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Abstract

In this thesis we present the research work we have carried out on bass line

extraction and transcription and audio segmentation for chord estimation. First, we

introduce the task and we defne important musical concepts to be taken into

account. Next, we review the scientifc background to our work, both in the chord

estimation and the bass extraction/transcription tasks. We then present a set of

modifcations to the Essentia's predominant melody algorithm to adapt it for bass

line estimation. Bass information along with beat positions are then used to

propose a novel type of audio segmentation for chromagram smoothing related to

the chord estimation problem. Next, we present the evaluation methodology, music

collections and metrics used in our research, followed by the evaluation results.

The results show a considerable improvement in the bass extraction task by

using our approach and promising results in the bass transcription task. They also

show very promising results regarding our novel audio segmentation method for

chromagram smoothing, compared to the beat-synchronous chromagram approach

used by current state-of-the-art algorithms.

The thesis concludes with the contributions of our dissertation, the challenges

found during the research process and the future work.
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CHAPTER 1

Introduction

1.1 Motivations

Music has a special interest in our society: not only in the consumerism aspect

(almost every person listens to music), but also in the learning process and

obviously in the creation process. With the growth of new technologies, even

musically untrained people are able to create music using computer tools such as

sequencers. They are also capable of discovering new music by using

recommendation technologies which appear already everywhere. Society is even

interested in aspects related to music theory. An example of this is the number of

tutorials on the web, specially focused on piano and guitar, to teach how to play

chords. Many of the musical aspects that people are interested in are related with

music analysis and in the sound and music computing community they are studied

in order to understand them from a computational point of view. By doing so, we

can create tools to democratize the music. In the special case of harmony, a chord

estimator could help people to reproduce any popular song. But why is the

automatic chord estimation feld important and more precisely, why words such as

automatic and chords could be interesting for researchers?
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1.1.1 Automated tasks

The transcription of certain musical aspects – such as the chords or the melody

of a song – involve a great effort for a human being. Moreover, these kinds of tasks

cannot be done by an untrained person since a deep musical training is needed to

accomplish them. Sometimes, the ambiguity or the complexity of a piece can even

lead to different results in the analysis done by two different people. Finally, the

amount of musical works grows day by day and music collections are increasingly

larger.

Therefore, the automation of transcription tasks can be very benefcial. The main

issue about this is that the estimations have to be reliable or at least have a

reasonable degree of reliability. A big effort is being made to this end in the

research community, refected by the number of publications on this topic, by

trying to develop new algorithms that are more robust and with a better accuracy.

1.1.2 Harmonic description

The importance of harmony in music can be understood by looking at two very

specifc musical examples.

The frst one is related to jazz music, where the standards represent the main

repertoire of this genre. It's very interesting to see which kind of musical

information is included in the score: only the melody and the chord symbols.

Musicians who have never met before are capable of playing together a jazz

standard in a jam session with only that little piece of information.
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Figure 1.1: A typical jazz standard score

The second example is related to a very popular format on the internet for

describing a song. It is normally used for pop-rock music and addressed to guitar

and piano players. Only the lyrics and the chord labels are included and the

musician is supposed to be able to play the song just with that information.

These two examples show how powerful is the harmonic description and

especially the chord progressions.

1.1.3 Mid-level descriptors in Music Information Retrieval

Music Information Retrieval (MIR) is a very important feld in audio and music

computing. Its main objectives are to analyze and extract musical content or context

related to music to perform various tasks such as recommendation, categorization,

search or transcription, among others. MIR systems are able to extract information

directly from the audio signal which is used afterwards in many tasks. For instance,

in recommendation tasks, the mel-frequency cepstral coeffcients (MFCCs) have

been used widely [52, 60]. However these types of low level features are not

interpretable or, in other words, they have no meaning for a human being. On the

other hand, higher level features such as pulse or tonality are very well understood

by us. The latter features are being used more and more in MIR with success.

Harmonic transcription – due to its intrinsic characteristics – can offer a good
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framework for many of those tasks such as genre classifcation [1] or cover song

detection [2].

1.2 Thesis goals

With this thesis, we expect to fulfll the following goals:

• Provide a scientifc background and a literature review in the feld of

automatic chord estimation and bass line extraction.

• Study the role of bass line and beats in the automatic chord estimation

problem.

• Develop a new method for audio segmentation to enhance audio chord

estimation based on bass notes and beat positions.

• Modify Essentia's predominant melody algorithm to improve its

performance in the bass transcription task.

• Provide comparative evaluation of our approaches with respect to other

algorithms

In chapter 2, we review perceptual and musical aspects and defnitions which are

important to work on the chord estimation problem. Important vocabulary and

concepts are explained to better understand the content of this thesis.

Chapter 3 presents the scientifc background and literature review in the felds

of automatic chord estimation and bass line extraction. We describe the general

architecture of current state of the art systems and we identity possible lines of

research.

In chapter 4 we describe the methodology we have followed during the process

of the thesis. First we present how the bass lines extraction and transcription was
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carried out using part of the Essentia's predominant melody algorithm: the

parameter choice and further modifcations. Then we describe different approaches

to segment the audio based on bass notes and beat and fnally we discuss the

evaluation methodology: music collections, evaluation metrics and the data

preparation.

Chapter 5 contains the results of the evaluation of the bass line algorithm and

the audio segmentation tool with a concluding commentary.

The last chapter ends the thesis by noting the contributions accomplished, the

challenges encountered and ideas for the future work.
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CHAPTER 2

Musical Defnitions

2.1 Introduction

A basic understanding of music theory and human perception is necessary to

work in automatic harmonic description. In this chapter, some knowledge about

pitch, chords and musical context will be given as an introductory stage for

automatic chord estimation. Indeed, understanding how music works should be

useful to improve or develop new algorithms in this feld.

2.2 Pitch, pitch class and note

Pitch is a perceptual property which allows the ordering of sounds on a

frequency-related scale extending from low to high [45]. In other words, it is

approximately proportional to log-frequency. A note corresponds to the musical

representation of the pitch.

The fundamental frequencies of the notes of a chromatic scale in equal

temperament, which divides the octave equally in twelve, can be defned as
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where fp is the fundamental of a note and fp-1 is the fundamental frequency of

the previous note. The octave is an interval between two notes (the distance

between them) which has a frequency ratio of 2:1.

The work by Shepard related to pitch perception is very interesting. He

conducted a perceptual study with humans and found out that “human beings are

able to separately consider pitch class, which refers to note names with no octave

information, and pitch height, which is proportional to the fundamental frequency

of a note. In particular they are able to perceive notes that are in octave relation as

equivalent, a phenomenon called octave equivalence” [38].

The perceptual concept of octave equivalence has its own analogy in the use of

chords in music theory: in terms of chord label all the combinations of notes that

have the same pitch classes are considered equivalent, with the exception of the

position of the bass note.

2.3 Harmony and chords

The new Grove dictionary of music and musicians provides the following

defnition about chords: a chord is “the simultaneous sounding of two or more

notes. Chords are usually described or named by the intervals they comprise,

reckoned either between adjacent notes or from the lowest”.

Indeed, chords are normally constructed by three notes with different names (i.e

E, G and B) which are called triads although they can be composed by other

combinations. It is possible to construct more complex chords with four (tetrads) or

even more notes. In the other hand, two notes sounding simultaneously can also be
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considered as a chord, but sometimes it can be diffcult to determine its name or its

function and normally some context is needed to do that. Figure 2 shows a chord

progression in the key C major. Letters represent the label of the chords and

Roman numerals represent the function of the chord inside the key.

Figure 2.1: chord progression in C major

The easiest and the most common way to determine the label of a chord is to

sort its notes by intervals of thirds and check what the intervalic relationships are

between them. Occasionally, the notes are not sorted in this way because the chord

is not in the root position (i.e. the main note of the chord, also called the tonic, is in

the bass position) but it's inverted (another note of the chord is in the bass

position). The later case, as it will be seen in the next section, can make the chord

identifcation task much harder.

Although chords are very informative about harmonic content, the harmonic

information can also be inferred by other means such as melodic structures which

evolve in time. The most common is called an arpeggio: a sequence of close notes in

pitch which are perceived with certain continuity and transmit harmonic content

depending on their intervalic relationship. Indeed, a human being is able to

integrate perceptually sequences of notes which are interpreted as intervals and

consequently as chords [21].

The harmonic content description and particularly chord transcription can be

sometimes complicated for different reasons. For instance, chords are not

necessarily represented in the low-level content of a signal and a certain level of

abstraction is needed to complete the task. This is the case for notes which do not
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belong to a chord and they can be a source of confusion when labeling manually or

automatically that particular chord. In other cases, critical information is missing

(i.e. the third note of the chord which determines if it's a major or minor) and a

deeper analysis is needed (context analysis, for instance).

Chord transcription is not only about transcribing notes but to understanding

and interpreting the musical content and context and generating a higher level

meaning.

2.4 Musical context

The different musical characteristics such as tonality, rhythm, harmony, structure

or texture are not isolated elements with no interaction between them. What is

normally called a composition is the art of using and combining those musical

aspects to transmit emotions, sensations or even a message. It has been proved that

they can also be used in a random way (i.e. Music of changes by John Cage) or in a

very different way conceived within the occidental music tradition (i.e. Mode de

valeurs et d'intensités by Olivier Messiaen or total serialism) but it's well known that

tradition is very strongly rooted in popular music.

Popular music is generally under the parameters of tonality. Music theory says

that within a tonality, chords have specifc functions and follow certain rules (fgure

2) and some chords are more likely to occur than others. Lerdahl [20] discusses

harmony extensively. He relates chords to keys and describes theoretically their

relationships and dependencies. Moreover, research in music perception has shown

that those relationships in music theory have a parallelism in human perception

and cognition of chords progressions. Harmonic priming studies show that human

perception of chords is more accurate if they are harmonically close to their

context [46].
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Thompson [47] also conducted perceptual experiments and showed that chords

are perceived at the same time and globally with key and melody, in a hierarchical

way, in which the three qualities are connected by expectation.

Harmony and chord progressions are also strongly related to rhythm. Ledahl

and Jackendoff discussed widely rhythm in music and metrical structure in [48].

They described and formalized what is called in music theory the harmonic

rhythm. The harmonic rhythm represents how fast the harmonic changes occur

and it is closely related with the pulse of a musical piece.

2.4.1 Bass and harmony

The bass line deserves a separate section for itself. Bass lines are very connected

to chord changes. In music theory, there is the concept that chord is always built on

top of the bass note, which is the most important note of the harmony. This is

refected in musical sight reading manuals [74]. Sight reading in music means that

the performer plays a score that he has never seen before. Obviously, it implies an

extreme diffculty but there are general rules to help the musicians. One of them

shows the importance of the bass in harmony: it is permissible to skip notes if the

score is very diffcult, but the bass note always has to be played.

Bass lines in popular music are also very important and closely related with

chord changes. Indeed, in this type of music the bass note is almost always present

on the frst beat of a chord and it is very unlikely that a chord changes without a

bass note not being played. This is confrmed by one of the most popular bass

player tutorials [49] which describes 207 example bass patterns covering styles such

as Blues & R’n’B, Soul, Funk, and Rock and showing only 20 which do not start

with the bass pitch class.
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CHAPTER 3

Scientifc Background

3.1 Introduction

In the following sections, we will provide the scientifc background underlying

the work carried out in this research. The chapter is divided in two main sections:

the chord estimation article review and the bass line extraction and transcription

article review. The later section is important since the bass information is an

essential feature for the work we are doing in the thesis. The chapter fnishes with a

discussion about the studied feld and the description of the goals of our research.

3.2 Automatic chord estimation (ACE)

In this section, we review the articles related to automatic chord estimation and

we describe their approaches to the problem. In general, all the algorithms follow a

general structure. The main differences between them is how they solve the

different steps involved in the process. First, the systems need to extract a

representative harmonic feature from the audio for every frame analyzed. Then, a
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profle matching is performed to estimate the chances that a chord is present in

every frame and fnally a mid-level transition model is used to smooth and defne

the fnal estimated chord. Figure 3.1 shows the most common structure of a chord

detection algorithm, which will be reviewed in the following sections.

Figure 3.1: A typical chord estimation algorithm structure

3.2.1 Feature extraction

Analyzing music from a score requires high amount of musical training but has

an obvious advantage: the elements for defning musical aspects of the piece are

normally written down (with the exception of artistic performance modifcations).
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The key can be inferred from the chords and the notes, and the chords can be

defned by the notes and their disposition and so on.

When dealing with audio, another approach has to be taken since musical notes

can't be inferred directly from the audio signal. Pitch detection from polyphonic

signals, onset detection and pitch duration estimation are active research felds and

unsolved problems [59]. The main diffculty of this task remains in the spectrogram

analysis, which represents not only the fundamental frequencies of the notes but

also the related frequencies (upper partials) and also to assign every spectral peak

to the correct note. Moreover, percussive sounds generate a big amount of noise in

the frequency domain and even audio signals can be imperfect and noisy.

Therefore, to avoid this transcription stage, the most common used

representation of the audio in automatic chord estimation is the chromagram. The

frst author mentioning the chroma representation was Babbitt [68]. Then, Shepard

stated that two dimensions could help in understanding how human auditory

system works [38]: tone high and chroma (pitch class). In Music Information

Retrieval, the chromagrams can be computed in different ways but generally

speaking, all of them describe the salience of every pitch class over time.

The frst author expressing concerns with chord transcriptions from real audio

was Fujishima. In his work [10], he used a feature called pitch class profles (PCP): a

twelve dimensional vector created by wrapping the whole spectrum to a unique

octave. Indeed, the PCP has been used as a chromatic representation of the

harmonic content of the audio by Gómez [11], Bello [3], Harte [16], among others.
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3.2.1.1 Chromagram computation

Time to frequency domain transformation

The waveform of an audio fle is not directly very informative about the

harmonic content of the signal. A more adequate representation of the sound is

needed to perform harmonic analysis tasks. It is well known that the human

auditory system performs a transformation at the cochlea level to the frequency

domain. Similarly, the sound and music computing community has used the

Fourier transform to analyze harmonic content from audio.

