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ABSTRACT
Although rare in the sound recognition literature, previous work us-
ing features derived from a sparse temporal representation has led
to some success [8, 2, 9]. A great advantage of deriving features
from a temporal representation is that such an approach does not
face the trade-off problem between time and frequency resolution.
Here, we present a biologically inspired two-step process for audio
classification: In the first step, efficient basis functions are learned
in an unsupervised manner [13] on mixtures of percussion sounds
(drum phrases). In the second step, features are extracted by using
the learned basis functions to decompose percussion sounds (base
drum, snare drum, hi-hat) with matching pursuit [7]. The classifi-
cation accuracy in a 3-class database transfer task is 91.5% as op-
posed to 70.7% when using MFCC features. Further, we show that
a MP-feature representation preserves sound similarity to a greater
extent than MFCC-features, i.e. an artificial mixture of two sounds
of equal energy normally lies in the middle between the two single
sound distributions in feature space. An MP-representation thus
inherently contains a similarity measure between different sounds.

1. GENERAL TERMS
Theory, Verification
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3. INTRODUCTION
The large majority of popular features used in audio classifica-

tion are spectral methods, such as mel-frequency spectral coeffi-
cients (MFCCs) [10], spectral moments [14], or band-energy ratio
[14]. However, as these features require the calculation of a spec-
trogram, they suffer from the trade-off between frequency and time
resolution. Also, phase information which is crucial for consonant
recognition and auditory grouping of sounds [12] gets lost when
calculating features based on the magnitude spectrum only. Sparse
temporal representations have become popular recently and first ef-
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forts have been made to use such models for audio recognition [8,
9].

The basic idea of modeling sparse coding [13] is simple: Given
a set of input signals x1,x2, . . . ,xn, the aim is to find a number of
basis functions φ1, φ2, . . . , φm, such that each input signal can be
approximated sparsely by a linear combination of a relatively small
number of basis functions (also called atoms):

xi =

mX
j=1

sjφj = sTΦ ∀i = 1, 2, ..., n

where the activity vector s is sparse, i.e. units are either active
or inactive (not significantly different from zero), where the frac-
tion of active units is generally quite small given the total number of
units. The complete set of the elementary basis functions is called a
dictionary. In sparse coding, overcomplete dictionaries, i.e. dictio-
naries containing more atoms than the dimensionality of the signal,
are normally used.

There is quite some evidence from computational neuroscience
models that sparse coding might be a strategy that is pursued by the
brain in order to extract relevant information out of sensory data.

For instance, in [13], natural sounds were encoded through a sum
of shiftable and scalable basis functions, i.e. an (analogue) spike-
code model. In an iterative process, they enforced sparse coding of
environmental sounds and speech data on a set of basis functions.
The resulting basis functions showed a close resemblance to the
response properties of auditory nerve fibers and their distribution
in the frequency-bandwidth plane roughly matched the distribution
found by experimental studies in the cat.

Previously, the sparse optimization model of [13] has been ap-
plied to a music genre recognition task [8]. Short pieces of music
were decomposed sparsely from a genre-recognition database by
matching pursuit (MP) [7] and features from the resulting spike
representation were computed. Although they demonstrated the
general applicability and advantages of this temporal method for
audio classification over spectral methods, they did not yield a sig-
nificantly higher classification performance compared to classify-
ing widely applied mel frequency cepstral coefficients (MFCCs).
Also, the results with sparse coding were not as good as using
an equal amount of gammatone atoms. Their results however in-
creased slightly when using the combined set of MFCC and MP-
features.

A similar approach was taken by [2]. They used features ob-
tained by decomposing audio files with a sparse decomposition
method (matching pursuit) and a dictionary of gammatone atoms.
Using these features alone, the results on classifying environmen-
tal ambient sounds were lower than using MFCCs, but the perfor-
mance of the combined feature set was significantly higher than



using MFCCs alone. Other methods such as independent subspace
analysis and non-negative matrix factorization have also been suc-
cessfully applied to the classification of drum sounds (cf. e.g. [6]).
In this paper, we will use sparse coding for the same purpose. Al-
though we will only deal with drum data due to its relative simplic-
ity (stable pitch), this is a general approach that can be applied to
arbitrarily structured sound data.

