Graph grammar representation for collaborative
sample-based music creation

Gerard Roma
Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain

gerard.roma@upf.edu

ABSTRACT

This paper proposes a music representation for collabora-
tive music creation using shared repositories of audio sam-
ples. We explore the use of the graph grammar formalism to
organize collective work on musical compositions stored as
graphs of samples, and describe an experimental prototype
that implements this concept. We then use the compositions
created by different users with the prototype to show how
this representation allows tracking and analyzing the music
creation process. Potential applications of this include find-
ing similarities between artists or suggesting sounds for a
given compositional context.

Categories and Subject Descriptors

H.5.3 [Group and Organization Interfaces]: Web-based
interaction; H.3.0 Information Storage and Retrieval]:
General; H.5.5 [Sound and Music Computing]: Method-
ologies and techniques

General Terms
Algorithms, Human Factors

Keywords

network music, collaborative composition, graph grammars

1. INTRODUCTION

There have been traditionally great expectations with re-
spect to the possibilities of the internet to facilitate collab-
orative music creation. The two main problems can be de-
fined as remote networked performance, which involves si-
multaneous presence of participants from different locations,
and collaborative creation, which describes asynchronous
creation of contents. While research continues on the for-
mer |14], it seems to advance at a slower rate on the lat-
ter. As generalized improvements of network bandwidth are
stimulating new proposals in the market, most commercial
offerings merely try to incorporate networking into the tra-
ditional multi-track audio sequencer interface that has be-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

AM’10, September 15-17, 2010, Pited, Sweden.

Copyright © 2010 ACM 978-1-4503-0046-9/10/09...$10.00.

Perfecto Herrera
Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain

perfecto.herrera@upf.edu

come dominant for individual music creation. We believe
that further research in the higher level aspects of interac-
tion is necessary in order to exploit networked computers
to create new forms of collective musical creativity. In this
sense, two important questions must be asked that belong
to different disciplines.

The first one is how to organize collaborative work from a
practical point of view. Our observation in this respect is
that collaboration already happens all the time in electronic
music when producers re-use audio samples from other pro-
ducers. The question is whether this practice can be gen-
eralized to more complex musical structures and, in that
case, what strategies related to roles and teams can emerge.
This can be investigated using human-computer interaction
methodologies.

The second question is wether (and how), systems can ex-
ploit data generated by users to enhance both compositional
and social aspects of music creation, for example by suggest-
ing potential collaborators. This can be seen as a traditional
information retrieval problem.

In this paper we propose using the graph grammar formal-
ism as an initial step that allows both issues to be further
investigated. Formal languages already facilitate high col-
laboration levels in music creation, for example in MUSIC-
N style languages such as Max, Supercollider or Pd. User
communities of these languages are very active and are con-
tinuously sharing and reusing their creations. Our aim is to
allow for similarly re-using materials in sample-based com-
position. The rest of this paper is organized as follows. First,
we review some related work in the field of networked music
creation and briefly review the use of grammars in music.
Then, we propose a general representation that embeds the
graph grammar formalism in the process of music creation.
We describe a prototype that implements the proposed rep-
resentation to allow sample-based music creation on top of
a large repository of audio samples. We use initial data cre-
ated using this prototype to show how the proposed repre-
sentation can be exploited in the analysis of users creations.

2. RELATED WORK

Many projects have researched internet-based collaborative
creation. A recurring theme is that general availability of
music creation tools allows to participate in music creation
to a wider audience than traditional tools do [8][16]. In this
sense, simple interfaces and large audio repositories can help
exploring creation without the need of specialized musical
training. Several projects have explored graph-based inter-
faces for web-based composition [5] [17]. However, these

sofialarsson
Copyright

H
] |

Figure 1: Multiple vs single (one antecedent per
node) interpretations of a composition of audio sam-
ples (represented as rectangles) as a graph.

