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Providing valuable semantic descriptors of multimedia content is a topic of high interest for music content processing. 
Such descriptors should merge the two predicates of (1) being useful for different operations such as retrieval, visual 
representation of collections, classification, etc., and (2) being automatically extractable from the source. In this paper 
the semantic descriptor concept music complexity is introduced, and the advantages of their usage for music retrieval 
and for automated music recommendation are addressed. The authors provide a critical review of existing related 
proposals and also prospect new methods for automated music complexity estimation. 

INTRODUCTION 
Semantics (from the Greek semantikos = “significant 
meaning”) refers to the meaning of things. When we use 
a computer to access information, it is usually only a 
tool for converting the digital data into something our 
senses can perceive. The computer is blind for the 
meaning of the information (see also [1]). Nevertheless, 
we can attach additional metadata to the digital file, 
which we call semantic descriptors. Semantic 
descriptors, even if they do not convey meaning to 
computers, they do indeed to humans using computers, 
and pave the way for computers to behave like if they 
could understand much more the content they are 
processing.  
Semantic descriptors for multimedia content become 
more and more important with constantly growing 
numbers of existing files. The potential of a large 
collection can only unfold to full extent if content-based 
queries are possible. To give an example, a customer 
looking at a large music file collection in an online 
music store could be interested in finding songs that are 
played by an orchestra and are “easy” to listen to. 
Obviously, such a query is not achievable without 
certain semantic descriptors being associated with the 
files in the collection. Providing this kind of data in a 
reliable manner demands considerable effort when done 
manually. So there is a clear need for ways to 
automatically compute semantic descriptors from the 
file itself.  
The goal is to provide descriptors that reflect intrinsic 
characteristics of musical performances but, at the same 
time, being relevant to listeners in order to allow useful 
content-based queries. The idea of automatically 
computing these is not essentially new and research has 
been carried out on this field for several years since (as 
e.g. in the MPEG7 context [2]). Yet, it remains intricate 

to bridge the gap from low-level signal descriptors like 
the spectral centroid or onset positions, to high-level 
semantic descriptors like instrumentation, tempo, or 
key. The former are very closely linked to the 
consideration of a song as a signal and are obtained 
relatively easily. The latter are treating the song as 
music and their direct utilization in queries to databases 
would be very straightforward provided reliable 
extractors could be implemented. 
In this sense, musical complexity appears to be even 
harder to compute, because it relies – at least partly – on 
such high-level semantic attributes of music trying to 
capture characteristics of their temporal evolution and 
stochastic properties. This is not the only difficulty with 
music complexity though. The individual estimation of 
the musical complexity is likely to be highly subjective 
(see e.g. [3], [4], [5]), because the experiences, the 
abilities, and the preferences in active music listening 
can vary significantly from one person to the other. 
Nevertheless, we consider music complexity a valuable 
supplement to existing high-level descriptors of musical 
content. Temperley in chapter 11.5 of [6] assumes a 
connection between the complexity of harmonic 
patterns and individual listener’s preferences for pieces 
of music. In [7] Parry examined the chart performance 
of rock music titles and associated it with their musical 
complexity. He found the overall chart performance of 
the songs to be positively correlated with their melodic 
and rhythmic complexity. Simonton in [8] reports the 
results of an extensive study on the relationship between 
melodic complexity and popularity. For his large sample 
of 15.618 classical themes he found a clear connection 
of these two parameters. 
Particularly, the subjectivity in sensing complexity can 
be of advantage when recommending music based on a 
user profile. In the remainder of this paper we therefore 
formulate our notion of musical complexity in the given 
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context, further we will expose ways of utilising the 
music complexity descriptor concept in music 
information retrieval scenarios, and we finally will 
describe possible computation methods for the different 
facets of music complexity. 

1 MUSIC COMPLEXITY DEFINITION 
Various definitions of complexity can be found, because 
different understandings of the term exist in different 
contexts. For this reason we have to clarify what we are 
talking about when referring to music complexity in this 
paper. 

