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ABSTRACT
�is paper presents a method for recognizing musical instruments
in user-generated videos. Musical instrument recognition from
music signals is a well-known task in the music information re-
trieval (MIR) �eld, where current approaches rely on the analysis
of the good-quality audio material. �is work addresses a real-
world scenario with several research challenges, i.e. the analysis of
user-generated videos that are varied in terms of recording condi-
tions and quality and may contain multiple instruments sounding
simultaneously and background noise. Our approach does not only
focus on the analysis of audio information, but we exploit the mul-
timodal information embedded in the audio and visual domains. In
order to do so, we develop a Convolutional Neural Network (CNN)
architecture which combines learned representations from both
modalities at a late fusion stage. Our approach is trained and eval-
uated on two large-scale video datasets: YouTube-8M and FCVID.
�e proposed architectures demonstrate state-of-the-art results in
audio and video object recognition, provide additional robustness
to missing modalities, and remains computationally cheap to train.
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1 INTRODUCTION
Humans recognize a musical instrument by combining multiple
perception modalities. For example, we can distinguish a violin
from a cello by its timbre, size, bow movements and relative position
of the instrument with respect to the performer’s body. Although
the task is fairly easy for humans to perform, combining multimodal
information is not trivial for machine learning algorithms.

Musical instrument recognition is a well-known problem in the
music information retrieval (MIR) �eld. State-of-the-art methods
are based on the combination of audio feature extraction (represen-
tative of the time-frequency distribution of the signal), automatic
classi�cation methods and context information on the music ma-
terial under analysis. Nowadays, these algorithms provide good
accuracy in recognizing musical instruments from monophonic
audio recordings (i.e. single instrument playing), although the per-
formance depends on the number of instruments and size of the
audio collection used for training [17]. �is performance signif-
icantly drops in polyphonic music scenarios (i.e. more than one
instrument playing), where it is easier to recognize instruments if
they are predominant in the audio signal [6].

Nevertheless, current approaches are based on the analysis of
good-quality audio material and fail for real-world scenarios such as
the one addressed here. Moreover, it’s typical to �nd the presence of
the sound of the instruments. In contrast, in this paper, our problem
is to recognize the physical presence of the instruments by either
sound or visual component. With this method, we hope to advance
the �eld of indexing music videos in large-scale collections.

User-generated videos are widely found on social networks to
share own musical performances, and they may contain multiple
instruments, di�erent types of noise, blur, compression artifacts,
and they are varied in terms of recording conditions and quality
[38]. Yet, despite these downsides, collections of user-generated
videos are a rich source of knowledge. While the most important
information comes from audio, visual content also plays an impor-
tant role in detecting musical instruments in videos. �us, di�erent
taxonomies for musical instruments rely on audio characteristics as
well as on visual characteristics (such as a keyboard, wood, brass,
bowed string). In this work, we explore the relationship between
audio and visual cues and take advantage of complementary infor-
mation provided by the nature of the task.

In particular, we bene�t from the information embedded in the
audio and visual domains by means of a Convolutional Neural
Network (CNN) architecture. We train and evaluate it on two
large-scale video datasets: YouTube-8M [2] and FCVID [46] which
contain, respectively, more than 60000 and 5000 musical perfor-
mance videos with musical instruments. �e proposed architectures
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demonstrate state-of-the-art results in audio and video object recog-
nition, provide additional robustness to missing modalities, and
remains computationally cheap to train. In addition, our approach
meets the standards of reproducible research.

Our contributions include: (1) a novel multimodal CNN archi-
tecture for audio-visual musical instruments recognition which
outperforms unimodal state-of-the-art techniques with the largest
musical performance videos datasets ever used in the literature; (2)
evaluation on a few recent and popular audio-only and general-
purpose CNN architectures in the context of user-generated musical
performance videos; (3) both FCVID and YouTube-8M datasets have
been constructed for visual concept recognition; this notwithstand-
ing, we show in a set of experiments that audio information plays
a crucial role in the categorization of musical videos and can signif-
icantly improve recognition performance over visual input.

2 RELATEDWORK
�e increasing popularity of deep neural networks in data analysis
looks like a wild�re. �e ideas of convolutional and recurrent
neural networks smoldered for years until they were brought to
the fore by enhanced computational abilities and the availability
of massive labeled data collections. Nowadays, CNNs e�ectively
deal with a huge number of unimodal tasks and become stronger
for multimodal learning rapidly [22].