interfaces do not usually support re-using works to create
higher level structures. This need emerged in the use of
the previous version of our system [15], which supported the
creation of small graphs of samples. Formal grammars are
a common choice for representing this kind of hierarchies in
music. The use of formal grammars for music creation has
a long history, parallel to their use in music analysis. Early
work explored their use to compose music using alphabets
of sound objects [3|. Such approach required the definition
of sonological rules, which in practice may involve a map
of symbols to sounds that is private to the composer. Us-
age of grammars has further evolved largely on the choice of
conventional vocabularies, such as western [7] |2] and indian
[10] classical alphabets. In order to represent parallelism in
music, string grammars are often adapted in different ways.
Graph grammars can be used as a more general framework
to represent parallelism. Graph grammars were introduced
by Pfaltz and Rosenfeld in the late 1960s [13] as an ex-
tension of traditional grammars to languages of graphs. In
[18] their application to music processing graphs is discussed
at a theoretical level. On the other hand, in [11] [1], they
are used in the analysis of classical scores. One problem of
this kind of analysis is that traditional scores do not encode
edge information. Thus, a given polyphonic fragment can
be interpreted as many different graphs. For the creation
of new music, we propose an interface that forces the user
to define precedence relations among sounds to create mu-
sic compositions, which can be collapsed into single nodes.
This difference is depicted in Figure 1 for the traditional
brick wall representation of an audio sequencer. Given an
existing composition, many connections could be added be-
tween the different sounds. Our proposal is to design inter-
faces that allow authors to specify their ideas with respect
to precedence and parallelism by defining the connections
during the creation process.

3. REPRESENTATION
3.1 Facets

One important issue for using grammars in sample-based
composition is mapping sounds to a discrete alphabet. Here

our main assumption is that music can be better understood
and represented through distinct facets or dimensions, and
that musical rules operate in these dimensions. For example
many rules of classic western music are defined indepen-
dently for pitch, rhythm and timbre, while a lot of modern
computer music is considered to be an exploration of tim-
bre.

From a computational point of view, the use of different
facets to define rules also solves the combinatorial explosion
that would result from trying to find patterns of arbitrary
descriptors. If, for example, we were to infer rules using so-
cial tags attached to sounds, for any graph with N sounds,
and assuming M tags are attached to any sound, we would
have M™ possible rules. By restricting our description to
a single discretized facet, each sound is assigned one value
(e.g. a pitch value) and one rule is extracted for each facet.
Considering our music universe on top of a shared database
of sounds, we define the grammar alphabet as a partition
of the database. Given the current wealth of tools in audio
description and data mining there is a wide number of pos-
sible descriptors and algorithms that can be used to define
partitions. We describe our experiment in section [5.1] using
a hierarchical clustering algorithm. The choice of a hierar-
chical algorithm allows us to define grammars at different
levels. This granularity is important, because it allows us
to choose an appropriate level given the application and the
amount of data. For instance, a large network of users could
be be described as a hierarchy of communities. Rules could
be defined at a user level, team level or at different com-
munity levels. It can be expected that at lower levels of
community structure, more specific labels can be used to
find characteristic patterns. This level of generality in the
labels of sounds can be named the lexical level. In contrast,
the syntactic level refers to the levels of nesting found in a
given composition.

3.2 Grammar framework

A musical fragment can be described as a graph where nodes
are sound objects, and edges represent transitions between
objects. In our proposed approach, transitions are fired
when the source node finishes playing, and there is no spec-
ified temporal grid. This system is quite similar to the one
proposed by Roads in the 70s [3|, but there a syntax con-
struct was used instead of the graph representation for par-
allelism. One advantage of this approach is that instead of
focusing on time as a container, the representation stores
the order of events. Given a large database, musical cre-
ation can be more based on exploration of the database,
and the temporal structures that result from the found ob-
jects. In this version, we constrain music graphs to have
a maximum in-degre of one for each node. The reason is
that several transitions going from several nodes to a sin-
gle one introduce artifacts to the playback model. A node
could be triggered by a preceding node and then re-triggered
by another one in ways that would not be obvious by look-
ing at the representation. On the other hand, this forbids
the creation of loops, which makes the patches contractable
|13]. Repetitive musical patterns can be obtained simply
by duplicating nodes. This restriction could be removed if
transition probabilities are used for the edges. However, in
the present work we stick to a deterministic representation
and restrict musical graphs to trees.

We call this data structure a sample patch. Formally, a sam-

start > C > D > end

Figure 2: Example of a sample patch.

ple patch can be characterized as a directed tree with node
labels: a tuple (V, E, f) where V is a set of nodes that repre-
sent audio clips, F is a set of edges that represent transitions
between the clips, and f is a labeling function that assigns a
label to each node at a given lexical level. An example patch
is depicted in Figure 2] For simplicity, we consider this tree
to be ordered, i.e. we preserve the position of each node with
respect to its siblings, even when it has no musical meaning
(all siblings start at the same time regardless of the order).
This allows us to use a fast algorithm for computing the
edit distance between trees. The tree edit distance can be
described as the lowest cost sequence of edit operations (add
a node, delete a node, rename a node) that will transform
a given tree into another one. We use the Zhang-Shasha
algorithm [19] with unit cost for each operation.

