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ABSTRACT

In this work we study the problem of automatic musical in-

strument recognition from entire pieces of music. In partic-

ular, we present and evaluate 4 different methods to select,

from an unknown piece of music, relevant excerpts in terms

of instrumentation, on top of which instrument recognition

techniques are applied to infer the labels. Since the desired

information is assumed to be redundant (we may extract just

a few labels from a thousands of audio frames) we examine

the recognition performance, the amount of data used for

processing, and their possible correlation. Experimental re-

sults on a collection of Western music pieces reveal state-of-

the-art performance in instrument recognition together with

a great reduction of the required input data. However, we

also observe a performance ceiling with the currently ap-

plied instrument recognition method.

1. INTRODUCTION

Content-based Music Information Retrieval (MIR) aims at

automatically extracting higher-level concepts from music

data in order to enhance methods for an intelligent and user-

friendly management of music collections. Here, informa-

tion about the instrumentation plays a fundamental role in

the semantic description of a music piece. Given the sizes

of nowadays music archives, typical MIR applications such

as indexing or retrieval demand for algorithms with low or

moderate computational load. However, related literature in

the field of automatic musical instrument recognition from

polyphonies mostly concentrated on developing discrimi-

nation strategies, while disregarding aspects related to the
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computational complexity of the algorithms. Therefore,

many approaches towards musical instrument recognition

are costly and were designed for simplified test scenarios

(e.g. [7, 8]). Furthermore, global properties of the music re-

lated to the instrumentation, which can help to reduce the

amount of data to analyse and improve recognition robust-

ness, were either only partially used or completely neglected

(e.g. [1,9,10]). Moreover, most of the works incorporate re-

strictions such as reduced number of instruments, aseptic or

limited data, and/or other a priori assumptions (e.g. [3, 6]).

In general, the auditory scene produced by a musical com-

position can be regarded as a multiple source environment,

where the different sound sources – the musical instruments

– are temporarily active, while often recurring along the

piece. We therefore expect that the instrumentation’s tem-

poral evolution of a given music piece shows a repetitive

character, so that the information related to the individual

sources becomes redundant (we may extract a few labels

from a thousands of audio frames). This suggests that, for

automatic recognition systems, analysing only a fraction of

the data is enough to extract the available information.

Thereby the overall computational load of such algorithms

is reduced which enables the implementation of fast recog-

nition systems, indispensable for analysing big music col-

lections. Moreover, this so-obtained data reduction can fur-

ther be exploited by any other MIR related algorithm, e.g.

music visualisation or summarisation.

In the present work we study the effect of data reduc-

tion on instrument recognition performance from entire mu-

sic pieces for real world applications, e.g. music collection

indexing. We thereby address two of the above-identified

aspects lacking in the related literature, namely the devel-

opment of both robust and efficient methods for automatic

instrument recognition. In particular, we introduce and com-

pare several track-level approaches, i.e. aimed to roughly

assign labels to a whole track, which pre-process a given

music piece to output a set of segments. Labels are then in-

ferred from these segments using our previously presented
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Figure 1. Graphical illustration of the label inference.

recognition method [5]. We further show that by applying

this methodology we can significantly reduce the amount of

data needed for analysis, while maintaining high recogni-

tion performance. In doing so we explore the redundancy of

the information along a music track, and study the influence

of locally obtained data on recognition, i.e. how much data

needs to be extracted from which part of the track to obtain

a sufficient description of its instrumentation.

Since our focus lies on developing approaches for real

world applications, e.g. music collection indexing, we do

not impose any restrictions on the input data, hence evaluat-

ing our approaches only on music pieces taken from real

recordings. Furthermore, all information used in the la-

belling process is directly taken from the mixture signal with-

out applying a priori information.

Below, we first present the basic methodology to extract

instrumental labels from an unknown musical excerpt

of arbitrary length (Sec. 2). We then give details about the

different approaches to process entire pieces of music

(Sec. 3), which is followed by a description of the data used

in the experiments (Sec. 4). In Sec. 5 we define the evalua-

tion metrics and present the obtained results. After a discus-

sion, Sec. 6 concludes this article.

2. LABEL INFERENCE

Here we describe the basic process of extracting instrumen-

tal labels given an unknown audio excerpt of arbitrary length.

First, the method sequentially applies previously trained pre-

dominant instrument classifiers to the audio. The resulting

frame series is then analysed to extract the labels (Fig. 1).