Video Recognition: �e breakthrough in pa�ern recognition
on static images was largely due to its impressive feature learning
ability. �e computer vision community has been struggled for
decades to �nd a way to avoid handcra�ed features for solving large-
scale video analysis tasks in a unique non-speci�c way [23, 42].

Over the last years, most of the best solutions in action recog-
nition [7, 15, 29, 37, 42], scene recognition [2, 23, 42] and general
multi-label video classi�cation [2, 23] tasks exploit either deep
neural networks on raw spatio-temporal data [15, 23, 37, 42] or
combine them with motion features such as improved Dense Tra-
jectories (including HOG, HOF and MBH) [7, 42] and Optical Flow
images [29]. �e most straightforward way to incorporate tempo-
ral information in video CNNs is to switch from 2D convolutions
to 3D convolutions [23, 42], although it leads to di�culties in the
choice of parameters such as the optimal shape for the �lters, the
frame-rate for analysis or the clip size, to name a few.

Several alternative methods have been recently proposed, such
as two-stream CNNs [15, 37], which use single-frame architecture
for spatial modeling and precomputed multi-frame optical �ow
images for temporal modeling, while aggregating information at
the prediction stage [37] or at several layers of the network [15]. �e
approach in [29] examines di�erent feature-pooling methods on
CNN architectures with up to 120 frames as well as the capability of
Long Short-Term Memory networks to catch temporal information.
Although this approach provides good results, its computational
performance is far from satisfactory. A good compromise between
accuracy and speed for large-scale video classi�cation has been
proposed by several teams of researchers [2, 23]. �ey build systems
upon frame-level spatial features and exploit average pooling and
Deep Bag of Frame (DBoF) pooling for clip-level and video-level
predictions.

Audio Recognition: In recent years, there has been a strong
interest in deep learning at the audio signal processing community.
Apart from the tremendous a�ention received at speech recogni-
tion, important tasks in music information retrieval (MIR) have
been addressed with deep learning methods. Among them, we �nd
approaches for musical onset detection [35], musical instrument
recognition [16, 26], automatic music transcription [36], acoustic
event detection [14, 33], automatic tagging [9], audio source sepa-
ration [8] and various classi�cation tasks [18, 32].

Since research in this area is still very active, there is no generic
architecture working well for all the mentioned problems. Although
some end-to-end methods working with raw audio have been re-
cently proposed [3, 43], they require huge data collections and a
lot of time to train. �e most common approaches �rst transform
audio data into two-dimensional image-like representations (e.g.
Short-Time Fourier Transform (STFT) spectrogram [8, 14], log mel-
spectrogram [9, 16, 18, 35] or Constant-Q spectrogram [26, 36])
and then train various CNN architectures. Besides, most of the
architectures are either shallow, consist of only straight layer con-
nections, or exploit squared �lter shapes, which came up directly
from image processing. For our case, we explore few enhancements
over traditional models, such as separable convolutions [11] and
partially task-speci�c �lter shapes [32].

Multimodal Learning: Di�erent deep learning architectures
have been proposed for audio-visual speech recognition [19, 20,
30], audio-visual emotion recognition [24, 31, 45, 47], cross-modal
representation learning [3] or image classi�cation and retrieval
using images and text [39, 40].

Contrariwise, the majority of MIR-related multimodal research
so far relies on handcra�ed audio and visual descriptors and tradi-
tional machine learning algorithms. Among them, we would like
to mention multimodal approaches on detecting the playing/non-
playing activity [5], automatic music transcription [27], general-
purpose audio/video classi�cation [4, 28], and artist identi�cation
problem [34].