The most common transformation in automatic chord estimation, especially

during the frst years of research in this feld, was the Short Time Fourier

Transform (STFT). Since the interest was focused on determining local harmonic

variations, it seemed more appropriate to compute the frequency magnitudes using

a sliding window across the signal. One limitation of this technique is that it uses a

fxed-length window, which involves a trade-off between temporal and frequency

resolution [54].

Another popular time to frequency transformation is the constant Q transform

which has been used increasingly in the past years. This transformation is a spectral

analysis where frequency-domain bins are not linearly spaced, as in DFT-based

analysis, but logarithmically spaced, and consequently closely resembling the

frequency resolution of the human ear [3].

As small amount of papers have used other types of transformations. Wavelet

transform has similar properties to constant Q, giving a better resolution for both

low and high frequencies [39] and enhanced autocorrelation offers a good trade-off

between complexity and quality [44].
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Figure 3.2: The twelve-dimensional chromagram shows the evolution over time
of the energy corresponding to the different pitch classes.

Preprocessing techniques

The audio signal can be composed by a variety of instruments, sounds and even

noises. It's obvious that not all the information in the spectrogram has interest for

describing harmonic content. For instance, a percussive sound can generate energy

along the entire spectrum and maybe this energy should be fltered.

As a general rule of thumb, the frame rate of the chroma analysis has to be faster

than the rate of chord changes in a piece of music [9]. When using short windows,

several disadvantages can arise. For instance, the frames of the resulting

chromagram could respond to changes too locally and therefore become too

sensitive to noise or transients. Therefore, the most common approach is to use a

low pass flter for smoothing purposes [29].

Filtering background noise

Another goal of preprocessing the spectrogram is to deal with the background

spectrum (parts of it which are not useful for a harmonic description). A typical

flter for this purpose is the median flter, which has been used extensively in chord
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description [22], [35]. Its use is mainly to discard outliers.

A particular case of useless background spectrum is energy from percussive

sounds. Some efforts were made in this direction by trying to remove parts of the

spectrum which were generated by percussion [26]. This method is known as

Harmonic Percussive Source Separation (HPSS). It considers the spectrum to be a

sum of two spectra -the harmonic and the percussive- and performs the chroma

computation only from the harmonic one.

Another noise removal technique was researched by Khadkevich et al. related to

chord estimation: the time-frequency reassignment [19]. The main idea behind TFR

is to remap spectral energy of each spectrogram cell into another cell that is the

closest to the true region of support of the analyzed signal: “blurred” spectral

representation becomes “sharper” which increases frequency resolution.

Harmonics

During the preprocessing stage, it's also worth to mention the numerous

techniques to deal with harmonics in automatic chord estimation. For musical

instruments, not only the f0 is played but also a series of harmonics (partials, for

inharmonic instruments). Those harmonics can sometimes confuse the feature

extraction and therefore some researchers have tried to flter them.

One method designed to only take into account meaningful harmonics is called

harmonic pitch class profles (HPCP). This method takes into account high energy

frequencies which are considered to be harmonics of sub-fundamentals [11].Other

methods used for this purpose are based on multi-pitch tracking techniques.

Different proposals have been made related to this [43], [36] but the main idea

behind it is to detect meaningful pitches in the spectrogram. A more recent work

proposed to approximate the spectrum by a linear combination of note spectra [21],

namely each of them being a f0 frequency plus four harmonics.
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Timbre invariance

The exact two notes, played in the same way by two different instruments have a

different spectrum: the energy of each of the harmonics can vary dramatically.

Therefore, the effect of the timbre can affect the chromagram computation,

depending of the content of the audio signal. The HPCP method has a

preprocessing stage called spectral whitening [11] aimed to reduce the impact of

timbre. A more recent proposal is to use the envelope information given by the

MFCCs to normalize the chroma-vector [24].

Perceptual loudness

The last approach in the preprocessing stage to improve the pitch salience

detection is to approximate the frequency information from the spectrogram to the

human auditory system. This has be done by weighting the spectrum by an arc-

tangent function in the context of key detection [32]. The loudness-based

chromagrams also try to simulate the perception of loudness by humans. This has

been approximated by doing a logarithmic compression [24] and also by doing a A-

weighting of the spectrum [26].

Tuning

The International Organization for Standardization adopted A4 = 440Hz to be

the standard tuning in 1955. Nevertheless, some musics for different reasons don't

use this kind of tuning (i.e. baroque music sometimes uses A415).

In popular music, this was noticed by Sheh and Ellis when developing an

algorithm for chord detection and segmentation [37]. They computed a spectrogram

with a higher frequency resolution (half semi-tone resolution) to be able to adapt

the tuning.
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This method was then improved by Harte [17], by computing a fner spectrogram

with a three band resolution per semi-tone, and looking for the energy

maximization depending of the tuning selected. His technique has been used by

ulterior research works [3], [18].

Octave summation

The next step for processing the chromagram is to sum the energies or pitch

saliences corresponding to every pitch class, followed by a normalization. This stage

is commonly known as wrapping the spectrum to an octave. Indeed, in doing so,

the octave information is rejected, which in chord estimation is normally seen as

irrelevant.

The resulting feature is a twelve dimensional vector (one for each pitch class)

which represents the harmonic content of a frame and the chromagram is a matrix

containing those vectors over time (each column being a frame).

The frst approach in the automatic chord estimation feld was to warp the

spectrum in only one chroma [10], [37]. Since 2008, there has been an increasing

trend of computing two different chromagrams to improve the estimation [36]: one

for the bass and the other for the treble. This is justifed because the root of a chord

can give additional information and lead to an increase of precision when

identifying chords [21].

Post-fltering

Post-fltering techniques are usually used for smoothing purposes. Since chord

changes are more likely to happen on beats [13], a very common practice is using a

beat tracker to determine beat positions and smooth the chromagram between
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them by using the mean [3] or the median [22]. These chromagrams are called beat-

synchronous. Recently, Bello proposed another post-processing method based on

the use of recurrence plots [7].

3.2.1.2 Another feature proposal: Tonal centroid

The most serious feature presented as an alternative of traditional chromagrams

was proposed by Harte et al., notably a transformation of the chromagram known

as the Tonal Centroid feature [18]. The main idea behind this feature was to design

a representation where harmonic relationships such as perfect ffths and major and

minor thirds had a closer Euclidean distance than in the traditional chromagram.

The hypothesis was that this feature could lead to an improvement in detecting

harmonic change. Therefore, they mapped the twelve-dimensional chroma onto a

six–dimensional hypertorus which corresponds to Chew’s spiral array model [6].

This representation has been used in posterior works as a unique feature and also

combined with the traditional chromagram [5].

3.2.2 Profle matching

Once the chromagram is computed, the next step consists in estimating which

chord could be sounding in each frame. To this end and to our knowledge, most of

the chord detection algorithms use two different systems. The frst one is known as

template matching and the second one is normally based on a machine learning

model called Gaussian Mixture Models (GMM) which uses labeled data (in this case,

labeled chroma vectors) to learn and determine the parameters of the model.
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3.2.2.1 Template matching

Estimating the similarity between an analyzed chroma vector and a twelve-

dimensional reference template is called template matching. These templates

describe a chord according to the importance of each pitch profle and can be

generated in different ways. Moreover, in the matching process, many formulas can

be used to calculate the distance or similarity between the chroma and the

template. Presumably, the chord template closer to the analyzed chroma feature

should correspond to the right chord. For several reasons, this is not always the

case and, in fact, a common procedure is to consider several candidates.

Templates

In the automatic chord estimation literature, multiple chord templates are

described and used. Binary templates [10] are twelve-dimensional vectors where

there is a one in the positions of the chord notes and zeros in the other positions.

For instance, as fgure 3.3 shows, a C major binary template would be

[1,0,0,0,1,0,0,1,0,0,0,0].

Other works have considered and tested different chord templates. The most

common approach consists in including a certain weight to the harmonics of the

main notes of the chord [28]. It's assumed an exponentially decreasing spectral

profle for the amplitudes of each partial: an amplitude of 0.6i−1 is added for the ith

harmonic of every note in the chord [11].
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      Figure 3.3: C major Binary template        Figure 3.4: Template considering 4 harmonics

Distances

In the literature, the similarity or distance between chroma and templates has

been measured in many different ways using different formulas. The most

commonly used methods are inner product, euclidean distance and correlation

value. Other measures have been less preferred such as Mahalanobis distance [41]

and the Dirichlet linear distance [34].

There's a work in the literature which does a comparative between the Kullback-

Leibler divergence, the euclidean distance and the Itakura-Saito divergence in the

automatic chord estimation context and it gets the best results with the former one

[27] but there is no study that considers and analyzes all of them with a clear

conclusion about their performance.

3.2.2.2 Gaussian Mixture Models (GMM)

The Gaussian Mixture Model is used commonly in automatic chord estimation to

determine what is the probability of an observed chroma vector to represent a

certain chord.

A Gaussian Mixture Model is a parametric probability density function
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represented as a weighted sum of Gaussian component densities [67]. GMMs are

commonly used as a probabilistic distribution of features. This model is normally

used in probabilistic frameworks as Hidden Markov Models to determine the

probabilities of the chroma representing a certain chord [28].

3.2.2.3 Least common profle matching

In the early days of automatic chord estimation, Pardo used a rule-based method

to do the profle matching [30]. Chords were represented as pitch classes, not

pitches. The pitch class C was represented as 0, and the G major chord was then

represented as <7 11 3> (for G, B, D). A score for a chord template over a segment

was determined by the number of coinciding notes minus the number of notes that

are false positives or false negatives. In the case of equal scores between chord

templates, a tie break rule based on the chord root was applied.

In literature, there are some examples of the use of neural networks for chord

recognition [39]. In those cases, the profle is done by the weight of the weights of

the network nodes.

Finally, an interesting approach was taken by Chen et al. [5] by approximating

the computed spectrum to a 24-dimensional vector using linear regression.

22



3.2.3 Chord Transition Modeling

3.2.3.1 No-musical context algorithms

Template based

There are some algorithms, especially in the early days of automatic chord

estimation, which don't present a higher-level consideration for chord transition

than the frame level. The most common approach in these cases is to analyze frame

by frame the audio signal, perform the template matching and fnally do some type

of smoothing to deal with possible “noisy” chords [10], [39].

Transition modeling

As it has been said in the pre-processing chapter, analyzing real audio frame by

frame is prone to detecting chord changes too often since the scope is set too

locally. In general, harmony has a degree of stability which is much higher than the

frame rate and therefore some type of smoothing is needed to correct very short

term chord changes. To this end, most of the automatic chord estimation algorithms

use probabilistic time series models.

Hidden Markov Models (HMM)

The most common model used is the hidden Markov model (HMM), which has

been used widely in speech recognition. The main reason of using HMM in chord

detection is because it models contiguous and non-overlapping events over time

[21].

There are numerous examples in the automatic chord estimation literature

which use hidden Markov Models without considering other musical aspects. Some

of them train all the parameters of the HHM from the data [37], [28]. In other cases,
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some musical experience is included in the system. This can easily be done at

different levels. At the observation probabilities level, it has been done by

constructing the multivariate Gaussian models using music theory [28]. At the

transition matrix level, the probabilities to move to a chord from another one can

be set up by also following music theory. One way of doing it is using the circle of

ffths for a consonance measure [3].

Multi-stream HMM

This approach was presented in the MIREX 2013 edition [8]. In the next section,

two-stream HMM will be discussed but basically every stream represents a

succession of observable variables: one for bass sounds in particular and another

one for treble sounds. The peculiarity of this work is the use of four simultaneous

observation variables: a six octave spectrum is divided in four frequency bands and

four chromagrams are computed and used as observations. No musical knowledge

used by the algorithm is included in the report.

Other approaches

There are other strategies to model time series. Conditional random felds

(CRFs) are a class of statistical modeling method often applied in pattern

recognition and machine learning. This approach has been used in literature to try

to model chord progressions [4]. Linear chain CRFs differ from the HMMs in that

each hidden state depends not just on the current observation but on the complete

observation sequence, which seems logical since chord changes in harmonic

progressions are not only dependent on the last chord.

Other dynamic modeling strategies are found in the literature and in most of the

cases are very specifcally designed. Some of them have a perspective very similar to

HMM by the use of bi-grams, also very used in speech recognition [36].
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3.2.3.2 Musical Context Aware Algorithms

Algorithms without a machine learning approach

Hypothesis-based system

An interesting approach is given by Yoshioka [41] et al. with his hypothesis-based

method. Their algorithm estimates chord labels and boundaries by generating

dynamically hypothesis based on tuples of chords and keys. At every time unity

(eighth-note level calculated with a beat tracker), a fnite number of hypothesis are

generated or expanded from last time position. To avoid an exponential increase of

them, pruning is performed by evaluating them and keeping the most probable

ones. Cues for calculating the likeliness of the hypothesis are chroma features, bass

sounds and chord progression patterns, which introduce penalization factors for

mismatching situations.

Voting-based model

This bottom-up approach by Sailer [50] et al. uses a voting system to decide

which chord candidate fts the best in a chord progression. First of all, it performs a

key estimation based on Krumhansl profles. For each candidate from each frame, a

triple voting is done: the frst is related to the amplitude of the notes of a candidate

(in the chroma) with respect to the maximum score, the second one is the temporal

duration of the chord (its presence in the adjacent frames) and the fnal one is its

ftness to the key. Finally, a fltering of short chords (less than 80ms) is performed.

