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Abstract 

 
In this paper we will describe an implementation of a score-performance matching, capable of 
score following, based on a stochastic approach using Hidden Markov Models.  

 
1. Introduction 
 
Linking notes in a musical performance to the 
corresponding notes in a score is called score-
performance matching. Proper matching algorithms 
are crucial for automatic accompaniment systems or 
in systems where the computer has to find out where 
the musician is with respect to a known score, in 
order to make an appropriate musical response. For 
example audio effects can be applied to the 
performer’s sound depending on his/her location in 
the score. In the context of musical performance 
research, matching algorithms are valuable to 
measure differences between the performance and the 
score, thus being able to extract expressive timing 
patterns, calculate tempo, pitch deviation patterns, or 
any other performance characteristics.  
 
One category of algorithms focuses on real-time 
matching and they are often called score-following. 
Early work in score matching was performed by 
Dannenberg [1] and Vercoe [2], both primarily 
interested in making real-time matchers. Dannenberg 
describes an algorithm solely based on pitch 
information, intended to robustly follow a 
monophonic instrument. Later these algorithms were 
extended to deal with polyphonic music and multiple 
instruments [3]. Most algorithms primarily match 
pitch, possibly in combination with time information. 
The method presented here focuses on monophonic 
music and can be seen as a continuation of Puckette’s 
work [4] moving from knowledge-based to stochastic 
models.  

2. Stochastic modeling 
 
The input features needed to make a decision when 
performing a match, namely fundamental frequency, 
notes duration, etc, are inherently uncertain. The 
uncertainty rises from the fact that instrument players 
or singers do not perform an ideal realization of what 

it is written in the score and the fundamental 
frequency algorithms are not absolutely reliable. 
Others algorithms can perform reasonably well with 
specific instruments like flute but they fail when the 
problem above stated is especially troublesome. This 
occurs very clearly with the singing voice in which 
the output does not resemble at all a sequence of 
discrete tempered pitches attained at well-defined 
times.  
 
Stochastic modeling is a flexible general method for 
situations like the above described. It consists on 
employing a specific probabilistic model for the 
uncertainty or incompleteness of the information. A 
music performance is a nonstationary process since 
its statistical parameters vary over time. Hidden 
Markov Models (HMM) are well studied and used for 
statistical modeling of nonstationary stochastic 
processes such as speech and our work has been to 
apply them to our application.  
 

3. Hidden Markov Models 
 
A HMM is most easily understood as a generator of 
vector sequences. It is a finite state machine which 
changes state once every time unit and each time t 
that a state j is entered, a n acoustic speech vector yt 
is generated with probability density bj(yt). 
Furthermore, the transition from state i to state j is 
also probabilistic and governed by the discrete 
probability aij. In the figure below we show an 
example of this process where the model moves 
through the state sequence X=1,1,2,2,2,2,2,3,3,3 in 
order to generate the 10 observation vectors of k-
index model. 
 



  

 

Figure 1: Markov Process example 

The joint probability of a vector sequence Y and state 
sequence X given some model M is calculated simply 
as the product of the transition probabilities and the 
output probabilities. The joint probability of an 
acoustic vector sequence Y and some state sequence X 
= x(1), x(2), x(3),…,x(T) is: 
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In practice, of course, only the observation sequence 
Y is known and the underlying state sequence X is 
hidden. This is why it is called Hidden Markov 
Model.  
In our problem, the model M is the sequence of notes 
specified in the score script, Y the feature sequence 
extracted from the audio signal and X, the state 
sequence, which is actually what we aim for in this 
paper.  
 

4. Note models based in HMM 
 
In this section we present the features and the 
characteristics of the HMMs used to model the notes. 

4.1 Front-End Parameterization 
 
The function of front-end parameterization stage is to 
divide the input signal into blocks and to extract 
from each block relevant features. The six features 
that will be used for the observation sequence are:  
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Zero Crossing,  
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Delta Fundamental Frequency, 
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Fundamental Frequency, and Fundamental 
Frequency Error, which is a measure of “goodness” 
of the F0 estimated. 
 