Depending on the task and method, there are a few approaches
to aggregate information from di�erent modalities. In multimodal
deep learning [30], researchers distinguish three phases: feature
learning, training, and testing. For multimodal fusion, both audio
and visual information is available in all phases, while for cross-
modality learning or shared representation learning [3], training
and testing phases exploit either audio or video. Even for multi-
modal fusion, several aggregating strategies exist, namely, (1) early
fusion [19, 30, 31], where the network learns hidden representa-
tion from concatenated multimodal input; (2) middle/slow fusion
[15, 23], where the network may have multiple fusion layers and
optimize several learning representation simultaneously; and (3)
late fusion [30, 31, 45], where the networks for all data sources
are optimized separately and the learned representations are then
combined to model the joint distribution of multiple modalities.
Although multimodal CNNs have been proposed before for video
analysis tasks [3, 19, 20, 24, 30, 31, 45, 47], to the best of our knowl-
edge, we present the �rst study in the context of multimodal musical
instrument recognition in video recordings.
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Figure 1: Schematic representation of our multimodal CNN
architecture for musical instrument recognition.

3 PROPOSED METHOD
In this section, we describe our models for the task of multimodal
musical instrument classi�cation.

3.1 Visual-based recognition
Recent works [29, 44] report that spatio-temporal features can
be be�er captured with long clips, while for short clips frame-
level features have a greater impact on video object recognition
performance [23]. Considering the fact that learning over long clips
is a very time-consuming process, we follow the approach from [2]
and extract frame-level features from videos.

For detecting instruments in static video frames, we experiment
with Inception v3 architecture [41] since it’s one of the most promi-
nent and successful ones and it has been showed to provide a
notable generalization ability in various tasks [18, 41]. We explore
the in�uence of the total number of frames selected from the videos
at the training phase. Moreover, we study the impact of �ne-tuning
the model over an independent set of images of musical instruments.
�e pretraining details are provided in Section 4.3.

3.2 Audio-based recognition
For audio feature representation learning, we have chosen the
model from [16] (we refer to it later as Han et al. 2016) as a baseline.
It’s a classical deep CNN architecture with 8 convolutional layers
stacked in a sequence, and followed by one fully connected layer.
Max-pooling and dropout layers are placed a�er every second con-
volutional layer. All convolutional �lters have shape of 3×3, which
is similar to popular CNNs used in computer vision.

We also experiment with a modi�ed model from [9] (we refer to
it later as Choi et al. 2016) with a �nal classi�cation so�max layer
instead of gated recurrent unit layers. �is architecture follows the
idea of stacking convolutional layers as well, but has a larger recep-
tive �eld and exploits more advanced activation function and batch
normalization [21], the recent e�ective regularization technique.

In addition, we explore a recent Xception [11] architecture for
audio-based instrument recognition. We modify the input layer so
that the receptive �eld would be the same as in [9], and employ
rectangular �lters of size 48×3 at the �rst layer for be�er capturing
the timbral characteristics of musical instruments. To re�ect the
changes of the input layer, we set the number of �lters for separable
convolutions equal to 768. �e description of the network input is
provided in Section 4.2.

3.3 Multimodal recognition
In this work, we investigate multimodal fusion strategy, so we use
audio and video for both training and evaluation. Although the
most direct approach for multimodal learning would be to train a
model over concatenated audio-visual input (and thereby to fully
integrate the modalities and learn a joint feature representation),
earlier work in [30] demonstrates that there are almost no cross-
modal connections in the resulting architecture. Moreover, such
approach would limit us to a small number of hidden layers, which
is not desirable. �ereby, following the literature [30, 45, 47], we
individually train audio and video representation models and we
then exploit learned features from the last layers of the networks
to train and evaluate the joint model as shown in Figure 1. Since
the speci�c parameters for the audio and visual networks change
for each experiment, we comment on the architecture of the late
fusion model. �e input layer of the model takes a concatenated
feature vector of size (k + 1,n), where k is the number of video
frames (plus one vector of the audio features), and n corresponds
to the penultimate layer size in the audio and visual networks. �e
model consists of two fully-connected layers (each layer contains
1024 neurons and ReLU activation function) preceding the batch
normalization, and a so�max prediction layer.

3.4 Implementation details
Our approach is implemented with Keras [10] and TensorFlow [1].
We found out that the best optimization strategy for video models
consists of a Stochastic Gradient Descent (SGD) optimizer with an
initial learning rate of 0.0001, and a momentum of 0.9. We halved
the learning rate every 5 epochs. We set up the batch size to 64
and an early stopping criterion to 5 epochs for our visual-based
experiments. For audio architectures, we use the Adam [25] opti-
mizer with various batch sizes and 10 epochs for an early stopping
criterion. All experiments are conducted on a single NVIDIA Titan
X 12GB GPU. �e code, extracted features, pre-trained models, and
experimental results are available online1.