2.1 Classification

To extract information about musical instruments from a

short section of the audio signal we applied parts of the

work previously presented in [4]. That is, our method uses

statistical models of predominant musical instruments to es-

timate the presence of both pitched and percussive instru-

ments for a 3-seconds excerpt of a polyphonic mixture sig-

nal. In particular, we applied the support vector machine

(SVM) model 1 for 11 pitched instruments (Cello, Clarinet,

1 We used the libSVM implementation, available at http://www.
csie.ntu.edu.tw/˜cjlin/libsvm/.

Flute, acoustic and electric Guitar, Hammond Organ, Pi-

ano, Saxophone, Trumpet, Violin, and singing Voice) as de-

veloped in [4] (“multiclass SVM” in Fig. 1), and a sepa-

rate model for estimating the presence of the drumkit (“bi-

nary SVM” in Fig. 1). Both SVMs output probabilistic es-

timates, i.e. a real value between 0 and 1, for each of the

target classes. The models were trained with automatically

pre-selected low-level audio features, describing the spectral

and pitch related properties of the signal 2 , extracted from

proper training data. In particular, the features were com-

puted frame-wise in the applied 3 second window, using a

frame size of 46 ms with 50% overlap, and integrated over

time via mean and variance statistics of the instantaneous

and first difference values.

The training data itself consisted of 3 second excerpts

containing predominant pitched target instruments, taken

from more than 2,000 – presumably polytimbral – music

recordings [4]. Besides for training the pitched instruments

model, this collection was also annotated according to the

presence of the drumkit, i.e. labels drums and no-drums, and

used for constructing the percussive classifier.

2.2 Labelling

To extract labels of an audio signal of arbitrary length, the

method first sequentially applies the above-described clas-

sifiers, using a hop size of 0.5 sec. The temporal behaviour

of the obtained probabilistic time series is then exploited

for label inference. Since the output of the pitched and the

percussive model is merged (Fig. 1), we developed separate

approaches corresponding to each of the two models for ex-

tracting the desired labels.

2.2.1 Percussive Instruments

First, a decision boundary of 0.5 is applied to binarize each

prediction of the classifier. Then, a majority vote among all

so-obtained binary decisions of the analysed signal is per-

formed to indicate the target label. The corresponding con-

fidence value is set to the relative amount of positive binary

decisions.

2.2.2 Pitched Instruments

The method first uses the mean values of each instrument’s

probabilistic curve along the analysed audio to determine

those instruments for label analysis. Thereby a threshold θ1

is applied to these mean values; if all of them fall below

the threshold, the whole audio under analysis is skipped and

not labelled at all, indicating a potential confusion due to

unknown or heavily overlapped instruments. If approved,

a second threshold θ2 is applied to the mean values; if an

2 A complete list of all applied audio features can be accessed
under http://mtg.upf.edu/system/files/publications/

ismir11_ffuhrmann_sup.pdf.



instrument falls below this threshold, it is regarded as inac-

tive and not used in the further analysis. The probabilistic

curves of the remaining instruments are then searched for

sections, where a single instrument predominates the mix-

ture, i.e. it holds the highest probability value among all in-

struments for a certain minimal amount of time. If such a

section is found, the corresponding instrument is added to

the list of labels for the analysed audio, along with a confi-

dence value as defined by the section’s length relative to the

overall length of the audio 3 . This process is repeated for all

determined active instrument. Finally, a label threshold θ3

is applied to discard unreliable tags. Fig. 2 exemplifies the

labelling process for a 30 second excerpt.
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Figure 2. An example of the labelling method for pitched

instruments. The main figure shows the probabilistic es-

timates for sources A-E, the right panel the mean values

together with the thresholds used for instrument filtering.

Since E is discarded as its mean value falls below θ2, the

curves A-D are scanned for sections, where a single instru-

ments predominates. Depending on the parameter for the

minimal length of these sections, up to three different in-

struments can be detected here (a,c,d → A,C,B), whereas

sections containing instrument confusions are not used for

labelling (b).

