texture synthesis with
hidden markov tree models in the wavelet domainSéund
and Music Computing Conferenc2010.

S. Krstulovic and R. Gribonval. Mptk: Matching pursuit
made tractable. IAcoustics, Speech and Signal Processing,
2006. ICASSP 2006 Proceedings. 2006 IEEE International
Conference orvolume 3, page lll, 2006.

R. Lyon, A. Katsiamis, and E. Drakakis. History and fu-
ture of auditory filter models. I€ircuits and Systems (IS-
CAS), Proceedings of 2010 IEEE International Symposium
on, pages 3809 —3812, June 2010.

S. Mallat and Z. Zhang. Matching pursuits with time-
frequency dictionaries.Signal Processing, IEEE Transac-
tions on 41(12):3397-3415, 1993.

J. Parker and B. Behm. Creating audio textures by exampl
tiling and stitching. InProc. IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP '04)
volume 4, pages iv—317—-iv—320, 2004.

R. M. SchaferThe Soundscape: Our Sonic Environment and
the Tuning of the WorldDestiny Books, 1994.

S. Scholler and H. Purwins. Sparse approximations ifiomd
sound classification.Selected Topics in Signal Processing,
IEEE Journal of 5(5):933 —940, Sept. 2011.

D. Schwarz and N. Schnell. Descriptor-Based sound tex-
ture sampling. InProceedings of SMC Conference 2010
Barcelona, Spain, 2010.

B. Sturm, J. Shynk, and S. Gauglitz. Agglomerative €lus
tering in sparse atomic decompositions of audio signals. In
Acoustics, Speech and Signal Processing, 2008. ICASSP
2008. IEEE International Conference ,ompages 97-100,
2008.

X. Zhu and L. Wyse. Sound texture modeling and timefre-
quency LPC. IrProc. of the 7th Int. Conf. on Digital Audio
Effects (DAFX-04)Naples, Italy, Oct. 2004.



	1  Introduction
	2  Method
	2.1  Sparse Decomposition via Matching Pursuit
	2.1.1  Daubechies Dictionary

	2.2  Sound Molecules via Agglomerative Clustering
	2.3  Cascade Time Frequency Linear Prediction
	2.4  Foreground event density estimation

	3  Examples
	4  Conclusions
	5  Acknowledgments
	6  References