4 EXPERIMENTS AND RESULTS
4.1 Datasets
FCVID: Fudan-Columbia Video Dataset (FCVID) [46] contains
videos, labels, several pre-computed descriptors and a category hi-
erarchy. For our task, we consider a subcategory of FCVID dataset
namely Musical Performance With Instruments containing 12 dif-
ferent classes including popular instruments, chamber music, rock
band and orchestral performances. �e subset contains 5154 videos
with a total length of almost 260 hours. All videos in the dataset
have been manually annotated by a team of 20 people (at least 3 an-
notations per video). Unluckily, we could not �nd any information
about human performance rate and agreement rate for this dataset.

YouTube-8M: YouTube-8M Dataset [2] is a recently released
large-scale video benchmark that consists of about 8 million YouTube
video corresponding with 4800 visual entities. �e vocabulary for
the dataset has been created by humans, while the labels for individ-
ual videos have been automatically obtained. To evaluate our task
we check the dataset entities and select those of them that match

1h�p://github.com/Veleslavia/ICMR2017
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Property FCVID [46] YouTube-8M [2]
Total number of categories 12 13 (46)
Total number of videos 5,154 60,862 (235,260)
Total video duration 259.84 hr 4,152.09 hr
Mean video duration 3.03 min 4.09 min
Videos per category (mean/std) 429 / 101 4,677 / 6,445
Videos used in experiments 5,154 60,802

Table 1: Statistics of the musical instruments sub-datasets
extracted from FCVID [46] and YouTube-8M [2] datasets.
Numbers in parenthesis correspond to sub-dataset statistics
before undersampling.

musical instruments. We gather a dataset containing 235k videos
of 46 classes. At the same time, we found out that the resulting
dataset contains a number of �ne-grained categories representing
by only a few videos while the top-3 categories form 75% of the
dataset. To be able to compare results to FCVID dataset and to
avoid problems related to dataset granularity and high imbalance,
we reduce the number of categories to 13 and adjust the classes
distribution by undersampling the top-3 classes. �e �nal dataset
then contains more than 60k videos with a total length of about 4k
hours, that is the largest musical instrument recognition dataset for
today. It’s also worth mentioning that the original vocabulary for
the dataset contains only visual entities and it has been built with
an emphasis on the ease of visual object recognition. �e average
human performance reported in [2] is 78.8% in precision and 14.5%
in recall. For our experiments we sample videos from both datasets
to train, validation, and test splits with ratio 70%, 15%, and 15%
respectively. �e details about the datasets can be found in Table 1.

4.2 Data Preprocessing
First, we separate audio and visual data and preprocess them in-
dividually. For audio, we convert the stereo input to mono by
averaging the le� and right channels and downsample it. We then
compute two di�erent one-channel log-mel-spectrogram represen-
tations following the models proposed in [9, 16]. �e model [16]
(Han et al. 2016) has an input size of 128×43 (128 mel-frequency bins
and 43 time frames) that corresponds to approximately 3 seconds
of audio converted by Short Time Fourier Transform (STFT) with
a Hann window of size 1024 samples and a hop size of 512 sam-
ples. �e model [9] (Choi et al. 2016) has an input size of 96×1366
(96 mel-frequency bins and 1366 time frames, respectively) that
corresponds to approximately 30 seconds of audio converted by
using a STFT with window size of 512 samples and hop size of 256
samples. For all the experiments we select 30 seconds from each
video: for model Han et al. 2016 we select 10 segments by 3 seconds,
uniformly distributed in original audio (and average predictions
over 10 segments); for the model Choi et al. 2016 we investigate two
segmentation strategies: central cropping (30 seconds from the mid-
dle of the audio, CC) and uniformly cropped segments (10 segments
by 3 seconds, UC). To obtain a proper input for our visual model
we take frames from videos with 1 fps frame rate, then resize every
frame to size 256×256×3, make a central crop with size 224×224×3
and apply random horizontal �ipping. In the experiments where