4. METHODS

4.1 Data
We used isolated drum data samples from two databases, the

ENST database [3] and the RWC musical instrument database [4],
from which the following datasets were created:

• BSH: A subset of isolated drum sounds from the ENST drum
database: base drum (’bd’, 60 sounds), snare drum (’sd’,
68 sounds), closed hi-hat (’chh’, 46 sounds), open hi-hat
(’ohh’,62 sounds). This set was also used for all subsequent
sets where the hi-hat sounds are merged to one class (’hh’).

• AMIX: Artificial pairwise mixtures of the classes ’bd’, ’sd’
and ’hh’ from BSH (100 samples each) and the single classes
were used. We chose three energy ratios (0.5, 1, 2) for mixing
the sounds. Sounds were mixed with a random offset up to a
maximum distance of 50 ms between their amplitude peaks.

• DBT: Database transfer data. Classes ’bd, ’sd’, ’hh’ from
BSH are used as training data, and testing was done on iso-
lated drum samples (’bd’, ’sd’, ’hh’) taken from the RWC
music instrument database (12/34/36 samples respectively).

4.2 Features
Three different classes of features were used for classification.

Two of these aim at expressing the signal sparsely in the temporal
domain via a set of elementary basis functions. Since the prob-
lem of finding the sparsest representation using a dictionary of ba-
sis functions is NP-hard, we employed matching pursuit (MP) [7]
which decomposes a signal in a sparse manner and is computation-
ally feasible. MP is an iterative method. In each step, the basis
functions of the dictionary are correlated with the signal and the
basis function with the highest correlation is subtracted from the
(residual) signal. This process is repeated until a stopping criterion
is reached (e.g. signal-to-residual ratio, a fixed number of itera-
tions, or a spiking threshold, cf. explanation below).

4.2.1 Matching pursuit using a sparse coding dictio-
nary (SC-MP)

We generated matching pursuit features using a dictionary pre-
viously learned by sparse coding optimization [13]. Learning was
done on a subset of the ENST drum database (’phrases’). The sig-
nal is described as a linear superposition of a number of shiftable
basis functions φm, each having an associated temporal location
τm and amplitude sm [12]. The length of the basis functions is only
restricted by the length of the signal. Further, each basis function
can appear multiple times at different timepoints τmi . Formally, we
yield the following decomposition:

x(t) = x̂(t) + ε(t) =

MX
m=1

nmX
i=1

smi φm(t− τmi ) + ε(t),

where M is the total number of basis functions (the size of the
dictionary), nm is the total number of times the basis function φm

is used in the current decomposition and ε represents the residual
(gaussian noise in the ideal case).

A “spiking threshold” was used as the stopping criterion for match-
ing pursuit, i.e. the matching pursuit decomposition was stopped
when the correlation of a newly picked atom fell below 0.2.

Learning of the basis functions was done by gradient ascent with
respect to the samples of the basis functions. The update rule is

φt+1
m = φtm + λ

X
i

ŝmi [x− x̂]τm
i

i.e. each used basis function gets updated according to the de-
composition residual [x − x̂] over the temporal extent of the basis
function τmi . The learning rate λ was set to λ = 0.005 in our case.
Note that the value of the learning rate is highly dependent on the
stopping criterion of the matching pursuit because it influences the
decomposition error and thereby has a direct impact on the learn-
ing rule. Learning of the basis function is activity based, since after
each decomposition of a sound, only those basis functions used in
the MP-decomposition are updated. After each update step, the
basis functions (vectors) were normalized to unit length.

The size of the atoms was kept variable in order to allow basis
functions with low frequency components to grow over the initial
length and basis functions with high frequencies to shrink. Each
atom was initialized with a zero-padding on both ends that was 10%
of the length of the basis function. If the vector norm of the padding
exceeded a predefined extension threshold, the basis function was
extended. If it is smaller than the shrinkage threshold the atoms
were shortened.

For learning, 2000 iterations over a database of 134 drum phrases
(8-33s duration, average: 17s) have been performed. Each decom-
position on average consisted of more than 1200 atoms.

