

Score-Performance Matching using HMMs

Pedro Cano, Alex Loscos, Jordi Bonada
Audiovisual Institute, Pompeu Fabra University

Rambla 31, 08002 Barcelona, Spain
{ pcano, aloscos, jboni }@iua.upf.es http://www.iua.upf.es

[Published in the Proceedings of the ICMC99]

Abstract

In this paper we will describe an implementation of a score-performance matching, capable of
score following, based on a stochastic approach using Hidden Markov Models.

1. Introduction

Linking notes in a musical performance to the
corresponding notes in a score is called score-
performance matching. Proper matching algorithms
are crucial for automatic accompaniment systems or
in systems where the computer has to find out where
the musician is with respect to a known score, in
order to make an appropriate musical response. For
example audio effects can be applied to the
performer’s sound depending on his/her location in
the score. In the context of musical performance
research, matching algorithms are valuable to
measure differences between the performance and the
score, thus being able to extract expressive timing
patterns, calculate tempo, pitch deviation patterns, or
any other performance characteristics.

One category of algorithms focuses on real-time
matching and they are often called score-following.
Early work in score matching was performed by
Dannenberg [1] and Vercoe [2], both primarily
interested in making real-time matchers. Dannenberg
describes an algorithm solely based on pitch
information, intended to robustly follow a
monophonic instrument. Later these algorithms were
extended to deal with polyphonic music and multiple
instruments [3]. Most algorithms primarily match
pitch, possibly in combination with time information.
The method presented here focuses on monophonic
music and can be seen as a continuation of Puckette’s
work [4] moving from knowledge-based to stochastic
models.

2. Stochastic modeling

The input features needed to make a decision when
performing a match, namely fundamental frequency,
notes duration, etc, are inherently uncertain. The
uncertainty rises from the fact that instrument players
or singers do not perform an ideal realization of what

it is written in the score and the fundamental
frequency algorithms are not absolutely reliable.
Others algorithms can perform reasonably well with
specific instruments like flute but they fail when the
problem above stated is especially troublesome. This
occurs very clearly with the singing voice in which
the output does not resemble at all a sequence of
discrete tempered pitches attained at well-defined
times.

Stochastic modeling is a flexible general method for
situations like the above described. It consists on
employing a specific probabilistic model for the
uncertainty or incompleteness of the information. A
music performance is a nonstationary process since
its statistical parameters vary over time. Hidden
Markov Models (HMM) are well studied and used for
statistical modeling of nonstationary stochastic
processes such as speech and our work has been to
apply them to our application.

3. Hidden Markov Models

A HMM is most easily understood as a generator of
vector sequences. It is a finite state machine which
changes state once every time unit and each time t
that a state j is entered, a n acoustic speech vector yt
is generated with probability density bj(yt).
Furthermore, the transition from state i to state j is
also probabilistic and governed by the discrete
probability aij. In the figure below we show an
example of this process where the model moves
through the state sequence X=1,1,2,2,2,2,2,3,3,3 in
order to generate the 10 observation vectors of k-
index model.

Figure 1: Markov Process example

The joint probability of a vector sequence Y and state
sequence X given some model M is calculated simply
as the product of the transition probabilities and the
output probabilities. The joint probability of an
acoustic vector sequence Y and some state sequence X
= x(1), x(2), x(3),…,x(T) is:

∏
=

+=
T

t
txtxttxxx aybaMXYP

1
)1()()()1()0()(),(

In practice, of course, only the observation sequence
Y is known and the underlying state sequence X is
hidden. This is why it is called Hidden Markov
Model.
In our problem, the model M is the sequence of notes
specified in the score script, Y the feature sequence
extracted from the audio signal and X, the state
sequence, which is actually what we aim for in this
paper.

4. Note models based in HMM

In this section we present the features and the
characteristics of the HMMs used to model the notes.

4.1 Front-End Parameterization

The function of front-end parameterization stage is to
divide the input signal into blocks and to extract
from each block relevant features. The six features
that will be used for the observation sequence are:

Energy,

()

= ∑
−

=

1

0
10log20

N

k

kXEnergy

Delta Energy,

)1()1()(−−+=∆ nEnergynEnergynEnergy

Zero Crossing,

{ } { }
∑

+−=

−
−−

=
n

Mnm
s mnw

mxmx

N
nZ

1

)(
2

)1(sgn)(sgn1
)(

Delta Fundamental Frequency,

()
()
() () ()

≠+⋅−

−
+

=∆

elsewhere

nFnF
nF

nF

nF

011 if
1

1
log 00

0

0

0

γ

Fundamental Frequency, and Fundamental
Frequency Error, which is a measure of “goodness”
of the F0 estimated.