Rule-based model

This system was introduced by Shenoy et al. [51] in 2006. The system uses

rhythm and key information to improve chord estimation. First, a beat detection is

performed, followed by an initial estimation of the chords. The chords are used

afterwards to estimate the key in a symbolic way. Beat information and key is used
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then to perform what the authors call chord accuracy enhancement which

correspond basically to a fltering of the initial chord estimation by rejecting chords

which don't ft in the context. Moreover, based on the double assumption that the

most common measure is 4/4 and chord changes are more likely on measure

changes [13], they detect the measure boundaries with chord information and

perform an intra-measure chord check to flter the frst estimation even more.

Chord/Key model

This method by Zenz [44] is a modular algorithm composed by a beat tracker, a

key estimator, a chord detector and a chord sequence smoother. The beat tracker is

used to segment the audio in big non-overlapping frames considering that the

chord remains stable during one beat. The key detection performs a fltering of the

least likely chords obtained from the template matching: it only considers diatonic

chords, secondary dominants and secondary subdominants. The chord sequence

smoother is not described properly in the paper but it is supposed to select the

chord sequence with high probabilities for each single chord and few chord

changes.

Lerdahl's distance-based model

Rocher [35] proposes a method based on concurrent key and chord detection.

Two chromagrams with different time scope are computed: a short one to fnd

chord candidates and a longer one to fnd key candidates. For each frame, the most

likely chord and key candidates are selected and combined into a general harmonic

candidate: a tuple of chord and key. To compute the transition cost between chords,

the Lerdahl's distance is used, which takes into account the circle of ffths and the

common notes of the chords [20]. The last step consists in fnding the most likely

path by minimizing the total sum of weights along the path leading to each

candidate.
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MPTrEE and HarmTrace

The MPTrEE model for automatic chord estimation is a very interesting system

which uses as its cornerstone a parsing technology called HarmTrace [14]. The

HarmTrace harmony model is explicitly designed for modeling the relations

between chords over a long time span. It's is very interesting that it takes into

account functional harmony, not only the name of chords. Actually, it performs a

real harmonic analysis.

Figure 3.5: An excerpt of HarmTrace analysis, taken from [14]

This work uses a beat-synchronous chroma to determine fragments with stable

keys, using a dynamic programming algorithm, and for every frame a possible list of

chords. The matching is done using Krumhansl profles for keys and binary

templates for chords. The next step consists in grouping the frames to reduce the

possible combinations. This is done by merging lists with chords in common.

Moreover, the song is segmented where a tonic or a dominant is recognized

because in the harmonic model, subtrees are rooted by a tonic or a dominant.

Once the context is settled, the chord candidates and the key are introduced in

the HarmTrace harmony model: the selected sequence is the one having the lowest

error-ratio.
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Musical Probabilistic Time Series Models

Probabilistic hypothesis

Sumi et al. [40] resumes Yoshioka's idea by reformulating the hypothesis

reliability using a probabilistic framework. Indeed, the relationship between

musical facets, formerly treated with penalties, is now modeled with a probabilistic

function. This function also integrates acoustic features (based on the likelihood of

GMM), progression patterns (based on transition probabilities obtained from bi-

gram models) and bass information (obtained using PreFest method [12]). The

hypothesis-based model, with the pruning and the hypothesis expansion, remains

the same.

Double-state HMM

In the 2.3.1.2 section, the HMM model was reviewed as a possible option to

model chord transitions. If more musical aspects must be included in the model for

a concurrent estimation, more hidden variables are needed. This is the case in the

work by Papadopoulos et al. [29] where they wanted to estimate downbeats and

chords at the same time from real audio.

The two hidden variables in this work are the chord label and the position of the

chord in the measure. The observation probabilities depend only on the template

matching and the musical information is all coded in the transition matrix. Again,

the segmentation is done by beat-tracking at two levels: quarter and octave-note.

The main assumption (inferred from the musical analysis of their corpus) is that

chords are more likely to change on downbeat positions. It is also interesting that

they consider imperfect beat detection (or beat addition or deletion) by building

two global transition matrices: one for 3/4 measures allowing a fourth additional

beat and another for 4/4 measures, allowing the deletion of the last one.
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Explicit-duration HMM

The explicit-duration HMM used by Chen et al. [5] is similar to the one order

HMM described in the previous section but includes another probability

distribution in the formula: the duration distribution. It represents the probability

of a state (a chord label) spanning a certain number of beats. In this case,

smoothing and segmentation is also done at the beat level. The duration

distribution is trained from data and it's considered to be global (there is not a

particular distribution for each chord label). When computing the probabilities for

each state, the algorithm keeps track of N previous states (in this case, N = 20) to

compute the right duration probability. The fnal step consists of fnding the most

probable chord sequence using Viterbi's algorithm. In this work, not only one

duration distribution is done: using clustering techniques, three possible

distributions were found and used to improve the estimation.

Dynamic Bayesian Networks

To our knowledge, the work by Mauch [22] is the most complete in the literature

if we talk about using synergies from multiple musical facets. Indeed, he uses a

Dynamic Bayesian Network with discrete hidden nodes representing metric

position of the chord, key, chord label and bass note. The continuous nodes model

bass and treble chroma.

The conditional probability distributions (CPD) of random variables are used to

defne the interaction between keys, beats, bass and chords. For instance, as it can

be seen in fgure 3.6, the chord label depends on its metric position, the key and

the previous chord. The metric positions are defned by the use of a beat tracker

and the chromagrams are smoothed beat-wise. The model is built with musical

knowledge and observations from musical repertoire. This knowledge is mapped in

the probabilistic framework and doesn’t have any training stage. It is also worth
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noting that the algorithm assumes 4/4 measures but has a small consideration of

possible deviations.

Figure 3.6: Mauch's Dynamic Bayesian Network. Hidden nodes M, K, C and B 
represent metric position, key, chord and bass. Cb and Ctr represent

bass and treble chromagrams, taken from [23]

This algorithm is know as Chordino in the Sonic Visualizer community and it is

available in the Isophonics web page (http://www.isophonics.net).

Harmonic progression analyzer

A harmonic progression HMM topology was proposed by McVicar et al. [23]

containing three hidden and two observed variables. This method could be

considered close to the one proposed by Mauch since it tries to model the context,

even if the relationship between the variables is not exact. The hidden variables are

the key, the chord labels and the bass.

The chord is actually decomposed into two aspects: chord label and bass note.

The observed variables correspond to the bass chroma and the treble chroma,

extracted with Mauch's system.
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Figure 3.7: Harmony progression analyzer. Hidden nodes K, C and B
represent key, chord and bass. Cb and Ctr represent bass and treble

chromagrams, taken from [23]

As it can be seen in the fgure 3.7, the current key depends on the previous key,

the chord label transitions depend on the key and the previous chord and the bass

transitions depend on the chord label and on the previous bass note.

To estimate concurrently chords, bass notes and keys, the most probable path

has to be decoded by the Viterbi's algorithm. To improve computing performance, a

search space reduction is done before running the whole algorithm: key, bass notes

and chords alphabet are reduced using musical knowledge.

3.2.4 Chord estimation literature discussion

As it as been showed in the literature review, almost all the algorithms have the

same general structure. Starting with a feature extraction, the chroma is then

compared with precomputed profles (profle matching) to approximate the chord

label and fnally a higher level model works on the transition of the chords. We

have also seen that the strategies have evolved to the inclusion of musical
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characteristics in the algorithms. The main assumption for that is that having

musical knowledge would help the chord estimators to take better decisions when

labeling the audio.

We have identifed one aspect that is common to almost of the state-of-the-art

algorithms which is the beat-synchronous chromagram. Synchronizing the

chromagram with the beat is also called in the literature as smoothing it between

beat positions. Basically, all the chroma frames within two beats are merged

together with a function (mean and median are the most common). By doing this,

noise and abrupt changes in the feature are avoided. Moreover, this idea is also

supported by the fact that in pop-rock music, it is very unlikely that a chord

changes between beats [29].

Our thesis will work on this direction. We will try to segment the audio in an

adaptive way to optimized the effect of the chromagram smoothing. Therefore, we

need additional information to work with, besides the beat positions, to create the

segments in a coherent way. As we explain in section 2.3, the musical context in

chord estimation is very important, especially the bass line. We need to review the

bass estimation literature to follow our approach.

3.3 Bass estimation

In this section, we review the articles related to bass line extraction and

transcription and we describe their approaches to the problem. It is important to

note that the main difference between extraction and transcription is that the

former tries to guess the correct note (or f0 in Hz) at the frame level and the latter

transcribes the notes in terms of onset time, height and duration.

32



3.3.1 Salient function and Melodia

3.3.1.1 Salient function

One of the most interesting approaches to bass extraction is done by Salamon in

his master thesis [63]. In his thesis, he designs a salient function for the melody and

the bass line estimation using chroma features. It is constructed by adapting the

Harmonic Pitch Class Profle (HPCP) [11] and used to extract a mid-representation

which uses pitch class instead of absolute frequencies.

For the bass line extraction, the algorithm adopts the frequency range between

32.7Hz (1200 cent) and 261.Hz (4800 cent) to compute the HPCPs. The two other

important parameters that he considers are the bin resolution and the window size.

In order to detect subtleties in the analysis, the bin resolution is set to 120 bins.

For the window size, since the frequencies to be analyzed are very low, he uses a

186 ms window (8192 frames for 44100 sample rate). Given the salience function,

the bass line is selected as the highest peak of the function at every given frame.

Moreover, no further post processing is performed.

It is important to note that two main improvements for future work are proposed

for this method: 

• A post-processing step for selecting the bass line out of the potential

candidates (peaks of the salient function)

• A voicing detection method to determine when the bass line is present.

These improvements, among others, were included in the following algorithm,

called Melodia. It represent the evolution of this primary work
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3.3.1.2 Melodia

Melodia is the name of the melody extraction Vamp plugin which is based on the

predominant melody algorithm [65] developed by Salamon during his doctoral

thesis at the MTG. Even if its fnal version is designed for the melody extraction

task, it was used by [66] as a bass extraction algorithm, with several modifcations.

Positive results were reported by the authors of the article. The predominant

melody detection algorithm from Essentia [69] follows Melodia's approach. Its main

overall strategy is based on the salience function of the previous section but with a

wide range of modifcations and improvements (fgure 3.8):

Sinusoid extraction and salience function

These two stages correspond basically to the salience function presented in the

previous section. They replace the HPCP computation process with an important

difference: the spectrum is not folded into one octave. This means that the salience

of a given frequency is computed as the sum of the energies found at integer

multiples (harmonics).

An important feature is also added to this module of the algorithm: the bin

contribution of the peaks. Indeed, every peak not only contributes to the bin which

corresponds to its harmonic but also to the neighbor bins. In doing so, tuning and

possible frequency deviations are taken into account.

Pitch contour creation

In this stage, least salient bins are fltered and most salient bins are kept for the

peak streaming. The goal of this module is to group salient bins into contours

which potentially could represent melodic or bass lines. This process is done using

heuristics based on auditory cues. The most salient peak is selected and added to a

new pitch contour. Then, it tracks forward in time for a salient peak located at the

following time frame which is within 80 cents from the previously found peak. The
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process stops when there are no more salient peaks.

Melody selection

The melody selection process is thought as a fltering contour problem. Pitch

contours are characterized in different features: pitch mean, pitch, deviation, pitch

total length, among others. Using those features, the non-melodic contours are

removed.

Figure 3.8: Block diagram of the Melodia's four main blocks

3.3.2 Other systems

There are two interesting approaches in bass estimation that we review in this

section. The frst one is by Goto [57] who uses a probabilistic frame work and the

Expectation Maximization algorithm [73] to track the bass line. The second one is

proposed by Klapuri, who uses multiple f0 estimation by harmonic amplitudes
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summation [72] and machine learning techniques to transcribe the bass into notes

[62].

3.3.2.1 Probabilistic bass line modeling

The PreFEst (Predominant F0 Estimation Method) system was created by Goto. 

He was the frst to demonstrate successful melody and bass line extraction from 

real world audio signals. Figure 3.9 shows its general architecture.

Figure 3.9: Block diagram of the PreFEst architecture [57].

The PreFEst system is divided in three main modules: the front-end, the core

and the back-end:

• Front-end. It is the one responsible for the spectral analysis, using limited
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frequency ranges depending on the type of task (melody or bass extraction). It

produces the frequency components for the algorithm analysis.

• Core. This module represents the typical multi-pitch algorithm, very

common in melody extraction strategies. It regards the observed frequency

components as a weighted mixture of all possible harmonic-structure tone models

and estimates the weights for the frequency components using the Expectation

Maximization (EM) algorithm. The maximum weight model is considered as the

most predominant harmonic series and f0 is inferred from it. For each frame, it

outputs a set of f0 candidates by taking the top weighted models.

• Back-end. Considering the different f0 candidates for each frame, the most

dominant and stable temporal trajectory is chosen and returned as the melody or

bass line. This process is carried out by a multiple-agent architecture which

performs the f0 tracking.

3.3.2.2 Bass transcription

This algorithm was proposed by Ryynänen and Klapuri [62] and was part of a

larger system which also included key and chord estimation. The strategy that we

review in this section can be used for both melody and bass transcription. Figure

3.10 shows the overall structure of the algorithm. Is uses multiple f0 estimation and

a complex machine learning structure to model the notes and the notes transition.

Klapuri already used multiple f0 estimation in [72] for a f0 estimation algorithm

which worked with candidate periods rather than with candidate f0s.
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Figure 3.10: Block diagram of the bass transcription strategy 
using a machine learning approach [62].

In this case, he and Ryynänen propose a bass transcription algorithm which is

much more complicated to achieve. Transcription implies onset detection and note

duration. Their method can be divided in three main sections:

• Feature extraction. The pitch salience salience of each f0 candidate is

calculated as a weighted sum of the amplitudes of its harmonic partials in a

spectrally whitened signal frame.

• Acoustic modeling of notes. The idea behind this model is that all possible

note pitches at all times are classifed either as target notes (from bass line), notes

from other instruments or as noise or silence. Therefore, three different acoustic

models are trained. The target and the other notes are modeled with three-state

left-to-right HMM (simulating the attack, sustain and release states). The training of

the model is done using the RWC database.