3. TRACK-LEVEL APPROACHES

In this section we present 4 different approaches to process

and label an entire piece of music. Since the instrumenta-

tion and its temporal evolution of a piece of music usually

follows a clear structural scheme, we expect, inside a given

music track, a certain degree of repetitiveness of its different

instrumentations. This property of music and the resulting

redundancy is exploited by the described approaches to re-

3 For multiple occurrences of the same instrument the respective confi-
dence values are summed.
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Figure 3. Illustration of the presented track-level ap-

proaches; the green filled frames denote the respective data

used for labelling. Segmentation (red) and clustering (blue)

are indicated for the CLU method, while NSEG applies a

value of n = 5. See text for details.

duce the amount of data to process. We then apply the label

inference method described in Sec. 2 on their respective out-

put and evaluate the algorithms in terms of labelling perfor-

mance and the amount of used data. In short, the presented

approaches are accounting – some of them more than others

– for the time-varying character of instrumentation inside a

music piece. Their output consist of a set of segments which

are then used to infer the instrumental labels for the given

music track. Fig. 3 depicts the underlying ideas.

3.1 All-frame processing (ALL)

Probably the most straightforward approach given the above-

described labelling methodology. By processing all frames

we automatically account for the time-varying character of

musical instruments via a global analysis of the track. How-

ever, no data reduction is performed. Since this approach

uses all data available, it acts as a kind of upper baseline both

in terms of recognition performance and amount of data pro-

cessed, which all other methods using less data compete

with.

3.2 30 seconds (30SEC)

This widely used approach in MIR assumes that by reduc-

ing the data to 30 sec of audio most of the semantic infor-

mation is maintained. Many genre, mood, or artist classifi-

cation systems use an excerpt of this length to represent an

entire music track (e.g. [11]). The process can be regarded

as an extrapolation of the locally obtained information to

the global scope, i.e. the entire piece of music. Since the

aforementioned concepts are rather stable across one sin-

gle piece, the data reduction does not affect the significance

of the obtained results. However, instrumentations usually

change with time, so that the targeted information is inade-

quately represented by this data amount. In our experiments

we extracted the data from 0 to 30 sec of the track.



3.3 Segment sampling (NSEG)

Here, we obtain excerpts by uniformly sampling the track

to incorporate the time-varying characteristics of instrumen-

tation. This enables a local extraction of the information

which is combined to a global estimate of the instrumental

labels. In particular we extract n equal-distant excerpts of

10 seconds length from the track (for n equals 1 or 2 a sin-

gle segment from the beginning, or one segment from the

beginning and the end of the music track is taken, respec-

tively). The labels inferred from each of the segments are

then merged, where small values of n lead to a great data

reduction while still considering the instrumentation’s time-

varying character. The parameter n is kept variable for the

experiments conducted in Sec. 5.

3.4 Cluster representation (CLU)

Certainly the most elaborated approach from the perceptual

point-of-view; a given piece of music is represented with a

cluster structure where each cluster corresponds to a differ-

ent instrumentation. This approach explicitly uses an esti-

mate of the global distribution of the musical instruments

to locally infer the labels from a reduced set of the data by

exploiting redundancies of the instrumentations inside the

piece of music. In particular, it applies unsupervised seg-

mentation and clustering algorithms to locate the different

instrumentations and their repetitions. At the end, only one

segment per cluster is taken for further analysis. Hence this

approach is directly exploiting repetitions in the instrumen-

tation to reduce the amount of data to process, while the

local continuity of the individual instruments is preserved to

guarantee a maximum in recognition performance.

3.4.1 Segmentation

Since instrumentation is closely related to timbre, a timbral

representation of the track is processed to find local changes

therein, applying an unsupervised segmentation algorithm

based on the Bayesian Information Criterion (BIC) [2]. To

represent timbre the approach uses 13 frame-wise extracted

Mel Frequency Cepstral Coefficients (MFCCs).

3.4.2 Clustering

Here, an agglomerative clustering step builds a hierarchical

tree (i.e. a so-called dendrogram) on the pair-wise similar-

ities of all generated segments. The segments are merged

iteratively to form the tree, where a linkage method fur-

ther measures proximities between groups of segments at

higher levels [12]. The final clusters are then found by cut-

ting the tree according to an inconsistency coefficient, which

measures the compactness of each link in the tree. Fur-

thermore, to estimate the pair-wise segment similarities, we

model each segment as a single Gaussian distribution of the

raw MFCC frames with diagonal covariance matrix and cal-

culate the symmetric Kullback-Leibler divergence (KL) be-

tween pairs of segments.

Finally, the longest segment of each resulting cluster is

passed to the label inference algorithm. The predictions

from all segments are then merged to form the set of labels

for the track under analysis.

4. DATA

For our experiments we used a data corpus consisting of 220

music pieces taken from various genres of Western music.