4.2.2 Matching pursuit using a gammatone dictio-
nary (GT-MP)

In this case, matching pursuit features using a gammatone dic-
tionary of the same size as the SC-MP dictionary were used. Gam-
matones functions are obtained by the product of a gamma distri-
bution and a sinudoidal. To obtain the dictionary, we decomposed
the ENST-subset that was also used for learning sparse basis func-
tions (’phrases’) with a dictionary of 64 gammatone atoms (equally
spaced on the equivalent-rectangular bandwith (ERB) scale). The
gammatone atoms that contributed most to the decomposition of
the signals were then selected and used as the GT-MP dictionary.
The reason for introducing GT-MP features is that they can be di-
rectly compared to SC-MP and thus serve as a test whether the com-
putationally expensive preprocessing step of learning sparse basis
function out of data is necessary to achieve a high classification
performance.

4.2.3 Calculating matching pursuit features
Each decomposition (i.e. each audio file) gave one feature vec-

tor which was then used for classification. The MP-feature vector
consists of two parts: The first part is a vector containing summed
coefficients (“spike weights”) of each dictionary atom in the sound
decomposition normalized to unit length. The following part is
a vector containing the total frequency each atom has been used
(“spike counts”) normalized by the frequency of the most often
used atom in the decomposition.

4.2.4 MFCCs
We used mel-frequency cepstral coefficients (MFCCs) to com-

pare the computed features with a classical approach. MFCCs



describe the spectral shape and are widely used in audio classi-
fication problems, especially in speech recognition. We obtained
them using Slaney’s Auditory Toolbox [11] and normalized to a
maximum (absolute) amplitude of 1. Additionally to applying the
three classes of features individually (MFCC, SC-MP, GT-MP), the
combinations of MP-features with MFCC-features were also tested
(MFCC + SC-MP, MFCC + GT-MP)

4.3 Classifier
To classify, we chose the random forest method [1] which is im-

plemented in the machine learning environment WEKA [5]. Ran-
dom forest creates an ensemble of decision trees using bootstrapped
samples of the training data. We used random forest since on our
data set it performed better in comparison to the standard approach
of classifying with a support vector machine. Further, this method
eases the investigation of feature interactions and the importance of
features for classification.

4.4 Investigating sound similarity
Since sparse coding should make the higher statistical dependen-

cies explicit in the data (e.g. the co-occurance of two frequencies),
we investigated how the data is distributed in the feature space. We
computed the feature centroids of each audio class and then pro-
jected the centroids on the first two principle components of the
centroids. When dealing with sound mixtures, we can thereby in-
vestigate whether e.g. the class centroid of a mixture of two sounds
lies in between the distribution of the isolated sounds.

5. CLASSIFICATION RESULTS
The classification results of the different feature classes are shown

in Table 1. For the simple task of classifying the basic drum sounds
(’bd’, ’sd’, ’hh’) from the same database, all classifiers perform
well (classification accuracies over 85%).

BSH AMIX DBT
MFCC 86.3% 31.4% 70.7%
SC-MP 97.3% 70.7% 91.5%
GT-MP 89.5% 50.2% 69.3%
MFCC + SC-MP 97.6% 75.3% 87.8%
MFCC + GT-MP 94.1% 61.7% 79.3%
Baseline 33.3% 8.3% 33.3%

Table 1: Drum classification accuracy for all dataset and feature
combinations. The MP-features were obtained using a dictionary
of 16 atoms. The results of the first two columns were obtained by
5-fold cross-validation, the last column are results from a database
transfer task. The cross-validation was performed such that sam-
ples from one recording were all either in the training or test set.

In the other two cases (artificial mixtures and databank trans-
fer), SC-MP features greatly outperform MFCCs and even the MP
features obtained with a gammatone dictionary. A combination of
MFCCs with matching pursuit features leads to a further increase of
the classification accuracy in almost all cases, suggesting that MP
and MFCC features capture different kind of information about the
signal.

The classification rate certainly is highly dependent on the dic-
tionary used. Table 2 shows the classification accuracy for differ-
ent sizes of the gammatone and sparse-coding dictionaries. For
our data set, the use of 16 basis functions yields the best results
for both SC-MP and GT-MP features. This is consistent with the
finding that when learning 32 basis functions, only a small subset

adopts a meaningful structure. However, the appropriate number of
basis functions may depend on the complexity of the sounds. Fur-
ther, SC features lead to a significantly better performance than GT
features in all cases, independent of the size of the dictionary.