• Musicological model for note transitions. The model takes into account the

key of the musical segments to defne the note bigrams. They determine the
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probability of making a transition between notes or between notes and silence. For

the bass lines, the note bigram estimation is done from a collection of over 1300

midi fles including bass lines. They do not take into account the absolute pitch of

the notes but only the interval between them.

3.3.3 Bass estimation literature discussion

As we have seen in the literature review, there are two types of well defned tasks:

bass extraction and transcription. For our purposes, our fnal bass estimation

algorithm should be able to transcribe bass notes since we want to use this

information for segmentation purposes. Moreover, the Essentia's predominant

melody algorithm is adequate for our approach. We have complete access to the

code and it shows great performance in melody extraction. With some

modifcations, it should be a good starting point for our work.
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CHAPTER 4

Methodology

In this chapter, we describe the methodology we have followed during our

research. First of all, we introduce the external tools we have used to complement

our work. Then, we introduce our chord detection algorithm, which includes a

segmentation module based on bass information. We expose our strategies to

improve bass estimation and then we describe different segmentation approaches

in the chord estimation frame. Finally, we explain our evaluation methodology,

including materials, evaluation metrics and experiments.

4.1 External tools

Before starting to describe the work we have carried out in this thesis, we want

to mention the tools created by other researchers that we have used in our different

strategies. Without them, most of our work would not exist.
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4.1.1 Essentia

Essentia [69] is an open source library for audio analysis and audio-based music

information retrieval create by the MTG group from University Pompeu Fabra. We

have used two algorithms for the development of our research. The frst one is the

predominant melody algorithm which is based on the work Melodia by Salamon

[65]. The second one is the HPCP algorithm by Gómez [11] which extracts the

chroma features from audio.

4.1.2 Beat tracking

Extracting the beat positions of a song is a very important step in our

segmentation algorithm. We obtained a list of the beat positions of a song using the

Queen Mary, University of London, Bar and Beat tracker plugin [70]. We chose this

plugin among others because, besides beat timestamps, this beat tracker also

outputs the position of the beat inside the bar. Indeed, we are also interested in

knowing the locations of the downbeats.

4.1.3 Key estimation

One of the segmentation strategies uses key information to flter possible

harmonic relationships. We use the Queen Mary, University of London, Key

Detector plugin [71] to extract the key from the different sections of the songs and

therefore we can give a tonal context to our approach.
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4.1.4 Librosa

Librosa is a python package for music and audio analysis (more information can

be found at http://bmcfee.github.io/librosa/index.html) created by D. Liang, B.

McFee, M. MacVicar and C. Raffel. We use one algorithm from this library called

decomposition-hpss which performs a median harmonic percussive source

separation. The idea is to apply our strategies to a harmonic spectrum to avoid

noise when extracting the bass line.

4.2. Our chord estimation algorithm overview

The chord estimation algorithm that we are working on is somehow very similar

to the frst chord estimators (see section 3.2.3.1), where there was not a mid-level

transition model. They have in common the analysis phase, with the chroma

representation, and also the template matching stage. In our case, we also use a

simple model of binary templates and we only consider major and minor chords.

The main difference of our chord detector algorithm with respect to the most

primitive ones is the smoothing of the chromagram.

The smoothing is a technique introduced in automatic chord estimation when

researchers started to take into account other musical aspects, and more precisely

the beat locations. This technique was supported by the fact that in popular music,

a chord was very unlikely to change in between two beats [29]. Therefore, it was

justifed to smooth the chromagram between beats. Smoothing means basically

unifying several chroma frames using a function such as the mean or the median. It

makes the analysis more robust and less prone to noise and changes at a very local

level.

As it has been shown in the literature review, this is a very common practice in
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state-of-the-art algorithms for chord detection and almost all of them use the beat

level smoothing [14, 26, 29]. Our algorithm, however, proposes to push the limit of

the beat smoothing much further: we consider that the beat level as the minimum

size of the segment to be smoothed but larger sizes can also be considered. Using

music theory, pop music knowledge and mainly bass information we can consider

larger fragments with harmonic coherence.

Figure 4.1 shows a general schema of our chord estimation algorithm with our

main contribution highlighted in red.

Figure 4.1 Our automatic chord estimation algorithm
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Generally speaking, the algorithm uses the bass transcription and the beat

positions to decide where to segment the chromagram and perform the HPCP

smoothing. Unlike the state-of-the-art algorithms, which smooth the chromagram

using constant segments, our approach selects fragments from different sizes

depending on melodic and harmonic information extracted from the bass part.

In the next sections, we describe in a precise way the different approaches we

have taken for the bass transcription process and also how we have used the bass

and the beat information to segment the audio.

4.3. Bass line extraction and transcription

4.3.1 Introduction

In this section, we explain the approach we have followed to extract and

transcribe a bass line, which will be used to segment the audio for the chord

estimation task. Our main approach uses several steps of the Essentia's

predominant melody extractor algorithm which is based on the Melodia plugin by

Salamon [65]. Using this algorithm for the bass line extraction problem is based on

the assumption that the bass line will tend to have a continuous contour, similar to

a main melodic line. We have studied the effects of the analysis parameters, the

effects of the parameter selection, we have modifed its salience function and fnally

we have added fltering techniques to improve our algorithm performance.

4.3.2 Analysis parameters

In this sub-section, we describe the effect of window size and hop size in the

Fourier analysis.
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4.3.2.1 Window size

The window size is a key parameter in the Fourier analysis: it has a direct impact

on which range of frequencies we are able to detect There is a trade-off between

the time and the frequency resolution of the analysis, depending on the window

size [54]. A small window allows us to detect fast changes in the spectrum, which

means that we have a good temporal resolution but it implies that we cannot

separate close partials or harmonics (i.e. one or more semitones apart) in the low

octaves. On the contrary, a large window allows a good low frequency resolution

but fast spectrum changes remain undetected. In the fgure 4.2 we can see the

difference between two different analysis:

• 4.2a Shows a spectrogram obtained with a window size of 8142 samples. We

can observe several thick lines which represent the bass line. They represent the

energies in different frequencies. We can also see several vertical lines which

represent percussive sounds.

• 4.2b Shows the same spectrogram but with a window size of 16384 samples.

We can clearly observe that the lines representing the bass are thinner, which

means that the frequency analysis is much more accurate. However, the vertical

lines which were clear before are now blurred.

In our approach, we have to talk about another trade-off. Using a smaller

window can detect subtleties in the bass line but also there could also be single

frames where it is not the most salient line, resulting in noise. This is especially the

case with percussive sounds which constantly interfere in the bass estimation.

Since bass lines tend to be quite stable we opted to favor larger windows.

Following experiments using different window sizes we empirically set the

window size to 16384 samples (372 ms) for a 44100 sampling rate.
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Window Size: 8142. Overlap: 50%

a

Window Size: 16384. Overlap: 50%

b

Window Size: 16384. Overlap: 75%

c

Figure 4.2: Effect of window size and hop size in spectrogram computation. X
and y axis represent time and frequency respectively.
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4.3.2.2 Hop size

The hop size parameter can be used to compensate the frequency-time trade-off

explained in the previous section. If we use a large window size, a minimum

requirement is that we update our analysis frequently to try to detect fast changes

in the spectrogram. In fgure 4.2 we can also see the effect of the hop size when

extracting the frequency content of a signal. 4.2b and 4.2c analysis used the same

window size (16384 samples). The difference is that b used an overlap of 50% and c

an overlap of 75%. A larger overlap means a smaller hop size. We can observe that

the spectrogram in 4.2b is much more blurred than in the spectrogram 4,2c. This

means that there is higher time resolution when the hop size is small. Since we are

using a large window for our analysis, we need to use a small hop size to at least try

to obtain a better time resolution.

Following experiments using different hop sizes we empirically set it to 512

samples (96% overlap). Our other best hop size candidate was 256 samples but the

benefts of using it were insignifcant and the computational cost was much higher.
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4.3.3 Essentia's melody extractor step selection

The original algorithm is meant to detect the predominant melody of a

polyphonic audio. However, it can be used and confgured to extract melodic lines

in general, not only the most prominent. It is necessary to use only few steps of the

original algorithm since some of them were designed to enhance melodic lines in

mid-range frequencies.

The functions that we have used for our purposes are the following:

• Spectral Peaks

• Pitch Salience Function

• Pitch Salience Function Peaks

• Pitch Contours

The two main stages which are missing are the equal loudness flter to enhance

the frequencies to which humans are more sensitive (which are usually perceived

with more diffculty) and the fnal step of the algorithm, which is mainly focused on

predominant melody detection with voice detection emphasis.

4.3.4 Essentia's melody extractor parameter selection

The Essentia's algorithm that we are mainly using for bass estimation has several

functions and many parameters to adjust. Sometimes, it is not obvious what the

exact impact of one small parameter change is and at other times the selection is

trivial.

In general, the approach we have followed to select the parameters has two steps.

The frst one is evaluating the characteristics of what we have to analyze. For

instance, in this case, the bass is located in the low frequency range so frequency
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range considerations have to be taken into account. These frst steps help us to

approximate the values of the parameters. The second step has more to do with fne

tuning and heuristics. The following table shows the main decision we had to take

when adjusting the algorithm and with which we obtained the best results for bass

extraction:

FUNCTION PARAMETERS

Spectral Peaks minFrequency: 20.0

maxFrequency: 1100.0

Pitch Salience Function referenceFrequency: 27.5

harmonicWeight: 0.8

numberHarmonics: 10

Pitch Salience Function Peaks referenceFrequency: 27.5

minFrequency: 27.5

maxFrequency: 110.0

Pitch Contours minDuration = 200.0

timeContinuity = 100.0

pitchContinuity = 27.5

Table 4.1: Optimized parameters for bass estimation

The decisions we made are related mainly with the range of the analyzed

frequencies and the contour creation. The frequency range, number of harmonics

and weighting schemes have a big impact in pitch class errors whilst pitch contours

tuning has an important consequence when dealing with percussive sounds.
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4.3.5 Essentia's melody extraction algorithm modifcations

In order to try different hypothesis about the bass extraction task using the

Essentia's algorithm, we had to modify two steps.

The frst one belongs to the preprocessing stage where normally an equal

loudness flter is applied to the signal. For obvious reasons, we modifed this flter

and replaced it with a low pass flter, which was recommended in [12, 66].

The second step that we modifed is the salience function. As it's explained in

[65], “the salience computation […] is based on harmonic summation, […] where

the salience of a given frequency is computed as the sum of the weighted energies

found at integer multiples. […] Only spectral peaks are used in the summation”.

Moreover, in the salience function “each peak contributes not just to a single bin of

the salience function but also to the bins around it (with cos 2 weighting)”. The

amount of contribution to the closest bins is normally fxed in the algorithm but we

found that it was interesting to modify it to study its impact on the bass estimation.

Specially because our pitch class confusion matrix in our results analysis showed

that many mistakes were made with adjacent pitch class notes. We have added a

new parameter to the function to control the range of contribution to the closest

bins of every peak.

4.3.6 Filtering

The fltering stage is one of the most important parts of our bass estimation

algorithm. It is performed at three different levels: in the frequency bin

representation, in the contour representation and at the fnal estimation level. The

following sections describe the work we have done to improve the performance of

the algorithm by fltering non-relevant information.
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4.3.6.1 Contour selection

Once the contours are created, the challenge remains in identifying which of the

contours belong to the bass line. This can be an easy task when the low frequency

range of the spectrum is clean but when a song has a lot of percussion or another

instrument is playing in the same range(i.e. a piano), it can become very hard.

Moreover, Essentia's predominant melody detection is not a perfect algorithm and

contours can contain information other than bass lines.

Contour characterization

Characterize contours can help to decide when the contour selection is not

obvious. In fgure 4.3, we can observe two different scenarios when a contour has to

be selected. 4.3a represents a very easy situation but the contour selection in 4.3b is

not obvious.

Contours can be characterized by the following parameters [65]:

• Pitch mean: the mean pitch height of the contours

• Pitch deviation: the standard deviation of the contour pitch

• Contour mean salience: the mean salience of all peaks comprising the

contour

• Contour total salience: the sum of the salience of all peaks

• Contour salience deviation: the standard deviation of the salience of all

peaks comprising the contour

• Length: the length in time of the contour

Using these characteristics, we can establish ways or decision rules to choose a

contour before another one.
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Final contour selection

There are several parameters of a contour that can be useful for our approach.

Length is the frst one and we use it to discard contours which are too short. A

short contour probably represents noise or a percussive sound. The other two

features which are interesting are contour mean salience and contour total salience.

We performed preliminary experiments about contour selection when several

contours overlapped in time as only one of them should be capturing the bass line.

We tried two different approaches: frst, selecting a fnal contour using its mean

salience and then using its total salience. We realized that the latter approach

performed a better bass extraction.

This could be explained by the fact that a percussive sound can be included in a

short contour and this type of sound is characterized by being short and by having

high energy. A contour like that would obtain a high mean salience. In the other

hand, if we use the total salience, we are favoring long contours over the short ones.
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RM-P001.wav from Popular RWC

a

RM-P001.wav from Popular RWC

b

Figure 4.3: Contours extracted with Essentia's predominant melody
algorithm. X and y axis represent time and bins respectively

Bass estimation in song a is simpler than in song b
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4.3.6.2 Energy-wise fltering

As we have mentioned already, one of the biggest problems in bass estimation is

the percussive sounds which share frequency range with the bass, like a kick. We

also want to be sure that our algorithm does not output any value when there is

silence or only percussive instruments are playing.

To this end, we have developed an algorithm that discards frames where there is

silence in the low frequencies or only percussive sounds. It is based on energy

analysis and it assumes two things:

• If there's no bass present, the energy in the low part of the spectrum should

be very low or non-existent.

• If only percussive sounds are present, the energy presence should be short

in duration.