In these tracks, all perceptually audible instruments were an-

notated manually along with their start and end times. Since

no limitations in the vocabulary size were imposed to the

human annotators, this evaluation data includes, additional

to the 12 modelled classes, instruments which are not mod-

elled by the classifier. Moreover, if the annotator could not

recognize a certain instrument’s sound, the label unknown

was used 4 .

An analysis of the set of labels used in the annotations

revealed 28 different instrumental categories, at which the

label unknown was the third-most frequently used, directly

after the labels bass and drums. It should be noted that none

of the tracks used for training the instrumental models was

used in this evaluation collection.

5. GENERAL RESULTS

5.1 Metrics

To estimate the labelling performance we regarded the prob-

lem as multi-class, multi-label classification. That is, each

instance to evaluate can hold an arbitrary number of unique

labels of a given dictionary. Given a collection of music

tracks X = {xi}, i = 1 . . . N , with N items, we define,

respectively, Ŷ = {ŷi}, i = 1 . . . N , and Ỹ = {ỹi}, i =

1 . . . N , the set of ground truth and predicted labels for each

xi. Together with the label dictionary L = {li}, i = 1 . . . M ,

we define the weighted precision and recall metrics,

P =
1∑

l,i ỹl,i

∑

l,i

ỹl,i · ŷl,i, R =
1∑

l,i ŷl,i

∑

l,i

ỹl,i · ŷl,i,

(1)

where ŷl,i (ỹl,i) represents a boolean variable indicating

the presence or absence of the label l in the annotation (gen-

erated instrumental tags) of track i. Additionally, we define

an F-measure to estimate the overall labelling performance,

4 A complete list of all tracks contained in the evaluation dataset,
along with the annotated instruments and genre labels, can be accessed
via http://mtg.upf.edu/system/files/publications/

ismir11_ffuhrmann_sup.pdf.



F =
2
∑

l,i ỹl,i · ŷl,i∑
l,i ỹl,i +

∑
l,i ŷl,i

. (2)

5.2 Results

In order to provide a robust estimate of the methods’ per-

formance with respect to the parameters to evaluate, we per-

formed a 3-fold Cross Validation (CV). For each turn we

used the data of 2 folds for estimating the optimal parame-

ter settings and subsequently tested on the remaining fold.

We then obtained mean values and corresponding standard

deviations by averaging the evaluation results of the respec-

tive predictions of all three runs 5 .

The upper panel of Table 1 contains the results (mean

values) of the CV obtained for the studied algorithms. The

parameter n of the NSEG method was set to 3 and 6, gen-

erating systems processing 30 sec (3SEG – an equivalent

in terms of data size to the 30SEC method) and 1 min of

audio data (6SEG). Additionally, figures regarding the rela-

tive amount of data used for label inference are shown in the

lower panel (relative with respect to the all-frame processing

algorithm ALL). A lower bound was generated by drawing

each label from its respective prior binomial distribution, in-

ferred from all tracks of the collection, averaging the result-

ing performance over 100 independent runs (PRIOR).

Table 1. Precision, recall, and F measures of the studied

approaches together with the relative amount of data used

for label inference (data). The asterisk indicates average

values over 100 independent runs.

PRIOR* 30SEC 3SEG 6SEG CLU ALL

P 0.4 0.62 0.64 0.60 0.64 0.66

R 0.4 0.5 0.6 0.71 0.74 0.73

F 0.4 0.55 0.62 0.65 0.69 0.69

data – 0.11 0.11 0.25 0.66 1

The figures presented in Table 1 show that all considered

approaches are outperforming the prior baseline PRIOR, op-

erating well above a knowledge-informed chance level.

Moreover, two clear dependencies of the resulting perfor-

mance can be observed; first, a correlation with the absolute

amount of data processed (e.g. 3SEG → 6SEG → ALL), and

second, a dependency on the location where the information

is extracted (30SEC → 3SEG).

Comparing the sampling methods with the timbre analy-

sis of CLU we can see that the knowledge introduced by the

latter positively affects the recognition performance. Be-

sides the greater values of R and F, the precision P is re-

5 Parameter estimation itself was performed via a grid search procedure
over the relevant parameter space. For each of the studied approaches de-
scribed in Sec. 3 the parameters were evaluated separately to guarantee
maximal comparativeness of the respective results.

markable here, which holds the same value as for the 3SEG

method, although CLU processes 55 percent points more

data. The segmentation and clustering preserves the tem-

poral continuity of the instrumentation, therefore exhibiting

less data variability, ensuring the high value of the P metric.