Obtaining fundamental frequencies is a popular 
subject of study. The particular algorithm we use is 
an adaptation of the Two-Way Mismatch [5]. In the 
procedure, the estimated F0 is chosen as to minimize 
discrepancies between measured partial frequencies 
and harmonic frequencies generated by trial values of 
F0. For each trial F0 mismatches between the 
harmonics generated and the measured partial 
frequencies are averaged over a fixed subset of the 
available partials. The predicted to measured error is 
defined as: 
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where ∆fn is the difference between a predicted and 
its closest measured peak, fn and  are the frequency 
and magnitude of the predicted peaks, and Amax is 
maximum peak magnitude. The measured to 
predicted error is defined as:  
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where ∆fk is the difference between a measured and 
its closest predicted peak, fk and ak are the frequency 
and magnitude of the measured peaks, and Amax is 
maximum peak magnitude. The total error is:  
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This pitch estimation method gives a temporal 
evolution of the F0. This envelope is then used to 
calculate some of the system’s input features.  

4.2 Note Model Architecture 
 
We have three left-to-right HMM models: a note, a 
no-note and a silence model. We model notes with 3 
states so as to mimic the note behavior of attack, 
steady state and release. The silence is modeled with 
only 1 state, since there is no temporal structure to 
exploit. The no-note, modeled with 3 states, aims to 
account for all the unpitched sounds that appear in 
the performance. This can include noisy spurious 



  

sounds, or in the case of singing voice aspirations, 
fricatives, plosives… 
 
The choice of output probability function is crucial 
since it must model the intrinsic variability of the 
score realizations. Some HMM systems use discrete 
output probably functions in conjunction with a 
vector quantizer. Each incoming feature vector is 
replaced by the index of the closest vector in a 
precomputed codebook and the output probability 
functions are just look-up tables containing the 
probabilities of each possible VQ index. This 
approach is computationally very efficient but the 
quantization introduces noises, which limit the 
precision that can be obtained. Hence, it seems a 
better choice to use parametric continuous density 
output distribution, which model the feature vectors 
directly, for instance with multivariate mixture 
Gaussian. 
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where cjm is the weight of mixture component m in 
state j and N(j;µ,Σ) denotes a multivariate Gaussian 
of mean µ and covariance Σ. 
 
This method results in a system with too many 
parameters to train. Thus, in this work, we use the 
same large Gaussian codebook for all the states and 
only estimate different mixture weights for each 
state. 
 
We build a codebook with vectors that are composed 
of all the above features but the F0, which will be 
treated differently. To construct a codebook l, the Nl 
corresponding observations, yt~l are clustered into Ml 
subsets, being Ml the number of mixture components 
of the codebook. To do this clustering we use LBG 
algorithm. Then 
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The mixture coefficient cjm, for the case Njm vectors 
are assigned to the mth mixture of the codebook, 
results in 
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The output probability of the observation F0 is 
defined with two discrete symbols, one symbol when 
F0 is not defined and another one when F0 has been 
found. The discrete symbol in the states of note 
models is decomposed in a continuous density 
function whenever F0 has been found as shown in 
figure 2. 

 

 

Figure 2: F0 observation probability function 

The continuous density function is modeled as a 
mixture of gaussians whose input is: 
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The total output probability is the product of the five-
feature vector’s and the fundamental frequency’s. 

5. Model Training 
 
For the training of models we need labeled training 
set of musical phrases, where each sentence consists 
of the music waveform and its transcription into 
notes. According to the transcription we concatenate 
the HMMs of the musical units to build an extended 
finite-state network (FSN). It is important to realize 
that, even though, apart from silences and unvoiced 
sounds, most models are notes, each HMM note 
model differs from each other because they keep 
information of the fundamental frequency associated 
and also its duration. This information is needed to 
calculate some input features.   
 