Obtaining fundamental frequencies is a popular
subject of study. The particular algorithm we use is
an adaptation of the Two-Way Mismatch [5]. In the
procedure, the estimated F0 is chosen as to minimize
discrepancies between measured partial frequencies
and harmonic frequencies generated by trial values of
F0. For each trial F0 mismatches between the
harmonics generated and the measured partial
frequencies are averaged over a fixed subset of the
available partials. The predicted to measured error is
defined as:

()

() []∑

∑

=

−

=
→

−⋅∆×

+⋅∆=

∆=

−
N

n

p
nn

max

n
nn

maxnnn

N

n
wmp

rffq
A

a
ff

AaffEErr

p

1

1

)(

,,,

where ∆fn is the difference between a predicted and
its closest measured peak, fn and are the frequency
and magnitude of the predicted peaks, and Amax is
maximum peak magnitude. The measured to
predicted error is defined as:

()

() []∑

∑

=

−−

=
→

−⋅∆×

+⋅∆=

∆=

K

k

p
kk

max

kp
kk

maxkkk

K

k
wpm

rffq
A

a
ff

AaffEErr

1

1

)(

,,,

where ∆fk is the difference between a measured and
its closest predicted peak, fk and ak are the frequency
and magnitude of the measured peaks, and Amax is
maximum peak magnitude. The total error is:

KErrNErrErr pmmptotal // →→ += ρ

This pitch estimation method gives a temporal
evolution of the F0. This envelope is then used to
calculate some of the system’s input features.

4.2 Note Model Architecture

We have three left-to-right HMM models: a note, a
no-note and a silence model. We model notes with 3
states so as to mimic the note behavior of attack,
steady state and release. The silence is modeled with
only 1 state, since there is no temporal structure to
exploit. The no-note, modeled with 3 states, aims to
account for all the unpitched sounds that appear in
the performance. This can include noisy spurious

sounds, or in the case of singing voice aspirations,
fricatives, plosives…

The choice of output probability function is crucial
since it must model the intrinsic variability of the
score realizations. Some HMM systems use discrete
output probably functions in conjunction with a
vector quantizer. Each incoming feature vector is
replaced by the index of the closest vector in a
precomputed codebook and the output probability
functions are just look-up tables containing the
probabilities of each possible VQ index. This
approach is computationally very efficient but the
quantization introduces noises, which limit the
precision that can be obtained. Hence, it seems a
better choice to use parametric continuous density
output distribution, which model the feature vectors
directly, for instance with multivariate mixture
Gaussian.

()),;(
1

jmjmt

M

m
jmtj yNcyb Σ= ∑

=

µ

where cjm is the weight of mixture component m in
state j and N(j;µ,Σ) denotes a multivariate Gaussian
of mean µ and covariance Σ.

This method results in a system with too many
parameters to train. Thus, in this work, we use the
same large Gaussian codebook for all the states and
only estimate different mixture weights for each
state.

We build a codebook with vectors that are composed
of all the above features but the F0, which will be
treated differently. To construct a codebook l, the Nl
corresponding observations, yt~l are clustered into Ml
subsets, being Ml the number of mixture components
of the codebook. To do this clustering we use LBG
algorithm. Then

∑
=

=
M

ly
m

t
l

lm y
N

~
1

t

1µ

[][]∑
=

−−=Σ
M

ly
m

T
lmtlmt

l
lm yy

N
~
1

t

1

µµ

The mixture coefficient cjm, for the case Njm vectors
are assigned to the mth mixture of the codebook,
results in

l

lm
lm N

N
c =

The output probability of the observation F0 is
defined with two discrete symbols, one symbol when
F0 is not defined and another one when F0 has been
found. The discrete symbol in the states of note
models is decomposed in a continuous density
function whenever F0 has been found as shown in
figure 2.

Figure 2: F0 observation probability function

The continuous density function is modeled as a
mixture of gaussians whose input is:

() ()000 loglog FFDevF Perfect −=

The total output probability is the product of the five-
feature vector’s and the fundamental frequency’s.

5. Model Training

For the training of models we need labeled training
set of musical phrases, where each sentence consists
of the music waveform and its transcription into
notes. According to the transcription we concatenate
the HMMs of the musical units to build an extended
finite-state network (FSN). It is important to realize
that, even though, apart from silences and unvoiced
sounds, most models are notes, each HMM note
model differs from each other because they keep
information of the fundamental frequency associated
and also its duration. This information is needed to
calculate some input features.

Once a composite sentence FSN is created for each
sentence in the training set, the training problem
becomes one of estimating the unit model parameters
that maximize the likelihood of the models for all the
given training data. The maximum likelihood
parameters can be solved for using either the
forward-backward procedure or the segmental k-
means training algorithm. For our system we have
chosen the Segmental K-Means [6] and we have
implemented it as follows:

1. Initialization: Linearly segment each training
utterance into units and HMM states.

2. Estimation: The transition probabilities are
estimated by merely counting the number of times
the transition is used and dividing it by the number
of times the source state for the transition is used.
This requires maintaining counters to track each
transition and each output symbol during training.