The same local continuity of musical instruments otherwise

enforces the lower recall value in the 30SEC approach, in

comparison to the 3SEG method. However, with more anal-

ysed segments from different parts of the track, the variation

in the data increases. This affects the recall value R, result-

ing in a trade-off between the two aforementioned metrics.

Furthermore, the similar performance figures of the CLU

and ALL approaches suggest that there exists a minimal

amount of data from which all the extractable information

can be derived 6 . Hence more data will then not result in an

improvement of the labelling performance. The next section

will examine this phenomenon in more detail, in particular

by determining the minimum of audio data required to max-

imize labelling performance.

5.3 Scaling and computational aspects

The observations in the previous section suggest that there

seems to be a strong amount of repetitiveness present inside

a music piece. Additionally, many excerpts – even though

differing in instrumentation – produce the same label output

when processed with the used label inference method. To

quantify those effects we used the CLU and NSEG meth-

ods to process the entire piece under analysis, as both offer

a straightforward way to vary the amount of data used by

the label inference algorithm. In particular, we studied the

effect of an increasing amount of segments to process on

the labelling performance. In case of the NSEG method we

constantly increased the amount of segments used by the la-

bel inference, thus augmenting the method’s parameter n.

For the CLU method we sorted the clusters downwards by

the accumulated length of their respective segments, started

processing just the first one, and iteratively added the next

longest cluster. For both methods we then tracked the per-

formance figures as well as the amount of data used for in-

ference. Fig. 4 depicts both performance and amount of data

for the first 20 steps on the evaluation data (mean value of

CV outputs).

As can be seen from Fig. 4 the performance of both CLU

and NSEG systems stagnates at a certain amount of seg-

ments processed. Due to the different amount of data pro-

cessed, those values represent, respectively, 3 and 5 seg-

ments. Hence, incorporating global timbral structure, as im-

plemented by CLU, benefits labelling performance at the ex-

6 The small differences in P and R result from individual parameter set-
tings, estimated by the CV by determining the best performing configura-
tion in respect to the F metric, and can be compensated by manually choos-
ing proper values. However, the F metric would not be affected, since there
will always be a trade-off between P and R.
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Figure 4. Scaling properties of the studied algorithms.

Solid lines refer to the respective labelling performance in

terms of F, dashed ones show the respective data amount

used for label inference, relative to the maximum as pro-

duced by ALL. Mean values across CV-Folds are shown.

pense of algorithmic pre-processing. By preserving the con-

tinuity of musical instruments the method shows a slightly

superior performance compared to NSEG, which segment

extraction is unaware of any contextual properties. In terms

of the used data amount, NSEG is superior whilst process-

ing less than around 40% of the data (i.e. n ≤ 10), whereas

when processing more, CLU returns the better overall la-

belling performance. However, the results suggest that, on

average, a timbre-informed clustering does not result in a

significant increase in performance, thus it might be of ad-

vantage in specialized applications (e.g. working on a single

genre which exhibits clear recurrent structural sections).

Finally, the stagnation of labelling performance indicates

a kind-of “glass ceiling” that has been reached. It seems that

with the presented classification and labelling methodology

we are not able to extract more information about the instru-

mentation. Nevertheless, we can observe that predominant

instrumental information is highly redundant inside a given

Western piece of music from which 70% of the labels can be

obtained. Furthermore, this fact allows for a reduction of the

effective amount of data used for label inference of around

55%. Remarkably, the same factor of about 1/2 can also be

observed when comparing the number of different instru-

mentations to the overall number of segments in the ground

truth annotations of all files in the used music collection.

6. CONCLUSIONS

In this article we studied the problem of extracting labels

corresponding to the instrumentation from entire pieces of

music. We designed our approach to be applied in a real

world context, hence the presented methods work on any

piece of music, without imposing restrictions to the input

data. In particular we analysed different methods to pre-

process the entire tracks, studying the effect of data reduc-

tion on recognition performance. Evaluation on a dataset of

220 musical pieces showed that by using the best perform-

ing approach we are able to score a global F-measure of

0.69 while examining 12 musical instruments. On the other

hand, a proper preprocessing of the data allows for a reduc-

tion of the amount of data used for label inference of more

than 50% while the recognition performance is preserved.
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