In fgure 4.4 we can see an example of low frequency energy analysis where

percussive sounds can be easily spotted by their short duration. Blue circles

represent percussion without bass and green circles represent bass presence.

RM-P011.wav from Popular RWC

Figure 4.4: Energy in the 27-180Hz band. X axis represents time
and y axis represents energy. Blue circles show percussive

sounds and green circles represent bass presence
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The steps followed by this fltering algorithm, performed at the fnal stage are

the following:

• Spectrum computation.

• Energy calculation in the 27-180Hz band (bass presence).

• Frames with energy less than an energy threshold are discarded.

• Consecutive frames (having energy) shorter than a time threshold are 

discarded.

We chose the values of the threshold empirically:

• Energy threshold: 5% of the maximum energy during the song.

• Time threshold: 300 ms.

4.3.6.3 Short notes fltering

The fnal fltering stage consists of getting rid of “notes” that would be too short.

The development of this flter was motivated by two facts: the fnal estimation

vector representing the bass line needed to be smoothed and the ultimate goal of

the bass transcription which is segmenting the audio for chord estimation.

In the frst case, the fnal estimation presented sometimes changes of notes that

were too abrupt. This happened because of the system we used to select the pitch

class notes using the contours total salience. To be able to smooth these cases, we

have used two different approaches: a median flter and also a flter developed by

us. We describe it in the next paragraphs.

In the second case, we assume that very short notes in the bass line are passing

notes which means that they are not important when defning the harmony: they

come from longer notes which are the ones important to our approach. We are not
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interested in a perfect bass transcription (frstly because it's a very diffcult task) but

at the minimum we want to obtain a good approximation of the bass line notes. We

have to choose between two options:

• Transcribing all the notes (also the short ones) but having lots of false

invented notes (or “false positives”).

• Not transcribing all the notes but having a more stable transcription (missing

notes but not invented notes).

We have opted for the second option since it is more adequate for our

segmentation purposes. It represents the maximization of the precision of the

algorithm, even if the recall diminishes.

The flter we have implemented is very simple: it checks the duration of the

notes and if one note duration is less than a threshold, it changes its name to the

name of the previous long note, as shown in the next table:

Frame Original Filtered

12003 A A

12004 A A

12005 A A

12006 C A

12007 C A

12008 G G

12009 G G

12010 G G

Table 4.2: Example of fltering short notes frame-wise
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Filtering with beat information

The previous version of the fltering uses a fxed time threshold for the

minimum duration of a bass note. Since in pop-rock music it is very unlikely that a

harmonically important bass note is shorter than a beat, we use the beat positions

to modify dynamically the threshold depending on the inter-beat interval (IBI). This

means that we can adapt the fltering of the short notes for every song.

We have used binary values for the dynamic threshold since most popular music

is written using a binary measure (2/4 or 4/4):

IBI
n

where n∈{1,2,4} 

4.3.6.4 Salient bins fltering using beat positions

Working with contours is a very interesting task but it has limitations: it is quite

high level since the Essentia's melody algorithm has already taken many decisions

when outputting the potential bass lines (contours). Those are constructed with

salient bins (from the salience function) but some of them can correspond to non-

bass line elements (i.e. percussion, higher harmonic, noise, etc.).

In our research, we have also tried to work at a lower level by fltering salient

bins. More specifcally, we have focussed on bins which could belong to percussion,

namely kick sounds. The assumption which supports this fltering algorithm is that

salient bins belonging to the bass line should be more stable between beats than

the percussive ones. Indeed, we can use the salience of the bins between beat

positions and the standard deviation to measure the stability of each bin during the

inter-beat interval. As we can see in the fgure 4.5, we can think that salient bins in

the green zones, which belong to the bass line, will have a low standard deviation
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value if we consider them between beat positions. On the contrary, the SD of other

bins belonging to other unstable zones (red) should be much higher.

RM-P060.wav from Popular RWC

Figure 4.5: Spectrogram. Blue lines represent beat position, green represents
bass line bins, red represents noisy or percussive bins.

The fltering algorithm follows these steps:

• Beat positions extraction.

• Standard deviation calculation for every frequency bin using the salience

values of the frames between beat positions.

• Bins which have a standard deviation value higher than a threshold are

discarded since bass notes should have a low SD.

We have also tried to flter different amounts of frames (for every bin). First,  we

fltered all the frames between the beats. We also tried to flter only the frst half of

the interval between beats where supposedly the percussive sound should be

present.
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4.4 Audio chord segmentation

In this section, we explain the different approaches we have followed to segment

the audio for automatic chord estimation. We describe how we use the bass

information and the beat positions, sometimes combined with key information, to

fnd the most adequate segments to smooth the chromagram.

4.4.1 Segmentation based on bass information

In this sub-section, we describe the strategies we have used to segment the audio

fles only using the information of the bass, namely, the onsets of the bass notes. We

start with the most simple and we fnish with the most complex, which also uses

key information.

4.4.1.1 Note to note segmentation

This approach is the most direct way of segmenting an audio fle based on the

bass line. The simplest way to separate the audio into fragments is to consider the

regions between bass onsets. Obviously, it has advantages and drawbacks.

The main advantage of this strategy is that since it's very unlikely that a chord

changes without a new bass note, we are almost certain that we are segmenting at

the right places. Larger segments than beat duration can often be selected, as

shown in fgure 4.6b. It would be even possible to create larger segments but at

least with this approach the fragments will hopefully correspond to only one

harmony type. The main drawback of the strategy is that in some cases bass notes

can change more rapidly than the beat (as shown in fgure 4.6a) and our objective is

to do the opposite: try to select larger fragments than the interval between beats.
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RM-P053.wav from Popular RWC

a

RM-P001.wav from Popular RWC

b

Figure 4.6: Spectrograms. Blue lines correspond to beat positions
and red represents the bass line

4.4.1.2 Segmentation using harmonic relationships

This strategy is more elaborated than the previous one because it takes into

account music theory knowledge and pop-rock music knowledge. To be able to

design it, we have taken the assumption that a chord, in this type of music, is not

likely to change every beat but every half bar or even every bar. We also know that

normally it is very probable that in every bar more than one bass note is played.

With this approach, what we seek to do is locating larger segments by grouping
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more than one bass note. Those notes need to have a harmonic relationship: they

have to be part of the same major or minor triad. This strategy doesn't take into

account the fnal duration of the segment: very large segments could be selected if

the bass notes contained in the chunk belong to the same chord.

We are going to describe how the algorithm works and show an example to

clarify the strategy. The goal of the algorithm is to merge bass notes into chords.

First, a matrix containing all the templates of the major and minor chords is

created such as {0,4,7} (corresponding to a C major chord), {0,3,7} (corresponding to

a C minor chord), {1,5,8} (to a Db major chord), etc. When the algorithm considers

a bass note, it is added to an empty array. Then, the next note is considered and

added to the same array. If the array is a subset of one of the templates, the

algorithm keeps adding more notes to it. It stops when the array is not a full subset

of the template.

Bass notes merging algorithm

1.     create templates with all major and minor chords

2.     for n = 1 to number of bass notes

3.     add the note to an array

4.     compare the array with all the templates

5.     if the array is not a subset of one of the templates

6.     empty the array

7.     store the position of the current note as a separator

8.     add the current note to the array

9.    end

10.     end
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Example

Let's consider the following bass notes with midi notation (0(C), 1(Db), 2(D),

7(G), etc.):

0(C)   1(Db)   5(F)   8(Ab)   5(F)   9(A)   3(Eb)

• First the algorithm considers 0(C). The array a = [0], which is a subset of the

chords C major, C minor, A minor, F major, etc.

• The algorithm adds to the array the value 1. Now a = [0,1] which is not a

subset of any template. A separator is created at this note.

• The array value at this point is a = [1]. Then the 5 is added (a = [1,5]). Now,

the array is a subset of two templates: {1,5,8} and {9,1,5}. When the 8 (next note) is

added, the array is only a subset of the template {1,5,8} which corresponds to the

chord Db Major.

• From now on, if there is a different pitch class, a separator will be created.

The resulting four segments of this example would be:

0   /   1-5-8-5   /   9   /   3

4.4.1.3 Harmonic relationship segmentation using key information

This strategy is basically the same as the one described in the previous section

but in this case we are using key information to improve the algorithm

performance. Key is used as a cue to flter the chord templates. Using the key, we

can consider only the most common chords of it, reducing the number of out-of-

the-harmony groupings. For instance, for the C major key, the most common

chords are the following: C, Dmin, Emin, F, G, Amin and Bdim.

The programming of this strategy is very simple. We use the same algorithm for
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the previous section but with a few changes:

• Extract the key information of the song (with sonic annotator).

• Select the most common chords for a major and minor key and store them

into two templates.

• Depending on the key of the fragment considered, before comparing the

array with the templates, we do a circular shifting of the matrix containing the

chord templates and select the correct indexes for the most common chords.

The main beneft of this strategy is to prevent wrong bass notes groupings

containing harmonic relationships far away from the song.

4.4.2 Segmentation based on bass and beat information

In this sub-section, we describe the strategies we have used to segment the audio

fles by combining the information of the bass and the beat positions. Most of the

algorithms are similar to the previous section but include more conditions and

constraints derived from the inter-beat interval (IBI).

4.4.2.1 Segment's length limitation by number of beats

This strategy is very similar to the one described in 4.3.1.2 but taking advantage

of the beat information. The main difference is the inclusion of an additional

condition in the segmentation process. We use the beats to establish a temporal

condition: basically, segments cannot be longer than a certain time threshold. This

idea is based on the assumption that chords are more likely to change at the

beginning of the bar in pop-rock music [29]. Translated to more scientifc terms,

this means that the segments should have a maximum length equivalent to four
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beats (in a 4/4 measure, which is the most common in pop music).

Bass notes merging algorithm with temporal threshold

1.     create templates with all major and minor chords

2.     T = threshold    // set with the inter-beat time (IBI)

3.     for n = 1 to number of bass notes

4.     add the note to the notes array (a)

5.     add the onset time to the times array (t)

6.     compare the array with all the templates

7.     compute the difference d between the last and frst value of t

8.     if the array is not a subset of one of the templates or d > T

9.     empty the array

10.    store the position of the current note as a separator

11.    add the current note to the array

12.   end

13.    end

The algorithm acts almost as the one described in the previous section but if the

difference between the onset time of the last note added to the array and the onset

time of the frst note of it is longer than a temporal threshold, a separator is set

automatically, even if the next bass note was part of the same previous chord. The

thresholds we have considered are:

IBI×n where n∈{1,2,4,8} 

This strategy can be combined both with the merging algorithm taking into

account key information or the version which does not.
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4.4.2.2 Segmentation using downbeat information

Conceptually, this algorithm is based on the same assumption as the previous

one and seeks exactly the same objective. It uses downbeats (even more informative

information than only beats) to try to merge bass notes in a more logical way. The

main difference is that in this approach, at the beginning of each bar (determined

by the downbeat) there is always a separator: this means that the merging process is

only allowed inside a bar but never between bars.

The algorithm performs the following steps:

• Locates the downbeats among the beats (using sonic annotator).

• Locates the bass notes corresponding to the downbeats.

• Includes a new condition to the already-explained bass-note-merging

algorithm which automatically creates a separator if the bass note

corresponds to a downbeat.

This approach should refect more accurately the assumption that a chord is

more likely to change from bar to bar than in other cases in pop-rock music.

4.4.2.3 Bass note alignment with the beat

In the bass estimation process, due to the different fltering stages, in some cases

bass notes can be displaced forwards or backwards in time. Using the beat position

information, we are able to align the notes beat-wise and improve the

segmentation.

The alignment is done in a very naïve way: if a bass note onset time is close to a

beat time, the onset time of the beat is adopted by the bass note. The decision of

how close a note onset should be is set with a fxed threshold of 100ms.
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4.5 Evaluation methodology

In this sub-chapter, we discuss the evaluation methodology followed in our

thesis. More precisely, we explain the steps followed on the one hand to evaluate

the bass line extraction and on the other hand, to evaluate the audio segmentation

tool for chord estimation. We start by describing the music collections used in our

research. Then we discuss the evaluation metrics and their suitability for the tasks

and fnally we explain how the preparation of the reference annotations was done.

The results of the evaluation are presented in the next chapter.

4.5.1 Introduction

The evaluation is an essential part of research. It is the natural way to confrm or

discard an hypothesis and ensures that a work has been done and tested rigorously.

However, different methodologies can be used to evaluate the same problem and

this can represent a problem for the research community. To be able to compare

results between researchers, it is necessary to build common criteria for the whole

community. In the automatic chord estimation feld, standards have been somehow

defned such as chord notation [58] or Public Music Collections which are used by

the researches (Isophonics or Billboard). Many of those common elements are

gathered in the MIREX (Music Information Retrieval Evaluation eXchange): a

competition which takes place annually and evaluates different algorithms in tasks

related to music.

4.5.2 Music collections

Music collections are generally composed of a set of songs or musical pieces and
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a number of reference fles which describe their musical parameters. The

parameters are normally annotated and coded in a certain format which has been

decided and approved by the research community. In music research, we can fnd

key, chord, beat, onset or structure annotations among others. Music collections are

a very important part of research since they allow researchers to test their work in

an objective way by using the same material. Therefore, reviewing, maintaining and

expanding those collections is an important and necessary task. In this section, we

review the principal datasets used for automatic chord estimation and we present

the ones we have used for our evaluation methodology.

4.5.2.1 Chord estimation datasets

Ground truth chord data is essential for testing the accuracy of chord detection

algorithms. Available datasets have grown in the past years and are becoming more

and more diverse. This diversity is very important, especially when machine-

learning based algorithms are becoming more and more popular, since there is the

potential problem of over-ftting them. In this sub-section we describe the available

dataset for the chord estimation problem.