We model collaborative creation of sample patches as a
context-free graph grammar. This is different to the tradi-
tional use of grammars in that we do not try to infer rules
from preexisting data. Instead, by using the sample patch as
a musical representation, we constrain users to work within
the grammar framework. Each user creation can be consid-
ered as a rule that expands a node into a sample patch. This
new node can be used in another patch.

Thus, the system can be formally characterized as a
Node-Label Controlled (NLC) graph grammar [4]: a tuple
(X, A, P,o, E) where X is the alphabet of node labels, A C &
is the set of terminal labels, P is a set of productions, o is
the starting graph, and £ C ¥ x ¥ is an embedding function.
We now describe the interpretation of these elements in the
interactive system.

The alphabet of terminal node labels, is produced by the
labeling function for a given lexical level and facet. At
the lowest lexical level, the label simply identifies the audio
clip, so for the audio document, the label is simply file-
name#start:end” where start and end are indicated in sam-
ples. The sample patch can contain also silences which are
labelled simply as "#0:end”. Finally special labels are as-
signed to start and end nodes, which are described below.
The labels for non-terminal nodes at the lowest lexical level
are actually assigned by the user when a sample patch is
created. Labeling terminals at higher lexical levels can re-
sult in two isomorphic patches being equal. This means that
the two corresponding non-terminal variables that produce
the patches are the same at that level. This can be checked
by computing thet distance between patches: if the distance
is zero at a given lexical level, a new variable is generated
which includes both patches.

The starting graph has no direct meaning in the musical

start »| patch_1 »| patch_2 > end

start

(o} > D —»| patch_2 > end

Figure 3: Replacement of a patch in a host patch:
the node labeled as patch_1 is replaced by its corre-
sponding graph (in grey).

creation process. This variable can be designed to construct
a grammar for a specific purpose. For example, if the initial
graph is a finished piece, the grammar will consist of all the
rules used to create that piece. To characterize a given au-
thor or team, the starting graph can be defined as a variable
that can be replaced by any of the complete pieces by this
author or team.
As mentioned, the set of productions is simply a collection
of sample patches. Whenever a user creates a new compo-
sition, it is collapsed into a single node that can be used
elsewhere. Hence, the patch is a context-free rule that de-
fines the expansion of the node.
Finally, the embedding function indicates how a patch is em-
beded in another patch. We simply use two virtual endpoint
nodes for each patch to indicate the embedding. Thus, for a
given production that replaces a node n, with a sample patch
s, E = {(3, starts)Vi € In(n)} U{(o, ends)Vo € Out(n)}, i.e.
incoming edges of n are connected to the start node and
outgoing edges to the end node. This process is depicted in
Figure Here, the host patch includes the example patch of
Figure 2] collapsed as a node. The start and end nodes guide
the embedding of the collapsed patch in the host patch.
Using this representation has two main advantages over tra-
ditional audio sequencing for collaborative creation. First,
it allows to naturally share and re-use creations at different
levels of complexity. As shown in Figure[d the parse tree of
a musical piece allows tracking all the authors that have par-
ticipated in it. Second, by keeping the structure of the piece
we can compute similarity measures that take this structure
into account. While a full evaluation of these two aspects is
outside of the scope of this work, we analyze the viability of
this approach through an informal case study. In the next

final song
author: user_1

2

patch 1 patch 2 sound 1
author: user_1 author: user_2 author: user_3

/NN

sound 6
patch 3 sound 3)
author: user_1 author: user_3 author: user_3
\4
sound 4 sound 5
author: user_3 author: user_3

Figure 4: Authorship tree of a finished piece.

section, we describe an implementation of these ideas. We
then illustrate their use through an analysis of initial pieces
created with this prototype.