1.1 Background 
The theory of algorithmic information provides a 
definition of complexity, measuring the amount of 
information contained in a sequence of numbers. This 
measure is known as Kolmogorov complexity and has 
already been used in the digital audio domain (see e.g. 
[9]). Yet, applied directly to a digitized musical 
recording it captures rather the compressibility than the 
complexity a human listener would accredit to it. Apart 
from that, Standish in [10] addresses the flaw of 
Kolmogorov complexity, that a random sequence of 
numbers will always yield a maximum complexity 
although it does not contain any meaningful 
information. He suggests the use of equivalence classes 
to overcome this. An equivalence class for him is the set 
of all mutations of a sequence that are equivalent in a 
given context. So for example random sequences could 
hardly be distinguished by a human observer and would 
therefore form a large equivalence class. On the other 
hand, for a written text only very few mutations exist, 
that would be judged as equivalent. If the equivalence 
class is considered in the complexity computation, then 
the result captures the context dependency and hence is 
more meaningful. 
More specifically related to music, Eerola and North 
point out in [11], that the traditional information theorist 
view of complexity does “not address the role of the 
listener's perceptual system in organising the structural 
characteristics of music”. Therefore they propose an 
expectancy-based model (EBM) to estimate complexity. 
Their model for melodic complexity is based on tonal, 
intervallic, and rhythmic features derived from a 
symbolic representation of the music. Comparing the 
ability of this model to predict listeners’ complexity 
judgements with an information-theoretic and a 
transition probability model, they found it to be the most 
accurate one. 
Nevertheless, Pressing in [12] convincingly uses what 
he calls information-based complexity to calculate an 
estimate of the difficulty musicians would have in 
producing certain rhythmical patterns. He achieves this 
by simply applying a processing cost function to the 
symbolic level (i.e. high-level) attribute syncopation on 

quarter-note and eight-note level. Pressing also 
mentions two other slants of complexity in his 
publication, which he names hierarchical complexity 
and dynamic complexity. Referring to music the former 
would be focussing on the structure of a song, and the 
latter on the time behaviour and change in a musical 
performance. 
Shmulevich and Povel in [13] propose a measure 
(refered to as PS-measure) for rhythmic complexity. It 
is also based on the amount of information coded in the 
rhythmic patterns, but at the same time it takes into 
account perceptual issues that have been reported by 
Povel and Essens in [14]. When it is applied to rhythm 
patterns in symbolic form (i.e. quantized to a grid), the 
PS-measure outperforms the T-measure [15] and the 
LZ-measure [16] in predicting human judgements of 
rhythmic complexity. This is of little surprise as the two 
latter measures are neglecting perceptual information. 
On the other hand, in [17] Scheirer directly utilizes the 
statistical properties of five psychoacoustic (low-level) 
features of short musical excerpts to model perceived 
complexity. These features are the coherence of spectral 
assignment to auditory streams, the variance of number 
of auditory streams, the loudness of the loudest moment, 
the most-likely tempo, and the variance of time between 
beats (see [18] Chapters 4-6 for details). He reports that, 
by using linear regression techniques on these, they are 
strongly significant in predicting the mean complexity 
ratings of a group of 30 human listeners. 

1.2 Towards computing facets of music complexity 
We are looking for a descriptor that gives us a 
complexity estimate for entire songs. Our complexity 
measure should reveal the effort the listener has to put 
into analyzing the music in order to capture what is 
going on. 
In [19] Finnäs states that “unusual harmonies and 
timbres, irregular tempi and rhythms, unexpected tone 
sequences and variations in volume” raise the level of 
perceived complexity. This statement is neither 
exhaustive nor precise. But combined with the 
quintessence of the preceding sections we can still 
formulate the following assumptions: 