Chord symbol-based datasets

The frst dataset available for researchers was published by Harte and

collaborators in 2005. It was composed by 180 pop songs by the Beatles, and later

expanded to include songs by Queen, Zweieck, Carol King and Michael Jackson.

They are part of The Center of Digital Music (CDM) at the University of London

and it's know as the Isophonics dataset. There is also a 195 song subset of the

‘USpop’ dataset which was hand–annotated by Cho [5] and it's also available and

open. Another important dataset belongs to the McGill University Billboard Project
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which has compiled a corpus of songs selected from the Billboard charts spanning

1958 through 1991. Massimiliano Zanoni has also published a corpus of Robbie

Williams songs with harmonic and beat information. At present, MIREX

competition uses the Isophonics and the Billboard datasets for testing the chord

detection algorithms. We will also use the Isophonics collection to evaluate our

work in chord detection.

These dataset projects provide manually- encoded annotations of songs,

although the data in these corpora is limited primarily to harmonic and timing

information.

Functional harmony-based datasets

More recently, Temperley et al. published a corpus of harmonic analysis and

melodic transcriptions of 200 rock songs [42]. The most interesting aspect of this

corpus, besides the fact that there is a melodic transcription of the songs for the

frst time, is that the harmonic information is coded not in absolute chords (i.e.

Gmajor, Aminor7) but in an actual functional analysis of the songs. This means that

the chords are labeled as degrees, instead of chord names. Therefore, this corpus

could be used for instance to train algorithms based on functional harmony instead

of pure chord labels (without taking into account the key context).

4.5.2.2 RWC

The Real World Computing Music Collection (RWC) Music Database was

gathered by Goto et al. [56] to provide evaluation material for music researchers.

The frst version of the collection contained 215 songs in four databases: Popular

Music (100 songs), Royalty-Free Music (15 songs), Classical Music (50 songs) and
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Jazz Music(50 songs). In 2004, the collection was extended with a Music Genre

Database (100 songs) and a Musical Instrument Sound Database (50 instruments)

[55]. For our research, we have used the Popular Music database for the bass

extraction evaluation because it's the only database which contains transcriptions

for the bass line.

For the whole set of songs, the authors coded the transcription of the

instruments present in each song in a Standard MIDI File (SMF). Most of the

music was transcribed by ear and actually the frst version of the SMD was not

synchronized with the audio. A second synchronized version was released

afterwards to facilitate the evaluation process.

Finally, what makes the Popular Music database interesting is that J.P. Bello et al.

annotated in 2011 the chord information for the whole set of songs [53].

4.5.2.3 Songs and datasets

In our research, we have used two of the described collections. The following

table shows the datasets and to which purposes they have been utilized.

Dataset Number of songs Task

RWC Popular 66 Bass extraction

RWC Popular 84 Bass transcription

Isophonics Beatles 136 Chord estimation

Table 4.3: Song and datasets used for evaluation

The complete list of songs used for every task can be found in the appendix.
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4.5.3 Evaluation metrics

In this section, we describe the metrics used to evaluate the steps that we have

followed in our work related to the automatic chord estimation problem. We have

to take into consideration two different evaluations scenarios:

• Bass line extraction: since the information of the bass line is critical to our

approach, we need to evaluate the performance of our algorithm in this respect.

• Chord estimation: in order to validate our hypothesis, we have to evaluate

the effciency of the chord transcription when using our audio segmentation tool.

4.5.3.1 Bass line evaluation

We now present the evaluation metrics used for the bass extraction problem.

Our work is partially based on the master thesis by Salamon and this fact makes us

dependent on its evaluation process for the bass line extraction. Since we have to

compare our results to the ones obtained in his thesis, we need to use at least the

same evaluation metrics.

Frame-wise metrics

The evaluation metrics used in Salamon's [63] thesis are based on the MIREX

2004 and 2005 metrics for melody extraction. Two main metrics are described in his

work: the frst computes the raw transcription concordance and the second

computes the chroma transcription concordance:

• Raw Pitch Accuracy: the proportion of voiced frames in the estimated

transcription which are correctly labeled, out of the total number of voiced frames

in the reference transcription
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• Raw Chroma Accuracy: the same as raw pitch accuracy but mapping both

reference and estimated frequencies onto one single octave.

Since his approach only outputs an octave agnostic chroma representation, he

only uses the second metric. His evaluation is also adequate to our approach

because we are just interested in pitch class changes in the bass line. We just want

to know when the root of a chord is changing for the chord estimation task.

Therefore, the chroma accuracy is a very good metric for our purposes.

Precision, Recall, F-measure

The previous section describes two metrics which are useful to compare the

work that has been done previously but for our actual goals are insuffcient. The

Chroma Accuracy described previously is an adequate metric for bass extraction

but not for bass transcription. Bass transcription involves at least the segmentation

of the bass line into notes, which means that onsets have to be detected, and

quantization of the pitch into semitones has to be done. In our case, as it has been

explained already, pitch is represented by pitch class notes. To be able to segment

the audio using bass information, the onsets of the bass notes and therefore the

bass transcription is needed rather than the bass extraction.

In order to be able to evaluate the note transcription, we have used different

metrics. Following [62], we have decided to use precision, recall and F-measure to

be able to do a comparative evaluation.

• Precision is defned by the number of correctly transcribed notes divided by 

the number of transcribed notes.

• Recall is defned by the number of correctly transcribed notes divided by the

number of reference notes.
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• The F-measure F is defned by the following formula:

F= 2∗Precision∗Recall
Precision+Recall

Moreover, we consider a reference note correctly transcribed by a note in the 

transcription “if their midi note number are equal, the absolute difference between 

their onset times is less than 150 ms, and the transcribed note is not already 

associated with another reference note”.

4.5.3.2 Chord estimation evaluation

In this section we describe the most common evaluation metrics used in

automatic chord estimation. We also expose the evaluation metrics and

methodology that we will use in our work to compare the performance of our

segmentation tool to other approaches.

Chord symbol recall

The most common performance metric that is used for chord evaluation is what

we call chord symbol recall, also known sometimes as the average overlap score or

relative correct overlap [21]. This is a measure of what proportion of the time

chords in the annotated ground truth chord sequence have been identifed

correctly in the machine estimated sequence.

The chord recall, which will be described in the next sections, can be calculated

in two ways. One is to sample the chord sequences into uniform length chord

symbol frames and calculate the frame-based chord symbol recall. The other ways

is to add up the durations of the continuous sections of estimated segments that

correctly match the ground truth and calculate the segment-based chord symbol
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recall [16]. In our research, the evaluation approach we have followed is the frame-

based chord symbol recall.

Frame-based chord symbol recall

The frame-based chord recognition recall can be defned as:

NC represents the number of correct frames estimated and NT represents the

total number of frames. These measure have been very popular in automatic chord

estimation algorithms because most of them have been frame-based and a usual

thing to do is to sample the annotated ground truth data at the same frame rate as

the estimator to perform the recall evaluation.

Figure 4.7: Frame based recall example, taken form [16]

Chord vocabulary and mapping

The chord vocabulary of the Isophonics and RWC databases that we are using to

evaluate our work is complex. The output of our algorithm is reduced to major and

minor chords but the reference fles of those collections can include more complex

chords such as seventh chords, augmented or diminished chords or even extended
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chords and also information about the state of the chord (if it's in the root position

or inverted).

In order for the evaluation to be more fair, we have performed a vocabulary

reduction and also a chord mapping which is also done in the MIREX competition:

• Mapping. “A mapping exists if both the root notes and bass notes match and

the structure of the output label is the largest possible subset of the input label

given the vocabulary” (http://www.music-ir.org/mirex/wiki/MIREX_HOME). This

means that a reference G major chord with a seventh would match a simple G

major chord estimated by an algorithm which is able to detect only major and

minor chords.

• Vocabulary reduction. “If a chord cannot be represented by a certain class,

i.e. mapping an augmented chord or a sustained 4 chord to a major or minor, the

chord is excluded from the evaluation”.

4.5.4 Data preparation

In this section, we describe how the music collections and the metadata fles

were prepared for the evaluation process. The Isophonics dataset was easily set up

for the chord detection task since it's a collection used in MIREX and the reference

fles are already designed to facilitate the evaluation as much as possible.

On the contrary, the preparation of the RWC database took certain amount of

effort before being able to use it. Several problems arise from the fact that the

format of the annotations is coded into midi fles. The frst version of the metadata

wasn't synchronized with the audio but we had access to the new synchronized

version. Even though, we faced problems and in this section we will describe the

steps we followed to solve them.
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It is very important to note that not all the Popular Music database from the

RWC collection was used for the evaluation of the bass line extraction. In order to

be able to compare our work with the previous work done by Salamon in his

master thesis, we selected the same subset of songs that he used for his evaluation.

More information about the songs can be found in his work [63].

4.5.4.1 Alignment

The annotations of the RWC popular database called the AIST Annotation were

done by Goto and collaborators manually and by ear. They represent the beat

structure, the melody line and the chorus sections. Moreover, the transcription of

the instruments present in every song are included in standard midi fles (SMD).

There are two versions of those fles: the frst one wasn't synchronized with the

audio and the second one used the annotated beat positions of the audio fles to

achieve the synchronization. Even though, we still had to take several aspects into

consideration to prepare the ground truth information.

Initial offset

When extracting the note information from the reference fles, we realized that

the onsets of the bass weren't aligned with the onsets of the audio fle. We manually

checked this fact by using Sonic Visualizer: we computed the spectrogram with a

window size of 16384 and a 75% of overlap to be able to distinguish extremely low

frequencies with a reasonable time defnition. We repeated this process for the

whole set of the popular database (100 songs) and we realized that there was

variable initial offset for all of them. We have manually annotated the initial offset

for every song of the popular sub-dataset of the RWC music collection.
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Song ending

During the process of the song alignment, we spotted two different cases in the

database. On one hand, songs which had a clear and actual end (no fade out and a

proper cadence) had a ground truth fle with a precise annotation of the last note of

the bass. On the other hand, songs with an unclear ending, normally due to a fade-

out effect, had an annotation which was longer in time that the real audio. This

means that, even if the annotation was correct, there was a point when the

reference fle was reporting non-existent notes because the audio was already

fnished. For this second group of songs, we had to decide where to stop the

evaluation mainly for two reasons:

• The fade-out effect makes the analysis very diffcult since the energy of the

spectrum is close to zero at one point.

• To crop the reference to a point where its information is still correct.

We decided to stop the analysis and the ground truth fles at the moment the

fade-out started.

Synchronization checking

Even if the authors of the AIST Annotation claimed that the new midi fles were

synchronized, we thought that it was important to check the alignment of all the

reference fles with the audio fles. After defning the initial offset, we chose for

each song several points of interest (i.e. the start of a note after a long silence, the

last note of the song, etc.) to check if the synchronization was correct. We found out

that it was well done for the songs we used for the evaluation.
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4.5.4.2 Format conversion

In this section we describe the steps we followed to convert the SMF reference

fles of the RWC Music Collection into a more suitable format for our evaluation

process. As we described in the last section, every midi fle contains the

transcription of the instruments of every song, each of them stored in a different

track. Therefore, for every piece of music, we have to extract the bass line and

convert it into the formats that we will use to perform the evaluation. To this end,

several steps have to be followed:

• Track identifcation

• Note on/off format matrix conversion

• Frame-wise format conversion

• Bass notes fnal format and note fltering

Track identifcation

As we have mentioned before, the popular database of the RWC Music

Collection includes 100 songs. Even if they have been labeled as popular, they

belong to different genres and their arrangements are very diverse. The number

and the type of instruments used in every piece of music differ from one song to

another. Moreover, the annotations are not consistent when assigning a track

number to an instrument. For instance, the bass is normally placed in the 4 th track

but this is not always true. In other cases, there is no bass in the song. In order to

locate the bass tracks, for each song of the database, the reference fle was opened

in Logic and the relevant track was stored in a text fle.
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Synchronization text fle

In order to facilitate the bass ground truth extraction process, we stored all the

relevant information related to synchronization in a text fle. The fle contains the

following four column format:

1st Column 2nd Column 3rd Column 4th Column

Song number Bass track number Initial offset Song ending time

Table 4.4: Structure of synchronization fle

This information is used afterwards to generate the ground truth for the

evaluation process.

Note format matrix conversion

The standard midi fle with its timestamp messages is a complicated format to be

processed and understood by a person. It is necessary to adapt it to an easier

representation, more suitable and manageable. We have used for this purpose the

KARAOKE MIDI JAVA library. Written in Java and usable in Matlab, this library

has very useful functions to operate with midi fles. Using the readmidi_java

function with a SMF returns an eight column matrix with the following format:
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1st

Column
2nd

Column
3rd

Column
4th

Column
5th

Column
6th

Column
7th

Column
8th

Column

Note
start in
beats

Note
duration
in beats

Channel Midi
pitch

Velocity
Note

start in
seconds

Note
duration

in
seconds

Track

Table 4.5: Midi information matrix

Bass notes fnal format and note fltering

The format described in the previous section is very informative but it has too

much information for our purposes. Our note format needs to have only three

things: the pitch class label, the onset of the note and the end of the note in

seconds. Therefore, the rest of the information is discarded and the midi note is

transformed to the pitch class representation by applying the modulo 12 operator.

As a result, the pitch classes range is 0 to 11, the C note being represented by a 0

and B note by the 11. The fnal format contains the following three columns:

1st Column 2nd Column 3rd Column

Pitch class label Bass note onset Bass note end

Table 4.6: Final ground truth format for bass estimation

There was one fnal consideration that we had to make to properly prepare

properly the ground truth fle when evaluating the algorithm using the contours

from Essentia's predominant melody algorithm. As we already explained, this

algorithm, when creating the contours, uses a parameter called timeContinuity
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which represents the time continuity cue: the maximum allowed gap duration for a

pitch contour (in ms). This means that the algorithm can potentially include in the

same contour two notes which are separated by a silence inferior to that parameter.