Dataset FMs PT Steps Time Hit@1 Hit@3 F1
FCVID 20 No 32K 19h 42.30 64.53 43.16
FCVID 30 No 16K 11h 65.39 81.75 67.29
FCVID 30 Yes 16K 11h 68.77 84.26 70.33
FCVID 50 No 24K 22h 67.47 83.21 69.38
FCVID 50 Yes 21K 19h 69.39 84.32 71.23
FCVID 100 No 43K 98h 68.56 83.97 70.42
FCVID 100 Yes 36K 84h 67.76 83.50 69.16
YT-8M 10 No 58K 82h 61.15 78.45 52.19
YT-8M 20 Yes 57K 92h 70.07 84.20 71.09

Table 2: Comparison of clip-level performance for visual in-
strument classi�cation model trained on di�erent number
of frames (FMs) with or without pre-training (PT) on Ima-
geNetmusical instruments. All rows use the same Inception
v3 architecture.

di�erent numbers of frames are evaluated, we randomly select k
frames for every video.

For both datasets, we only have one label per video, so we assign
a video-level label to every selected frame.

4.3 Experimental setup
Metrics: For experimental evaluation we use three standard in-
formation retrieval metrics: accuracy (Hit@1, the success rate at
top-1 prediction), top-3 accuracy (Hit@3, the success rate at top-3
predictions), and F1-measure (the harmonic mean of precision and
recall).

Pre-training of Inception v3model: Since it has been proved
that pre-training helps to improve generalization ability and reduce
training time [13], we initialize Inception v3 model with the model
weights trained from ImageNet [12] and �ne-tune the model on a
subset of musical instrument images as described in [38].

4.4 Results
Visual-only classi�cation results: Table 2 provides a summary
of the visual-based musical recognition experiments. We observe
that using pre-training and increasing the number of frames for
training from 20 to 50 provides a signi�cant improvement to the
performance of the classi�er (F1 = 71.23, FCVID) vs the baseline
method (F1 = 43.16, FCVID). However, further increase of the
number of frames to 100 does not yields higher performance. Our
experiments also demonstrate noticeable success in using a pre-
trained model compared with one with random initialization. �e
combination of two aspects also demonstrates noticeable perfor-
mance improvement on YouTube-8M dataset (from F1 = 61.15 to
F1 = 70.07). At the same time, increasing the number of frames
causes longer training process (from 22 to 84 hours for FCVID
dataset and from 82 to 92 hours for YouTube-8M dataset), while the
use of the pre-trained model decreases training time (from 22 to 19
hours for the 50-frames model on FCVID dataset).

Audio-only classi�cation results: Results for audio-based
music instrument recognition are presented in Table 3. We ob-
serve that the highest accuracy is obtained by (Choi et al. 2016) for
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Method #Params Dataset Hit@1 Hit@3 F1

Han et al. [16] 1.5M FCVID 64.13 76.82 53.64
Choi et al. [9] + CC 2.4M FCVID 77.73 92.05 77.18
Choi et al. [9] + UC 2.4M FCVID 79.81 96.09 78.71
Xception [11] + UC 9.6M FCVID 78.69 94.44 79.35

Han et al. [16] 1.5M YT-8M 59.37 70.87 56.50
Choi et al. [9] + UC 2.4M YT-8M 83.58 94.23 84.26
Xception [11] + UC 9.6M YT-8M 83.53 94.69 84.16

Table 3: Clip-level performance of di�erent audio architec-
tures and frame selectionmethods trained and evaluated on
FCVID (top) and YouTube-8M datasets (bottom).

Method Dataset Hit@1 Hit@3 F1
Xception [11] / 50 frames FCVID 88.28 97.00 88.27
Choi et al. [9] / 50 frames FCVID 86.97 96.09 87.25
Xception [11] / 20 frames YT-8M 82.64 91.37 78.95
Choi et al. [9] / 20 frames YT-8M 84.01 93.41 84.69

Table 4: Overall performance of the proposed multimodal
neural network for Choi and Xception feature representa-
tions.

both datasets (79.81 for FCVID and 83.58 for YouTube-8M), although
results are very close to the ones obtained using the Xception ar-
chitecture (78.69 for FCVID and 83.53 for YouTube-8M). For FCVID
dataset we experimented with central cropped (CC) and uniformly
cropped (UC) segments for (Choi et al. 2016) architecture. Since we
obtained that the UC segments provide additional robustness, we
use them throughout all the remaining experiments.