4. PROTOTYPE

We implemented a prototype that allows the creation of mu-
sical works using the described representation on top of a
large database of sounds. This database contains sounds
from Freesoun a popular sample exchange website cur-
rently containing more than 90000 samples. The interface
consists of a flash application that connects to a pyhton
back-end. The interface is based on three panels that de-
scribe a creative workflow. The three components share a
tray that holds currently selected sounds. We now briefly
describe the main components of the interface.

e Sample tray
By default, the tray contains a blank node that repre-
sents silence. The tray allows duplicating any object
and particularly silence objects of different durations
can be created.

e Search panel
The search panel allows to retrieve samples and
patches from a database. Sounds can be searched by
tag, file name or user name, and a sound duration limit
is specified (by default 10 seconds). Patches can be
searched by file name or user name. Selected objects
are dragged to the tray.

e Edit panel
The edit panel allows the user to modify the start and
end points of a sample, thus creating a new clip. This

"http://www.freesound.org

operation produces a new entry in the global alphabet
of terminal nodes. Since the user may be interested in
adding several instances of this terminal to the patch,
the edit settings modify a master copy represented by
the visual element in the tray.

e Composition panel
In the composition panel the user can edit a sample
patch with the samples and patches in the tray. Two
rectangles in this panel represent the start and end
nodes. The user is asked to create a composition where
a path exists from the start to the end. When saving
the patch the user decides whether to share it with the
community or to keep it for herself. Users can continue
to edit their own patches as long as they are not shared.
When loading a patch to the tray, all the sounds and
sub-patches used in that patch are also loaded. Shared
patches can no longer be modified (although new ver-
sions can be created through duplication). The reason
is that modifying a shared patch could unexpectedly
modify someone else’s patch. Given more communica-
tion features, modification of shared patches could be
enabled in some cases for faster collaborative creation.

When the user saves a patch, the object structure is encoded
in a JSON file, the audio is rendered to a waveform, and a
thumbnail of the composition panel is generated. All files
are sent and stored in the server.

Figure 5: Screenshot of the search panel

S. USAGE ANALYSIS

We asked several people to try our initial prototype. Dur-
ing the initial trial period, we collected about 65 patches
from 15 users. Of these users, most generated one or two
patches, and two went on to create 16 and 21 patches respec-
tively. We will call these users "A” and B”. The first one
recognized himself as expert using music production tools,
but didn’t have any programming or computer science back-
ground, while user B is a music technology graduate student.
During this informal test, it was clear that people under-
stood and used the possibility of nesting compositions at
different levels. However we also found that more intensive
use of this feature would require a pre-existing motivation
for collaborating, for example an already established team.
A more formal evaluation is needed in order to understand

http://www.freesound.org

Figure 6: Screenshot of the editing panel

Figure 7: Screenshot of the composition interface

the role of a hierarchical representation, as well as the influ-
ence of different features of the user interface. For example,
Figure [8] shows a patch created by user A, who reportedly
“forgot” about the possibility of nesting patches. Editing
this kind of patch quickly becomes tedious, although adding
some features to the interface could help. As a comparison,
the patch below exploited this feature conveniently, which
allows concentrating on the higher level structure and, in
the case of individual use, the modification of the repeated
portions of the piece at once. It became apparent that this
may require some practice. With the data collected dur-
ing the test, 69% of patches contained no nested structures,
18% contained one level and the remaining 8% more than
one level. Almost half of the patches with a syntactic level
higher than zero were generated by user B. On the other
hand, some users nested other patches in their first creations.
In all, 54% of all patches participated in some nesting rela-
tion, either contained or as containers. These tend to have
a lower number of nodes (6.9 mean, 4.8 standard deviation)
than the others (10.5 mean,7.6 standard deviation).

5.1 Sound clusters

In order to find rules in users creations, we generate labels
at a given lexical level by partitioning the database. We
extracted a number of sounds from the database for our ex-
periments. We restricted the base sounds to those shorter

Figure 8: Using (upper figure) / not using (lower
figure) nested structures.