Therefore, the ground truth should be corrected to connect the notes where the

gap is inferior to the timeContinuity parameter as shown in the next table (for the

default value 100ms):

Filtering Pitch class label Bass note onset Bass note end

BEFORE
0
2
2
7

13.100
13.250
13.575
14.000

13.200
13.500
13.700
15.500

AFTER
0
2
7

13.100
13.250
14.000

13.250
13.700
15.500

Table 4.7: Ground truth note correction example

The frst note end time is extended to the beginning of the second note and the

third note, being the same as the second one and close to it (less than 100ms), is

removed. This format is used to evaluate the bass transcription task and also to

generate the ground truth for the frame-wise evaluation.

Frame-wise format conversion

In the previous section, we described a reference format which is ideal to

evaluate the amount of bass notes detected and, in particular, the onsets. The

frame-wise format is a vector and every position corresponds to the pitch class of

the bass at every frame. This means that the length of the vector is hop size
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dependent: the smaller it is, the longer is the vector. The absence of bass is coded

with a value equal to -1. We are using this bass representation since we want to

compare our approach with the one done in [63] by Salamon. This format is not

useful to evaluate the transcription of a bass line (bass notes with precise onsets)

but can be helpful to detect (broadly speaking) whether the bass estimation

algorithm is improving or going in the wrong way.

4.6 Experiments

In the evaluation process, we have tested the bass estimation algorithm

performance and also the chord detector algorithm performance. We have also

planned two experiments to see the potential of our segmentation strategy. In this

sub-chapter, we explain the experiments and the goals behind them.

4.6.1 Chromagram smoothing

With this experiment, what we want to show is that segmenting in a more

intelligent way could lead to a general improvement of the chord estimation

algorithms.

Using a simple binary template matching approach, we are going to label songs

with chord tags using different segmentation strategies. The chromagram frames of

every segment will be smoothed with a median function and compared with the

templates to assign a chord tag.
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We will compare the following strategies:

• Smoothing at the frame level: which means no smoothing at all.

• Smoothing at the beat level: we will smooth the chromagram frames

between beat positions, which correspond to a beat segmentation level.

• Smoothing using bass notes: we will smooth the chromagram frames

between bass note onsets, which correspond to a dynamic segmentation (bass notes

do not always have the same length).

We want to prove that smoothing the chromagram using our segmentation

approach (using bass information) leads to better results than using the beat level

smoothing, which is the most common in current state-of-the-art algorithms. For

this evaluation experiment, we have used the chord estimation database (songs by

the Beatles from Isophonics dataset).

4.6.2 “Best case” estimation

With this experiment we want to prove that, theoretically, by having the right

information (about the bass notes and the beat position), it would be possible to

reach good results in chord estimation by only using a template matching approach

and a good segmentation technique, even without using a mid-level transition

model.

We provide the algorithm with the correct bass and beat information (it does not

have to estimate them). With the correct data, it performs the segmentation and the

chord labeling. Finally we compare the result with the one reached by the Chordino

plugin. For this experiment, we have only used three songs of the Isophonics

dataset which were manually annotated by us: Help!, Not a second time and Please,

please.
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CHAPTER 5

Results

5.1 Introduction

In this chapter, we present the evaluation results for our bass line extraction and

transcription approach based on the Essentia's predominant melody algorithm. We

expose all the contributions step by step and we compare them with the results

obtained by Salamon [63] and Ryynänen and Klapuri [62].

We also describe the results obtained in chord estimation with our segmentation

tool (using a very basic template matching approach) to an almost state-of-the-art

algorithm: the Chordino. Finally, we present the outcome of the experiments to

show the potential of segmentation based on bass information.

5.2 Bass line algorithm performance

In this section, we describe the results we have obtained in the bass line

extraction and transcription tasks. First we present the results frame-wise and

secondly we present the performances when detecting bass notes and their onsets.
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5.2.1 Frame-wise evaluation

In this sub-section, we present the evaluation results of the different algorithms

and approaches we have tested in the bass extraction task. We also report the errors

we have analyzed and comment on their possible explanations.

5.2.1.1 Algorithm performance

In order to evaluate our contributions to the bass extraction algorithm, we have

tested our work by combining different steps of the approach. The starting point of

the evaluation is the Essentia's predominant melody algorithm (omitting the last

step which is centered in melodic detection, as discussed in section 4.2.3). For text

convenience, we have called it EPMC (essentia's predominant melody contours). Its

results represent our reference to check the level of improvement we have

achieved. Table 5.1 shows the precision of the algorithm using different modules.

Algorithm Precision

EPMAC (default parameters) 69.49%

EPMAC (optimized parameters) 71.74%

EPMAC + energy-based fltering 73.06%

EPMAC + note fltering 73.54%

EPMAC + median fltering (21) 72.78%

EPMAC + energy and note fltering 74.64%

Table 5.1: Frame-based evaluation for the bass extraction task
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As we can see, by using the EPMAC with the double fltering (by energy and

short note) we have reached a 74.64% of precision, outperforming our reference by

more than fve points. For this evaluation process, we have used the whole duration

of the analyzed songs.

Using our best approach, we have also tested the algorithm in the conditions

described by Salamon in his master thesis which has been an inspiration for the

present work. He used 66 songs from the RWC Popular dataset for the bass

extraction task but only by taking into account the voiced segments (were the bass

was present) to test his salience function. We have used the ground truth to select

those passages and we report the results in the following table.

Music Collection Metric Salience
function

Our
approach

RWC Pop (66 songs) Chroma(semitone) 73.00% 78.15%

Table 5.2: Frame-based evaluation for the bass extraction task (voiced segments)

As we can see, by adjusting the algorithm and adding our fltering modules we

again outperform the salience function by more than fve points.

5.2.1.2 Other evaluation results

In the table 5.1, we only showed the contribution of the modules which were

improving the algorithm in a clear way. During our work, we have proposed other

approaches which are missing in that table: the frequency bin fltering and the bin

contribution modifcation of the salient function. The main reason is that they

proved to be ineffcient when improving the bass extraction task.
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Table 5.3 shows the evaluation results by adding the bin fltering module. This

strategy flters the unstable salient bins between beats to remove percussive sounds.

The version (1) flters all the frames between beats and the version (2) only flters

the frames around the beat position.

Algorithm Precision

EPMAC + bin fltering 71.65%

EPMAC + energy, note and bin fltering (1) 74.44%

EPMAC + energy, note and bin fltering (2) 72.63%

Table 5.3: Algorithm evaluation using bin fltering

As we can see, the precision is reduced with respect to our best approach. This

could be explained by that fact that sometimes, more than one note can be present

between two consecutive beats. If this is the case, the bins belonging to those notes

are fltered out by this method. This approach should work fne with songs with

bass notes at least longer than one beat.

Table 5.4 shows the evaluation results obtained by modifying the bin

contribution of the peaks in the salient function. Essentia's default parameter is

200 cents, which means that every peak contributes to the bins equivalent to 100

cents above and under it, using a cos2 weighting function. In our error analysis, we

spotted a high percentage of confusion mistakes with adjacent pitch classes and we

decided to reduce the contribution to only half semitone (100 cents). Nevertheless,

we found out that the initial contribution was much more benefcial for the overall

algorithm.
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Algorithm 100 cents 200 cents

EPMAC (optimized parameters) 69.12% 71.74%

EPMAC + energy and note fltering 72.29% 74.64%

Table 5.4: Algorithm evaluation modifying the bin contribution
of the salient function

Finally, the following table shows the results of using harmonic percussive

source separation (HPSS). This idea was sketched out by Salamon in [63].

Conceptually, it should be very benefcial for the bass extraction task since kick

sounds share frequency range with the bass. However, results show that using

HPSS reduces the precision of the algorithm.

Algorithm Precision

EPMAC + HPSS audio 71.10%

EPMAC + energy and note fltering + HPSS audio 73.68%

Table 5.5: HPSS audio results

We can hypothesize that in the process of separating harmonics and percussive,

important information for the bass analysis is discarded.

5.2.1.3 Error analysis

In this sub-section, we present varied information about the errors we have

identifed in our research about bass extraction. In general, we compare the type of

errors done by the most basic approach (EPMAC) and the fnal version of the

algorithm.

The table 5.6 shows the most common error types in the bass extraction task:
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• Undetected silence frames: when the ground truth frame is silence but the

algorithm is activated and detects a note.

• Undetected bass note frames: when the ground truth frame is a note but the

algorithm estimates a silence.

• Pitch class confusion frames: the result of estimating a pitch class when the

ground truth is another pitch class.

Error types EPMAC (default
parameters)

EPMAC + energy
and note fltering

Undetected silence frames 11.68% 8.32%

Undetected bass note frames 2.97% 3.97%

Pitch class confusion frames 15.86% 13.19%

Table 5.6: Error types

The results show that we have improved considerably in better detecting the

silences, which means that the control of the activation of the algorithm has been

improved. Moreover, the pitch class confusions have been also reduced

considerably, even if the percentage error is still high. The rise of undetected bass

notes can be explained as a consequence of the fltering. When fltering percussive

sounds, weak or short bass notes can be also fltered as a side effect.

For our work, it is very important to explain that the undetected silence error

type is not totally realistic. During our research, we have spotted many ground

truth errors in the RWC Popular dataset. It is diffcult to estimate the impact of

them because it would need a total revision of the collection but we think it is

considerably high. We have categorized two main classes of error: pitch class

confusion errors (not so common) and length note problems (very common). In the
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ground truth, the length of the notes always tend to be shorter than they are.

Figure 5.1 shows a typical example of a ground truth note which is shorter than the

real sound. The upper part of the fgure represents the low frequency range of the

spectrogram and below, we can see the ground truth representation. Grey circles

show the confict zone. In many cases, our algorithm is activated at those zones but

the evaluation refects an error of undetected silence.

RM-P004.wav from Popular RWC

Figure 5.1: Spectrogram and ground truth confict

Only as a fast experiment, without proper study, we decided to extend bass notes

(or connect them) by about 150ms. The total performance of our algorithm was

raised by 3 points.

As we have seen in the previous table, pitch class confusion is a major problem

in bass line estimation and has a large improvement feld. We are interesting in

determining which are the most common mistakes of this type. Table 5.7 shows the
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confusion vector of the pitch classes. Since the concept of pitch class is circular, the

confusion distance of 11 semitones is considered in this case as an adjacent pitch

class error.

Confusion distance EPMAC (default
parameters)

EPMAC + energy
and note fltering

1 semitone 15.07% 11.43%

2 semitones 8.97% 12.11%

3 semitones 6.15% 7.32%

4 semitones 3.92% 3.67%

5 semitones 11.38% 16.60%

6 semitones 2.81% 2.08%

7 semitones 17.69% 11.86%

8 semitones 3.67% 4.08%

9 semitones 5.27% 5.90%

10 semitones 8.66% 11.73%

11 semitones 16.34% 13.19%

Table 5.7: Pitch class confusion vector

We can observe two interesting facts. On one hand, the main problems are

found with adjacent pitch classes and also with the ones located at a 5 and 7

semitone distances. On the other hand, there is an evolution between the type of

errors when comparing the most basic algorithm and our fnal approach.

The errors with adjacent notes are probably due to the analysis diffculty of very

low frequencies: to resolve the low partials we need very big windows but at the

same time, note changes can be blurred because of the length (we were using

280ms window size). The errors with the 5 and 7 semitone distance are potentially
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the same error. Indeed, as we can see in fgure 5.2, if we consider the 5 th of a chord

(musically speaking), it can be at a 7 semitone distance if it's above the fundamental

but also at a 5 semitone distance if its below the fundamental. Still, it's the same

note.

Figure 5.2: Pitch class equivalence but different semitone distance

These errors can occur due to the salient function, which uses harmonics

contribution (very similarly to the HPCP algorithm).

Finally, we have studied the behavior of the algorithm in two different zones:

around the beat position and out of it. For this purpose, we have calculated the

precision of the starting point of the algorithm and the precision of the fnal

approach at those segments and we have also quantifed the pitch class confusions.

Table 5.8 shows how in general, the precision of the algorithms is lower around

beat positions (between 30ms before and 120ms after the detected beat). Salient

percussive bins are likely to be responsible for the errors done by the algorithm.

The table also shows the improvements we have achieved with our fnal approach.
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Algorithms Around beat Off beat

EPMAC (default parameters) 63% 71.72%

EPMAC + energy and note fltering 68.87% 76.42%

Table 5.8: Algorithm precision in beat zone and non-beat zones

The next table shows also how percussive bins affect pitch class confusions in

error percentage. Higher confusion is shown in beat position areas and there is also

an important improvement with our fnal approach.

Algorithms Around beat Off beat

EPMAC (default parameters) 20.22% 14.38%

EPMAC + energy and note fltering 16.12% 12.12%

Table 5.9: Pitch class confusion errors in beat zone and non-beat zones

The higher confusion around beat positions could be explained by the behavior

of the salient function. The percussive bins could contribute to the salience of

wrong pitch classes, overcoming the salience of the real notes.

5.2.2 Note-wise evaluation

In this sub-section, we present the evaluation results of the optimized version of

our algorithm in the music transcription task. We will not show the results of

intermediate steps but only the version which got the best score in the extraction

task.
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The following table shows the results of the EPMAC + energy and short note

fltering and also the results of the approach by Ryynänen and Klapuri in [62]. We

selected that article over this one [61] because in the former, the whole song

duration was used for the analysis and the latter only used short song fragments.

We tested the algorithm with the exact song list (84 songs from the RWC Popular

dataset).