BSH AMIX DBT
SC-MP 8 93.7% 59.8% 81.7%
GT-MP 8 87.2% 45.6% 79.3%
SC-MP 16 97.3% 70.7% 91.5%
GT-MP 16 89.5% 50.2% 69.5%
SC-MP 32 97.2% 61.3% 70.7%
GT-MP 32 88.4% 48.6% 67.2%
Baseline 33.3% 8.3% 33.3%

Table 2: Drum classification results for three different datasets and
SC-MP and GT-MP features using a dictionary of size 8, 16, or
32. Again, the results of the first two columns were obtained by 5-
fold cross-validation; the last column shows results from a database
transfer task.

Figure 1 shows a sparse coding dictionary along with the relative
use of the basis functions for the three drum sound classes depicted
as pie charts. The basis function most closely resemble gammatone
functions except for two basis functions, a sinusoidal and a high-
frequency transient.

Figure 1: Learned basis function dictionary with 8 atoms. The pie
charts depict the (relative) summed weights for the BSH dataset
(red: ’bd’, green: ’sd’, blue: ’hh’).

As the pie charts reveal, some of the basis functions are almost
exclusively used in the decomposition of one sound class. These
atoms therefore seem to be specialized to respond primarily to sounds
of its preferred class indicating that they respond sparsely to per-
cussion sounds.

Notice also that the spike count features of the specialized atoms
seem to separate the classes more clearly than the weight features.
This suggests that a binary spiking of the units (as done in real neu-
rons) alone is sufficient to distinguish between the sound classes.

6. DRUM MIXTURES AND SIMILARITY
Figure 2 shows the centroids of the classes projected onto the

two largest principal components. SC-MP and GT-MP features
preserve sound similarity almost perfectly in the sense that similar
mixed sound distributions lie in between the single sound distribu-
tions in feature space. Also, the distribution of the mixed sounds
moves towards one single sound as the energy of the single sound
becomes more dominant in the mixture. The MFCCs however do
not preserve sound similarity as good as the MP-features since the
mixtures do not lie equidistant between the original sounds and
sometimes the expected order is not retained (centroids ’sd-bd’,



(a) SC-MP (b) GT-MP (c) MFCC

Figure 2: Centroids of the class distributions of dataset AMIX projected onto the first and second principal component. The labels of the
mixed classes contain the energy ratios of the mixtures, i.e. the sound distribution centroid consisting of a base drum sound and a snare drum
sound of twice the energy as the base drum sound has the label ’bd-2*sd’. The color codes further exemplify the neighbourhood relations.

’sd-2*bd’ and ’2*sd-bd’). This is not only the case for the PC1-
PC2 plane but is also visible in the pairwise distance matrix of the
cluster centroids.

7. DISCUSSION
We have presented a biologically inspired approach to classify

arbitrary sound classes by learning sparse basis function on unla-
belled data and supervised learning of the classes using features de-
rived from a temporal representation of the signal. This approach
has certain advantages over other music-information retrieval meth-
ods. First, it is a general method that does not make any assump-
tions about the data except that the data can be sparsely represented
by a small number of basis functions. In contrast to Fourier or
wavelet analysis, no predefined basis functions are used but the
most efficient ones from the data are learned. This approach is
therefore probably superior to the Fourier or wavelet transform
when dealing with heterogenous data, e.g. data consisting of tran-
sient and tonal components (such as speech or music). Selecting
those basis functions that account for most of the energy leads to a
sparse representation.

However, the presented method also has some drawbacks. The
number of basis functions to be learned has to be set manually and it
is not easy to determine what a reasonable number for given classes
of sounds would be. The temporal structure of a sound decompo-
sition such as the temporal sequence of the basis functions or the
co-ocurrances of two basis functions is not considered in the feature
extraction process.

Using a gammatone dictionary instead of a SC-dictionary de-
creases the classification significantly, even when using data from a
different database for testing. An adapted dictionary thus seems to
be highly beneficial for the classification although a recent music
genre recognition study could not demonstrate this [8]. The use-
fulness of a sparse coding approach therefore seems to be highly
dependent on the recognition task in question.

In our future work, we want to investigate if we obtain similar
results for mixed sounds when using real mixtures. If the results
from the artificial mixtures are representative, then this method has
a wide variety of applications in music transcription systems.
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