1. Musical complexity possesses many different 
aspects. 

2. These aspects can be independent from each 
other. 

3. These aspects can be linked, as well, to high-
level as to low-level features of the song. 

4. The richness of mutations is linked to musical 
complexity. 

5. The rate at which events have to be processed 
is linked to musical complexity. 

6. Expectation and surprise play also a role in 
complexity perception of music. 
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Now these assumptions already give us some directions 
for the design of our complexity descriptor. 
Assumptions 1 and 2 favour a multidimensional layout. 
We propose a set of six dimensions of musical 
complexity to be treated separately. These are melody, 
harmony, rhythm, timbre, structure, and acoustic 
properties. The latter is meant to incorporate aspects of 
the spatial and dynamical comprehensiveness of the 
song, which are, strictly speaking, not so much an 
attribute of the music as of the recording. We will 
address each individual dimension later in this paper. 
Assumption 3 reveals the idea of complexity as a meta-
descriptor. It will not be computed directly from the 
source signal, but rather from high-level and low-level 
features that have to be extracted first. 
Assumptions 4 and 5 reflect statistical and temporal 
aspects we have to account for. We will consider that 
the listener is processing a stream of events during 
his/her listening to music. 
Finally, assumption 6 causes the most difficulties. We 
already stated that the temporal evolution of extracted 
features will be addressed. But modelling arising 
expectations during the process of listening to music is 
not a trivial task. For the moment, we leave this as it is 
and get back to it later when discussing actual methods 
of computation. 

2 APPLICATION SCENARIOS 
After the technical basis has been established we can 
now focus in some more detail on possible applications 
for our descriptor. We are only interested here in the 
interaction with music databases and will not discuss 
other possible fields of appliacation. When employing a 
music database, three major tasks can be identified:  

1. The retrieval of songs that match the user’s 
desires. 

2. The generation of a program (playlist). 
3. The visualization of the content in order to 

allow the user navigating through it. 
We will address each one of these tasks in the following 
three paragraphs. 

2.1 Song retrieval 
There are different possibilities of querying a song 
database. The most obvious one is the direct 
specification of parameters by the user. Since the 
complexity descriptors consist of only one value per 
song for each dimension, they can be used very easily in 
queries. The user can specify only those dimensions he 
is interested in and narrow down the set of results. This 
way it is very straightforward to find music that, for 
example, doesn’t change much in loudness level over 
time, or which has a rhythmic complexity that is 
interesting enough, but not too difficult to dance to. 
A second way of querying is the so called query-by-
example approach. The user presents one or several 

songs to the database and wants to find similar ones. It 
is straightforward in this case to compute the 
complexity descriptors for the provided example and 
use them for the actual query. The weighting and/or the 
tolerance of the different dimensions could be specified 
by the user directly, taken from a precomputed user 
profile, or extracted from the example in case it consists 
of more than one song. A user profile would be 
established by analysing the user’s listening habits (i.e. 
songs he/she has in his/her collection; songs he/she 
listens to very frequently, etc.).  
Probably the most exciting way of querying is a query 
without any specification apart from the limiting factor 
that the user should like the retrieved song or at least 
find it interesting. This is usually referred to as music 
recommendation. Why could descriptors of musical 
complexity be useful for this? 
As pointed out in the introduction, there is good reason 
to believe that the level of perceived complexity of a 
piece of music can be associated with the preference for 
it. We have already cited several studies supporting this 
assumption for communities of people (i.e. in a more 
macrosociological sense) [7] [8]. In the application we 
are interested in here the circumstances are slightly 
different, since there is a single person interacting with 
the database. Nevertheless, the complexity descriptor 
can be useful in this context too, as we will show in the 
following.

 

Figure 1: Relationship between preference for music 
and its arousal potential (after Berlyne). 

Back in the 1970s Daniel Berlyne (as cited by [4]) 
established a theory stating that an individual’s 
preference for a certain piece of music is related to the 
amount of activity it produces in the listener’s brain, to 
which he refers as the arousal potential. According to 
this theory there is an optimal arousal potential that 
causes the maximum liking, while a too low as well as a 
too high arousal potential result in a decrease of liking 
(see Fig. 1). Berlyne identifies three different categories 
of variables affecting arousal (see [20] for details). As 
the most significant he regards the collative variables, 
containing among others complexity and 
novelty/familiarity of the stimulus. Since we are 
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modeling exactly these aspects of music with our 
descriptor, it is supposed to be very well suited for 
reflecting the potential liking of a certain piece of 
music. 
Hargreaves and North point to two potential problems 
with respect to Berlyne’s theory: the influence of the 
listener’s mood and intention when selecting music, and 
the dependence on the appropriateness of the music for 
the listening situation [4]. As they report, both show a 
measurable effect on a subject’s musical preference in a 
certain context. However, we believe these effects can, 
at least to some extend, be absorbed by an automated 
music recommendation system. For example different 
user profiles could be established for one person, 
depending on mood or listening situation.  