than 10 seconds, in order to avoid long field recordings and
also to minimize the variability of frame-level features. We
resampled all sounds to 44100Hz/16bit, and converted them
to wav. In total we analyzed 34164 samples from a wide va-
riety of sources. This diversity required the use of a general
musical facet. Initial experiments with chroma features|6|
showed that the use of sounds with a well defined tonality
was very low in the initial test period. Thus, we opted for
using a general representation of the spectral energy, dis-
cretized in bark bands [21]. Our implementation splits the
two lowest and the highest bands the original bark scale.
This gives us a vector of 27 values per frame, which we av-
erage over time to obtain a vector of 54 features (mean and
variance). We clustered these vectors to obtain a hierarchi-
cal partition of the database. Since the cost of traditional
hierarchical clustering algorithms is prohibitive for the size
of this dataset, we used bisecting k-means, which uses k-
means to repeatedly split the data, producing a hierarchical
partition. This algorithm has been shown to perform better
than traditional hierarchical clustering approaches [20], es-
pecially when modifying the traditional k-means objective
function. Also, it is well suited for some characteristics of
our data, such as high dimensionality, large size and a con-
siderable amount of noise typically associated with the web
and its users. We use the implementation available in the
CLUTO (9] clustering package.

One general problem with clustering is that a clustering so-
lution is always found, regardless of wether the data is nat-
urally clustered or not. Thus, without some objective mea-
sure of quality it becomes difficult to choose among different
parameters. Especially critical is the choice of the internal
validity function optimized by bisecting k-means. However,
we do not have an objective classification of the data to as-
sess the validity of the clusters. We have resorted to social
tags (provided to describe the sound content by each sound’s
author and users) as a reliable cue to choose an appropriate
function. While noisy and incomplete, tags provide valu-
able information regarding the content of the sounds that
is independent of what we can automatically extract from
the signal. We use a similar method to the one reported
in |12] using the most generally used tags in the database.
The rationale is testing the associations between clusters and
assigned tags. If clusters are capturing some semantic regu-

larities and group toghether coherent sounds with respect to
certain features, then we should observe that certain clus-
ters tend to concentrate certain tags. This hypothesis can
be tested using the x? statistic. For a given clustering, we
compute a contingency matrix by counting the frequencies
of each tag in each cluster. From this matrix we compute
the x? statistic:

2y o= fo)?
P

where the observed frequencies f, are the frequencies of tags
in each cluster, and the expected frequencies f. are the prod-
ucts of the totals for each row and column divided by the
total number of elements in the matrix, feu ;) = Tj\?. A
higher value of the statistic implies a lower probability that
the difference between the actual and expected values is the
product of chance, i.e., there are some robust associations
or co-ocurrences between the clusters and the tags. Thus, a
higher value of x? indicates stronger support against the null
hypothesis that the tags are equally distributed among the
clusters. We use this value to hint towards better cluster-
ings. Figure[0]shows the evolution of the statistic for increas-
ing numbers of clusters given each of the k-means objective
functions described in [20], labeled as i1, i2(internal criteria),
g1, g1p (graph-based) and hl, h2 (hybrid internal/external).
Since the confidence on the statistic decreases with the num-
ber of clusters (as the number of observations in the con-
tingency matrix approaches a minimum in some cases), we
chose the function that works better with a lower number of
clusters. This function maximizes the pairwise similarities
of objects inside a cluster:

k
1
IIZmal'an(F > cos(di dy))
r=1 r

di,d; €Sy

where S, is a cluster, n, is the number of documents in that
cluster, and d;, d; are documents in that cluster

2800

2600

2400

X" 2200

2000

18004~

1600

2 4 6 8 10 12 14

Number of clusters

Figure 9: Performance of diferent clustering criteria
along the number of clusters measured by the x?
statistic.

Figure shows the dendrogram cut at 10 clusters and the
corresponding centroids. Clusters tend to form around high
values of specific or neighboring bands, both for mean and
variance.

Bark band (mean) Bark band (variance)

Cluster

Figure 10: Dendrogram and centroids of 10 clusters.
Color strength represents the value of the mean (left
half) and variance (right half) of the spectral energy
at each bark band. Centroids are sorted along the
veritcal axis.

5.2 Label generation

Given a clustering of the sounds in the database, we can gen-
erate labels for all the nodes and patches in the database.
Since users are allowed to clip sounds in the composition
process, they are effectively generating new sounds. We ana-
lyzed all these sounds to extract their bark bands descriptor,
and assigned them to the cluster with the closest centroid.
Thus, for a partition of 10 clusters, all terminal nodes are
assigned a cluster index from 0 to 9.