The mixture weights for the five-feature vector
probability function are estimated for each state i as:

i

im
im N

N
c =

For the F0, the output probability function is
estimated:

 j

k j

sin timesof .

 vsymbol observed andsin timesof .ˆ
no

no
b j =

For the discrete symbol that expands to a continuous
density function, we estimate this function the same
way as the five-feature one but now it is only the
states belonging to note models that share the
codebook. This codebook has to be re-estimated every
iteration.

3. Segmentation: The updated set of unit models
(based on the estimation of step 2) is used to re-
segment each training utterance into units and states
(via Viterbi decoding).

4. Iteration: Steps 2 and 3 are iterated until
convergence.

Since we wanted the system to be accurate in the
definition of borders, we manually supervised the
resulting segmentation and adjusted some note
borders. By doing so, we got a growing parallel
database where the notes are labeled and segmented
with fixed borders. These segmented sentences are
used for the training then in a different way than the
not segmented ones. Instead of linearly segmenting
each training utterance into units and HMM states,
for the note-segmented utterances, we only linearly
segment the HMM states inside the unit borders.
When we iterate, only these inside HMM states
borders are allowed to reallocate, the note borders are
left fixed. Doing this resulted in a more accurate
alignment.

6. Viterbi decoding

For alignment the trained models are concatenated
and run against the feature vectors extracted from the
sound using Viterbi decoding. As a result, the most
probable path through the models is found, giving
the points in time for every transition from one
model to the following.

The Viterbi algorithm is an efficient algorithm to
find the state sequence that most likely produced the
observations. Let φj(t) represent the maximum
likelihood of observing speech vectors y1 to yt and
being in state j at time t. This partial likelihood can
be computed using the following recursion

{ })()1(max)(tjijj
i

j ybatt ⋅−= φφ

where
1)1(1 =φ

)()1(11 yba jjj =φ

for 1<j<N. The maximum likelihood P’(Y|M) is then
given by

{ }iNj
i

N aTT)(max)(φφ =

By keeping track of the state j giving the maximum
value in the above recursion formula, it is possible, at
the end of the input sequence, to retrieve the states
visited by the best path, thus obtaining the time-
alignment of input frames with models states.

It is possible to modify the algorithm to work on-line.
To do so, the backtracking is adapted to determine
the best path at each frame iteration instead of
waiting until the end of the utterance. This
adjustment implies a lost of robustness, some hints to
overcome it can be found in [7].

The implementation for explicit note duration
modeling by modifying the Viterbi algorithm [6]
allows us to include the note duration information.
The proposed modified Viterbi algorithm keeps track
of the duration D(t) of each note n at time t and
introduces a duration penalty P of making a
transition from state i at time t to state j at time t+1
given by,

≠≥∆

≠<∆∆

=≥∆∆−+∆

=<∆

=

jiandtDifl

jiandtDiftDl

jiandtDiftDltDl

jiandtDif

P

0)()0(

0)())((

0)())(())1((

0)(0

where ∆D(t)= D(t) - Dn is the difference between the
duration of the model and the note duration, Dn,
specified in the score, and l(u)=log p(u), p(.) is the
probability density of ∆D and it is modeled by
mixture gaussian densities.

7. Conclusions

The instrument we have mainly worked with is the
singing voice. This choice is due not only to the fact
that, from all instruments, the larger training
database available for us is the singing voice one, but
also because we believe this instrument is the most
critic, and once solved the score-matching problem
for the singing voice case, we will have solved it for
any other harmonic instrument. There is still
experimentation to be done to tune the different
parameters but results are promising.

Improvements can be achieved by considering
context. We can train different note models

depending on the notes that precede and follow them.
In the case of the singing voice, using the lyrics [7]
can add robustness to the alignment. This kind of
information can also be used to improve accuracy.

References
[1] R. Dannenberg, “An On-line Algorithm for

Real-Time Accompaniment”. Proceedings of
the ICMC 1984.

[2] B. Vercoe. “The Synthetic Performer in the
Context of Live Musical Performance”,
Proceedings of the ICMC 1984.

[3] P. Desain, H. Honing and H. Heijink. “Robust
Score-Performance Matching: Taking
Advantage of Structural Information”.
Proceedings of the ICMC 1997.

[4] M. Puckette. “Score following using the sung
voice Proceedings of the ICMC 1995.

[5] P. Cano. “Fundamental Frequency Estimation
in the SMS Analysis”. DAFX Proceedings
1998.

[6] L. Rabiner and B.H. Juang Fundamentals of
Speech Recognition. Prentice Hall, 1993

[7] A. Loscos, P. Cano, J. Bonada. “Low-Delay
Singing Voice Alignment to text”. Proceedings
of the ICMC 1999.