In addition, we observe that classi�cation results are signi�cantly
higher than the ones obtained using (Han et al. 2016) and that
audio-based classi�cation signi�cantly outperforms video-based
classi�cation (F1 = 79.35 for audio vs F1 = 71.23 for video, FCVID,
and F1 = 84.26 for audio F1 = 71.09 for video, YouTube-8M).

Multimodal classi�cation results: Results for the combina-
tion of audio and video models are shown in Table 4. We observe
that the highest accuracy of the audio-visual approach for FCVID is
obtained using the Xception architecture (Hit@1 = 88.28), and the
results are slightly lower for Choi (Hit@1 = 86.97). �ese results
are noticeably be�er than the ones obtained by audio-only archi-
tectures for FCVID dataset and signi�cantly higher than the ones
obtained using a video-only architectures. For YouTube-8M dataset
we observe that the classi�cation performance of our multimodal
method is 13% higher than the visual-only method. With compari-
son to the audio-only approach our combined method demonstrates
similar results.

Confusion matrices: Figure 2 shows the confusion matrices
obtained for FCVID dataset using the three proposed approaches:
audio-only, video-only, and multimodal. As it can be seen the confu-
sion is signi�cantly reduced in the proposed multimodal approach
vs the alternative methods, specially in the cases of harmonica

(where the percentage of correct predictions increases from 75-76%
to 99%), and violin, accordion, guitar, chamberMusic (with respec-
tively, 11%, 10%, 10%, 10% of increase with respect to the audio
alone and 10%, 14%, 13%, 21% of increase with respect to the video
alone).

Figure 3 shows the confusion matrices obtained for YouTube-8M
dataset. We notice several signi�cant di�erences with comparison
to FCVID dataset. �e �rst one is that the classi�cation performance
varies drastically between both categories and approaches. We
believe that this is related to high imbalance of the categories and
substantial diversity in videos. We notice that the video sequence
in our data o�en doesn’t contain the target instrument while being
annotated to the certain category.

To test this assumption we carry out a simple experiment on
human recognition performance. Given a video from YouTube-8M
dataset we ask non-expert humans to label it with one of the con-
sidered categories. In case of presence of multiple instruments we
ask to choose the predominant one. �e total amount of evaluated
videos is 547, evaluated by 20 di�erent people without speci�c
musical training. We obtain the human performance rate for our
task to be equal to 86.00 in precision, 85.00 in recall, and 85.00 in
F1-measure. �ose results are comparable to our multimodal results
(F1 = 85.00 vs F1 = 84.69). �at allows us to conclude that the task
(and dataset) is di�cult to solve even by humans.

�e feedback from our participants also contains claims that
the instruments are o�en not present in videos from YouTube-
8M dataset. Despite it’s much easier and faster to recognize the
instrument by its shape, they say that if the instrument is not
present on the frame it’s still possible to recognize it from the
audio.

5 CONCLUSION
To summarize, this paper makes several contributions. First, we
introduce a multimodal method for musical instrument recognition
in user-generated videos. Second, we show the case when visual
object recognition can be enhanced by adding audio information.
�ird, we evaluate several baseline convolutional neural network
architectures for audio classi�cation. Fourth, we investigate the
in�uence of amount of frames used for image-based object recogni-
tion in video and the in�uence of using a pre-trained model. We
evaluate our method on a heterogeneous large-scale dataset of user-
generated videos so that it can be used with di�erent datasets and
scenarios.

Our results demonstrate that both modalities are important to
obtain be�er performance. In addition, we show that the audio-
only network and our multimodal approach perform very close to
the human performance rate for the musical instrument subset of
automatically annotated YouTube-8M dataset. �is illustrates the
fact that people may not only determine the video concept based on
visual cues but also on the auditory ones. Moreover, the considered
audio-only models clearly outperform the video-only models and
the multimodal network performs be�er than those based on a
single modality in one of the considered datasets, illustrating the
advantage of multiple modalities.

In future work, we will investigate the prospects of joint multi-
modal hidden representation learning, cross-correlations between
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Figure 2: Comparison of confusion matrices for FCVID dataset. From le� to right: audio-only recognition, video-only-
recognition, multimodal recognition.

Figure 3: Comparison of confusion matrices for YouTube-8M dataset. From le� to right: audio-only recognition, video-only-
recognition, multimodal recognition.

audio and visual modalities, and the impact of dynamic video in-
formation.
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