Since the clusters include many files, it is now possible that
some of the generated patches are identical at this lexical
level. As mentioned, this can be found by computing the
distance between the trees, in ascending syntactic order. Be-
cause each patch must be saved before being reused in an-
other patch, this can be done at creation time, as all nested
patches will be already resolved for the current patch. For
the present analysis we traversed the syntactic levels start-
ing from the patches that contain no nested patches, up to
the patches with maximum depth. At each level, we com-
puted the distance with the other patches. Surprisingly, we
didn’t find any cases with zero distance using 10 cluster la-
bels. In order to gain some flexibility, less strict rules could
be used to cluster non-terminal nodes, for example using
a certain distance threshold. This would allow identifying
more general patterns at higher syntactic levels, and thus
more general generative rules.

One question that arises is how many of the labels are ac-
tually used in the generated patches. Since the clustering is
done using the whole database, it could be that not all the
labels would be present in the small set of sounds actually
used in the compositions. We found that all clusters were
similarly represented in patches submitted by users, except
for one which was used three times more often than the rest
(Figure . This cluster includes generally sounds with en-
ergy in the higher bands of the spectrum; in the training
dataset it does not have a bigger size than the rest of clus-

ters. After looking at the patches that use these sounds, this
preference seems to indicate a certain compositional strat-
egy for rhythmic patches, where a few low frequency sounds
(e.g. bass drum) are repeated while a greater diversity of
higher frequency noises is used. We also looked at the usage
of different clusters by users A and B. While both seem to
follow the general trend with respect to cluster 3, they other-
wise exhibit different patterns. These patterns in the usage
of each cluster may be used to represent the preferences of
individual users or groups.

0.4
0.3
0.2
0.1
0
0 1 2 3 4 5 6 7 8 9
B All users B UserA User B

Figure 11: Fraction of sounds of each cluster used in
sample patches by the whole community and users
A and B.

5.3 Patch similarity

Having all patches labelled allows us now to compute the
tree edit distance between patches, obtaining a similarity
measure that takes their structure into account. Using a
similarity measure can be used to enhance the creation of a
patch, by suggesting suitable sounds from patterns found in
other compositions. By using the current patch as a query,
a similar patch can be used to find ideas not presently con-
sidered, for example the sounds that are most different from
the ones in the current patch. We analyzed the tree edit
distance between patches given 10 cluster labels. In general,
the distance tends to be small for smaller patches, reaching
the minimum for trivial ones, and large for more complex
patches. Thus, it favors the preferred strategy of "nesting
soon”. Hence, with respect to authors, the average distance
between patches was significantly lower than the global av-
erage for author B, who tended to use nesting and smaller
patches, but higher for user A who did the opposite. Also,
as expected, the average distance grows proportional to the
number of clusters (i.e. the more diverse are the labels, the
larger the average distance) due to the added renaming op-
erations.

For small patches, this measure can be used to obtain in-
sights on the different strategies employed by users. For
example Figure [12] shows two pairs of patches with low edit
distance, one from each user A and B in both cases. In
the first one one sound is used as an initial section of the
patch after which a number of sounds are triggered simulta-
neously. In the second, one "base” sound is used to bridge
start and end. This helps getting started because the inter-

el ey
e e

Figure 12: Two pairs of patches with high structural
similarity.

face creates a loop by connecting the end with the start in
the moment of creation. Both patches include a sequence
of three sounds in parallel to the base loop. As can be seen
clearly in both examples, the labels generated by cluster in-
dices do not play an important role in patch similarity. We
plan to adapt the edit distance to this application by taking
into account node-to-node similarity based on the bark band
vectors.

6. CONCLUSIONS AND FUTURE WORK

We have proposed a formal representation of music aimed
at sample-based, collaborative composition, and described a
graphical interface that exposes this representation to inter-
net users. Initial tests with this prototype showed that the
framework extends on the common practice of reusing ma-
terials in computer music and allows bottom-up, distributed
creation of sample-based music. The information about co-
authorship of such compositions is retained at all levels. In
addition, we have shown how this representation allows the
analysis of user-submitted compositions.

As suggested in the introduction, we plan to extend this
research in two directions. On one hand, the framework
provides a basic way to organize collaboration, but we want
to explore what kind of strategies could be implemented on
top of that, such as the formation and growing of teams.
A deeper study from the point of view of user interaction
would also allow refining the different interface elements to
improve the understanding and usefulness of the represen-
tation. On the other hand, we hope to gather more in-
formation and to further evaluate the possibilities of min-

ing common patterns in user-submitted compositions, while
adding other musical facets to the analysis. With more data
it would be possible to evaluate different similarity mea-
sures and also analyze how they can help in defining simi-
larity between authors. The prototype can be used online
at http://radio.freesound.org,

7.
1]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

D. J. Cook and L. B. Holder. Graph-based data
mining. IEEE Intelligent Systems, 15(2):32-41, 2000.
D. Cope. Computer Models of Musical Creativity. The
MIT Press, 2005.