Once a composite sentence FSN is created for each 
sentence in the training set, the training problem 
becomes one of estimating the unit model parameters 
that maximize the likelihood of the models for all the 
given training data. The maximum likelihood 
parameters can be solved for using either the 
forward-backward procedure or the segmental k-
means training algorithm. For our system we have 
chosen the Segmental K-Means [6] and we have 
implemented it as follows: 
 
1. Initialization: Linearly segment each training 
utterance into units and HMM states. 

 
2. Estimation: The transition probabilities are 
estimated by merely counting the number of times 
the transition is used and dividing it by the number 
of times the source state for the transition is used. 
This requires maintaining counters to track each 
transition and each output symbol during training. 
 
The mixture weights for the five-feature vector 
probability function are estimated for each state i as:  
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For the F0, the output probability function is 
estimated: 
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For the discrete symbol that expands to a continuous 
density function, we estimate this function the same 
way as the five-feature one but now it is only the 
states belonging to note models that share the 
codebook. This codebook has to be re-estimated every 
iteration.  

 
3. Segmentation: The updated set of unit models 
(based on the estimation of step 2) is used to re-
segment each training utterance into units and states 
(via Viterbi decoding). 
 
4. Iteration: Steps 2 and 3 are iterated until 
convergence. 
 
Since we wanted the system to be accurate in the 
definition of borders, we manually supervised the 
resulting segmentation and adjusted some note 
borders. By doing so, we got a growing parallel 
database where the notes are labeled and segmented 
with fixed borders. These segmented sentences are 
used for the training then in a different way than the 
not segmented ones. Instead of linearly segmenting 
each training utterance into units and HMM states, 
for the note-segmented utterances, we only linearly 
segment the HMM states inside the unit borders. 
When we iterate, only these inside HMM states 
borders are allowed to reallocate, the note borders are 
left fixed. Doing this resulted in a more accurate 
alignment. 

6. Viterbi decoding 
  
For alignment the trained models are concatenated 
and run against the feature vectors extracted from the 
sound using Viterbi decoding. As a result, the most 
probable path through the models is found, giving 
the points in time for every transition from one 
model to the following. 
 
The Viterbi algorithm is an efficient algorithm to 
find the state sequence that most likely produced the 
observations. Let φj(t) represent the maximum 
likelihood of observing speech vectors y1  to yt and 
being in state j at time t. This partial likelihood can 
be computed using the following recursion 
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for 1<j<N. The maximum likelihood P’(Y|M) is then 
given by 
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By keeping track of the state j giving the maximum 
value in the above recursion formula, it is possible, at 
the end of the input sequence, to retrieve the states 
visited by the best path, thus obtaining the time-
alignment of input frames with models states. 
 
It is possible to modify the algorithm to work on-line. 
To do so, the backtracking is adapted to determine 
the best path at each frame iteration instead of 
waiting until the end of the utterance. This 
adjustment implies a lost of robustness, some hints to 
overcome it can be found in [7]. 
  
The implementation for explicit note duration 
modeling by modifying the Viterbi algorithm [6] 
allows us to include the note duration information. 
The proposed modified Viterbi algorithm keeps track 
of the duration D(t) of each note n at time t and 
introduces a duration penalty P of making a 
transition from state i at time t to state j at time t+1 
given by, 
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where ∆D(t)= D(t) - Dn is the difference between the 
duration of the model and the note duration, Dn, 
specified in the score, and l(u)=log p(u), p(.) is the 
probability density of ∆D and it is modeled by 
mixture gaussian densities. 
 

7. Conclusions 
 
The instrument we have mainly worked with is the 
singing voice. This choice is due not only to the fact 
that, from all instruments, the larger training 
database available for us is the singing voice one, but 
also because we believe this instrument is the most 
critic, and once solved the score-matching problem 
for the singing voice case, we will have solved it for 
any other harmonic instrument. There is still 
experimentation to be done to tune the different 
parameters but results are promising.  
 
Improvements can be achieved by considering 
context. We can train different note models 



  

depending on the notes that precede and follow them. 
In the case of the singing voice, using the lyrics [7] 
can add robustness to the alignment. This kind of 
information can also be used to improve accuracy. 
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