Algorithm Precision Recall F-measure

Ryynänen & Klapuri 57.5% 57.7% 56.3%

EPMAC + energy and
note fltering 67.09% 70.06% 67.08%

Table 5.10: Bass note transcription evaluation results

These results are very promising but unfortunately they are not comparable. The

transcription by Ryynänen and Klapuri is in midi notes. They are taking into

account two octaves and a half for the bass range. On the contrary, we are only

considering one octave because our output is pitch class based. The only way to

compare the results in a fair way would be to ignore the octave errors by their

algorithm. We could also not fold the frequency range into one octave but that is

not the point of our research. Indeed, we are only interested in pitch class because

the octave information is not very useful when using the bass line in the chord

estimation problem.
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5.3 Chord segmentation algorithm performance

In this section, we describe the results we have obtained in the chord estimation

task. First we present the algorithm performance comparing the different

segmentation approaches. Then we do a comparative evaluation with the Chordino

algorithm and fnally we show the results of two different experiments to show the

potential of our segmentation strategy.

5.3.1 Algorithm performance

Before comparing our chord detection algorithm with the state-of-the-art, we are

presenting the results we have achieved by the different segmentation procedures.

Table 5.11 shows the evaluation results in automatic chord estimation achieved

by our approach using different segmentation strategies. The values represent the

chord symbol recall of the different combinations of the approaches. For instance,

the result in bold (60.08) corresponds to the combination of segmenting the audio

using the merging bass notes strategy (without key information) and the limiting by

number of beats strategy (with number of beats equal to 1).

Beat information
approach

Bass note
to bass
note

Merging bass notes
with harmonic

relationship

Merging bass notes
with harmonic

relationship and key

No information 58.59% 52.82% 56.39%

Limiting by nº beats (n=1) - 60.08% 59.88%

Limiting by nº beats (n=2) - 59.19% 59.14%

Limiting by nº beats (n=4) - 56.85% 57.87%

Limiting by nº beats (n=8) - 54.24% 56.90%

Downbeats - 56.45% 57.99%

Table 5.11: Chord symbol recall results in chord estimation task
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The table presents numerous results which look similar and complex to

understand. Nevertheless, we can observe several patterns and interesting facts

which deserve our attention.

Range of recall values

The range of precision values is narrow. With the exception of the merging

strategy without any type of information, all the values are between 56% and 60%.

Moreover, in many cases, the precision of the algorithms is worse than the most

simple approach: segmenting from bass note to another one.

Time limitation

It is very obvious from the data that the more permissive the algorithm is with

large segments, the worse is the precision. When limiting by maximum number of

beats, we are changing the maximum length allowed for a segment creation. If the

segment is very large, several chords can be gathered together inside a chunk. This

would lead to a very confusing chroma calculation and to a very bad result in the

chord estimation process. Let's consider the following example:

Bass notes:     C      G   |   G      D

Chord ground truth:     Cmajor      Gmajor

We can see two bars: the frst one represents a Cmajor chord and the second one

a Gmajor chord. Using the merging strategy, the grouping of the bass notes would

be:

C-G-G    //        D

1st segment     2nd segment
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This is a very bad segmentation since by grouping the notes like this, the frst

segment cuts the second chord in half and therefore a lot of noise is introduced in

the frst segment (since we are mixing two chords). This could be the main reason

why the larger the segment, the lower the precision. This example brings us to the

next point which is also related to this phenomenon.

Downbeat strategy performance

The performance of the algorithm which takes into account downbeat

information is much lower than expected. This strategy should deal with the

problems presented in the previous section. One possible explanation for this

defcient result is that the approach is very dependent on the downbeat position. If

it is miscalculated, generally all the downbeats of the song will be wrong since the

algorithm considers a 4/4 measure and assigns the downbeat every four beats. From

this point of view, the approach is not very robust because it fundamentally

depends on the correct estimation of the downbeat.

Key information impact

From the table 5.11, we can also conclude that the inclusion of the key

information in the segmentation algorithm is very positive. In general, there is

always an improvement when taking it into account, especially when the segments

can be larger. This is the case of the approaches which allow four or more beats, the

downbeat approach and the simplest one, without any limitations.
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Bass notes and beat alignment

We have also evaluated the impact of the bass note onsets alignment with the

beat positions in the automatic chord estimation task. Due to the various fltering

we did in the bass estimation, it was possible that some of the bass note onsets

were moved backwards or forwards. Table 5.12 shows the impact of the time

correction of the onsets by using beat positions.

Algorithm No alignment Beat alignment

Bass note to bass note 59.40% 59.84%

Merging bass notes with harmonic
relationship

60.08% 60.07%

Merging bass notes with harmonic
relationship and key

59.88% 59.90%

Table 5.12: Impact of beat alignment

As we can see, the impact of aligning bass onsets to beats is minimal. There is a

very short improvement in general but we consider that is not signifcant.

Comparative evaluation

Using the Beatles songs from the Isophonics dataset, we have tested our chord

estimation approach against a well-known almost state-of-the-art algorithm: the

Chordino plugin. The following table shows the labeling precision of both

programs:
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Algorithm Labelling precision

Note to note with EPMAC (default parameters) 57.46%

Our approach 60.08%

Chordino 73.16%

Table 5.13: Comparative evaluation with Chordino

As we can see, we have improved the chord estimation results by introducing

our segmentation strategies with respect to our starting point. Still, it is is obvious

that Chordino outperforms our approach very signifcantly: by about 13 points.

Nevertheless, it is fair to say that our algorithm is missing one of the most

important parts of an automatic chord estimator: the mid-level model. Its main

contribution is the segmentation process for the chromagram smoothing. In the

next section we present the results of the segmentation experiment, which shows

the importance of a good segmentation.

5.3.2 Experiment results

In this sub-section we present the outcome of the experiments to show the

potential of segmentation based on bass information.

5.3.2.1 Segmentation experiment

With this experiment, what we try to show is that segmenting in a more

intelligent way could lead to a general improvement of the chord estimation

algorithms. The following table shows the results in chord estimation by smoothing

the chromagram using different segmentation strategies.
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Segmentation approach Labelling precision

Frame level 43.64%

Beat level 52.82%

Note to note with EPMAC (default parameters) 57.46%

Our approach 60.08%

Table 5.14: Segmentation results

The results of this experiment are very interesting. We can observe a great

difference between the frame level segmentation (no smoothing at all) and our

segmentation approach. When the smoothing is done at the beat level, the template

matching algorithm scores a 52% in chord labeling. This type of smoothing is used

by almost all the state-of-the-art algorithms. When the smoothing is done using our

segmentation algorithm, the template matching algorithm scores 60%. It represents

an 8 points difference with respect to the beat segmentation. We think it is a very

promising result because our segmentation technique could also be included in

more sophisticated chord detection algorithms. In fact our approach only uses a

binary template matching for the chord estimation.

5.3.2.2 “Best case” estimation experiment

With this experiment we want to prove that, theoretically, by having the right

information (about the bass notes and the beat position), it would be possible to

reach good results in chord estimation by only using a template matching approach

and a good segmentation technique, even without having a mid-level transition

model. Therefore, we have annotated three songs by the Beatles from the

Isophonics dataset and used the annotation for the estimation.  Table 5.14 shows a

comparative evaluation with Chordino.

99



Algorithm Labeling precision

Our approach 75.68%

Chordino 74.27%

Table 5.15: “Best case” evaluation results

As the table shows, if the bass and beat estimations used by the segmentation

algorithm are correct, a simple template-matching algorithm without transition

model could achieve better results than Chordino.

5.4 Conclusions

In this chapter we have presented and discussed the results obtained in our

research in the felds of bass estimation and chord estimation. We started by

showing the changes and improvements that we did to the Essentia's predominant

melody algorithm in the bass extraction task, outperforming the initial stage by

more than 5 points. Then, we analyzed the most typical errors and identifed the

aspects of the algorithm that could be improvable, especially the pitch class

confusion errors. We also showed that the current results could be even better if

the ground truth was revised. We also compared the extraction task to the salient

function by Salamon [63] (outperforming by more than 5 points) and the

transcription task with Ryynänen and Klapuri's approach [62], showing promising

results.

Regarding the chord estimation task, we presented the evaluation results of our

algorithm using different segmentation techniques. The best score was obtained by

using beat information to limit the length of the segments created by grouping bass

100



notes with harmonic relationship. Nevertheless, comparing our approach with a

state of the art chord estimator like Chordino showed that our overall strategy has

room for improvement. In fact, it lacks a mid-level transition model, which is used

by all the chord estimation algorithms. However, the experiments showed that as a

segmentation tool for chromagram smoothing, the algorithm could have a high

potential. In fact, it could be part of a larger and more sophisticated system.
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CHAPTER 6

Conclusion

6.1 Contributions

We want to start this section by offering a reminder about the goals we proposed

at the beginning of this thesis (section 1.2). We note that all of them have been

fulflled:

• Study the role of bass line and beats in the automatic chord estimation

problem.

• Develop a new method for audio segmentation to enhance audio chord

estimation based on bass notes and beat positions.

• Modify Essentia's predominant melody algorithm to improve its

performance in the bass transcription task.

• Provide comparative evaluation of our approaches with respect to other 

algorithms

From the methodological process and the evaluation results, we can make several

fnal conclusions related to the bass estimation task and the chord estimation task.
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Regarding the former, we have obtained good results and improvement in the

algorithm by tuning it and adopting the fltering strategies: we have increased its

performance by more than 5 points. Even so, we think that there is still room for

improvement, especially regarding the pitch class errors, but this would mean

working on a lower level. Indeed, experiment with the spectrogram and also with

the salience function would be necessary.

With respect to the chord estimation task, we have also improved our initial

results by adopting new segmentation strategies. Still, our approach is far from the

state-of-the-art algorithms. However, it is worth mentioning the results of the two

proposed experiments, especially the frst one which is related with the different

segmentations. With a simple chord detection approach, we compared our

segmentation strategy with the most common segmentation approach for

chromagram smoothing in the chord estimation literature and we outperformed it

by 8 points. This fact leads us to believe that our segmentation algorithm based on

bass notes and beat positions could be used as a segmentation tool for more

complex chord estimation systems.

6.2 Future Work

The creation process of our current work has happened very fast and some of

the ideas or strategies proposed during the thesis could have been developed more

extensively. We want to list some of the future work that could be done to extend or

complement this document:

• Bass estimation. As we have commented in the previous section, important

improvements could be done in the bass extraction algorithm at the spectral level

by fltering noisy sounds. Moreover, the highest number of errors in bass estimation

are found in the pitch class confusions with adjacent notes and also with the ffths.
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This issue deserves special attention since there is a lot of room for improvement

and the algorithm performance would increase signifcantly.

• Segmentation tool test. The evaluation of the segmentation tool proposed in

our work could be improved if we could include it in a state-of-the-art algorithm,

replacing the typical beat segmentation. A comparative evaluation with the original

algorithm would be a very informative experiment.

• Mid-level chord transition model. The strategy that we used in our thesis is a

very simple approach based on template matching. It doesn't have any transition

model. It would be very interesting to design one which could work together with

our segmentation tool and evaluate it with state-of-the-art algorithms.

6.3 Final words

Writing this document has not been an easy task. As my frst serious research

work, I've found it painful and rewarding at the same time. I have discovered that

researcher's life is not an easy one, but it can give great satisfaction and it is worth

giving it a chance. Finally, I just want to thank all the people who helped me in any

way during my short path in the sound and music computing world.

Urbez Capablo Riazuelo

September 2014
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APPENDIX A

Music Database File List

The following list contains the 66 song IDs of the RWC Popular Music Database

songs used in our evaluation of the bass extraction task:

RM-P001, RM-P002, RM-P004, RM-P006, RM-P007, RM-P008, RM-P011,

RM-P012 RM-P014, RM-P016, RM-P017, RM-P018, RM-P019, RM-P020,

RM-P021, RM-P022, RM-P023, RM-P024, RM-P025, RM-P026, RM-P027,

RM-P028, RM-P032, RM-P034, RM-P035, RM-P036, RM-P037, RM-P039,

RM-P040, RM-P041, RM-P042, RM-P044, RM-P046, RM-P047, RM-P048,

RM-P049, RM-P050, RM-P051, RM-P052, RM-P054, RM-P055, RM-P058,

RM-P059, RM-P061, RM-P063, RM-P064, RM-P065, RM-P067, RM-P068,

RM-P069, RM-P070, RM-P081, RM-P083, RM-P084, RM-P085, RM-P086,

RM-P087, RM-P088, RM-P089, RM-P091, RM-P092, RM-P093, RM-P094,

RM-P096, RM-P097, RM-P100.
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The following list contains the 84 song IDs of the RWC Popular Music Database

songs used in our evaluation of the bass transcription task:

RM-P001, RM-P002, RM-P003, RM-P004, RM-P005, RM-P006, RM-P007,

RM-P008, RM-P009, RM-P011, RM-P012 RM-P013, RM-P014, RM-P015,

RM-P016, RM-P017, RM-P018, RM-P019, RM-P020, RM-P021, RM-P022,

RM-P023, RM-P024, RM-P025, RM-P026, RM-P027, RM-P028, RM-P029,

RM-P030, RM-P031, RM-P032, RM-P035, RM-P036, RM-P037, RM-P039,

RM-P040, RM-P041, RM-P042, RM-P043, RM-P044, RM-P045, RM-P046,

RM-P047, RM-P048, RM-P049, RM-P050, RM-P051, RM-P052, RM-P053,

RM-P054, RM-P055, RM-P057, RM-P058, RM-P059, RM-P060, RM-P061,

RM-P062, RM-P063, RM-P064, RM-P065, RM-P066, RM-P067, RM-P068,

RM-P069, RM-P070, RM-P081, RM-P082, RM-P083, RM-P084, RM-P085,

RM-P086, RM-P087, RM-P088, RM-P089, RM-P090, RM-P091, RM-P092,

RM-P093, RM-P094, RM-P095, RM-P096, RM-P097, RM-P098, RM-P100.

The following list contains the album names by the Beatles of the Isophonics

Database that have been used in our evaluation of the chord estimation task:

Please Please Me, With the Beatles, Help!, Rubber Soul, Revolver, Sgt. Pepper's

Lonely Hearts Club Band, Magical Mystery, The Beatles (the white album), Let It Be
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