C.Roads. Composing grammars. In Proceedings of the
International Computer Music Conference (ICMC),
San Francisco, 1978.

J. Engelfriet and G. Rozenberg. Graph grammars
based on node rewriting: An introduction to nlc graph
grammars. In Proceedings of the 4th International
Workshop on Graph-Grammars and Their Application
to Computer Science, pages 12-23, London, UK, 1991.
Springer-Verlag.

J. Freeman. Graph theory: Linking online musical
exploration to concert hall performance. Leonardo,
4(1), 2008.

E. Gémez and P. Herrera. Estimating the tonality of
polyphonic audio files: Cognitive versus machine
learning modelling strategies. In Proceedings of the 5th
International Conference on Music Information
Retrieval (ISMIR04), 2004.

S. R. Holtzman. A generative grammar definition
language for music. Journal of New Music Research,
9(1):1-48, June 1980.

S. Jorda and O. Wiist. Fmol: A system for
collaborative music composition over the web. In
Proceedings of Web Based Collaboration DEXA 2001,
Munich, Germany, 2001.

G. Karypis. CLUTO - a clustering toolkit. Technical
Report #02-017, Nov. 2003.

J. Kippen and B. Bel. Modelling music with
grammars. In A. Marsden and A. Pople, editors,
Computer Representations and Models in Music, pages
207-238. Academic Press, London, 1992.

S. T. Madsen. Automatic discovery of parallelisms and
hierarchy in music. Master’s thesis, University of
Aarhus. Department of computer Science, Denmark,
May 2003.

G. Pallis, L. Angelis, and A. Vakali. A probabilistic
validation algorithm for web users’ clusters. In In
Proceedings of the IEEE international conference on
systems, man and cybernetics (SMC, pages 4129-4134.
IEEE, 2004.

J. L. Pfaltz and A. Rosenfeld. Web grammars. In
IJCAI’69: Proceedings of the 1st international joint
conference on Artificial intelligence, pages 609-619,
San Francisco, CA, USA, 1969. Morgan Kaufmann
Publishers Inc.

A. Renaud, A. Cardt, and P. Rebelo. Networked music
performance: State of the art. In Proceedings of the
AES 30th International Conference, 2007.

G. Roma, P. Herrera, and X. Serra. Freesound radio:
supporting music creation by exploration of a sound
database. In Workshop on Computational Creativity

(16]

(17]

(18]

(19]

(20]

21]

Support (CHI2009) (accepted), 2009.

A. Tanaka, N. Tokui, and A. Momeni. Facilitating
collective musical creativity. In MULTIMEDIA 05:
Proceedings of the 13th annual ACM international
conference on Multimedia, pages 191-198. ACM, 2005.
N. Tokui. Massh!: a web-based collective music
mashup system. In DIMEA ’08: Proceedings of the 3rd
international conference on Digital Interactive Media
in Entertainment and Arts, pages 526-527, New York,
NY, USA, 2008. ACM.

F. Wankmiiller. Application of graph grammars in
music composing systems. In Proceedings of the 3rd
International Workshop on Graph-Grammars and
Their Application to Computer Science, pages
580-592, London, UK, 1987. Springer-Verlag.

K. Zhang and D. Shasha. Simple fast algorithms for
the editing distance between trees and related
problems. SIAM Journal on Computing,
18(6):1245-1262, 1989.

Y. Zhao and G. Karypis. Evaluation of hierarchical
clustering algorithms for document datasets. In CIKM
’02: Proceedings of the eleventh international
conference on Information and knowledge
management, pages 515-524, New York, NY, USA,
2002. ACM.

E. Zwicker and H. Fastl. Psychoacoustics, Facts and
Models. Springer-Verlag, 1990.

http://radio.freesound.org

	Introduction
	Related Work
	Representation
	Facets
	Grammar framework

	Prototype
	Usage analysis
	Sound clusters
	Label generation
	Patch similarity

	Conclusions and future work
	References