2.2 Playlist generation 
A playlist is a list of titles to be played like a musical 
program. A user interacting with a database might ask 
for the automated generation of such a list. As Pachet, 
Roy and Cazaly point out in [21] the creation of such a 
list has to be taken serious, since “The craft of music 
programming is precisely to build coherent sequences, 
rather than just select individual titles.” 
A first step towards coherence is to set certain criteria 
the songs have to fulfill in order to be grouped into one 
playlist. For example for doing housework the 
restrictions could be rather fast tempo and intermediate 
complexity in each dimension. Also transitional 
properties could make sense, as for example increasing 
rhythmic complexity while melodic and harmonic 
complexity stay fixed.  
Pachet, Roy and Cazaly go further and look at an even 
more advanced way of playlist generation capturing the 
two contradictory aspects of repetition and surprise. 
Listeners have a desire for both, as they state, since 
constant repetition of already known songs will cause 
boredom, but permanent surprise by unknown songs 
will probably cause stress. 
In their experiments Pachet, Roy and Cazaly used a 
hand edited database containing, among others, 
attributes like type of melody or music setup. We can see 
a correspondence here to our melodic and timbral 
complexity, that encourages the utilization of our 
complexity descriptors for playlist generation. 

2.3 Collection visualization 
A user might want to navigate through a digital music 
collection by other means than artist and title. To allow 
for this, a suggestive graphical visualization of relevant 
musical features has to be provided. One example for 
such visualization is the Islands of Music application, 
developed by Pampalk [22]. This application uses the 
metaphor of islands and sea to display similarities of 
songs in a collection. The application uses features that 
are motivated from psychoacoustic insights, and 

processes them through a self-organizing map (SOM). 
In order to compute similarity between songs the 
sequence of feature values extracted from each song has 
to be shrinked to one number. Pampalk does this by 
taking the median. He reports satisfying results, but at 
the same time states that the median is not a good 
representation for songs with changing properties (e.g. 
bimodal feature distribution). 
Our complexity descriptor is designed to consist of only 
one value for each dimension that captures the 
properties of the whole song. Hence, the problems of 
reducing a time sequence to one single value that is still 
representative for the whole sequence doesn’t arise. 
Furthermore, each single dimension reflects specific 
characteristics of the music that are potentially of direct 
relevance for the listener. The descriptor is therefore 
very well suited to facilitate the visualization of musical 
properties the user might want to explore. 

3 METHODS OF COMPUTATION 
The whole discussion about our descriptor concept 
remains simply academic as long as there are no 
algorithms available that can actually perform the 
extraction in a reliable manner. In this section we 
therefore focus on the different dimensions of 
complexity we defined in 1.2 and report the state-of-the-
art of their computability. It should be pointed out, that 
we content ourselves with the extractors working on 
music of the western cultures and traditions. 

3.1 Melody 
Back in 1990 Eugene Narmour proposed a model for 
melodic complexity. This Expectation-Realization 
model as he calls it is extensively described in [23]. The 
model uses a set of different interval patterns, raising 
certain expectations on the listener’s side. Frequent 
realization of these expectations reveals a low level of 
complexity; frequent disappointment reveals a high 
level of complexity. The model has been used widely 
and successfully to estimate melodic complexity in 
different experiments [7],[24]. It has been extended to 
capture also aspects of rhythm and tonality [11], since a 
melody can’t be isolated from these parameters. 
Lately, experiments were conducted that showed, how 
the accuracy of the model can be further improved by 
taking a larger melodic context into account [25]. Since 
the focus of the original model is limited to two notes at 
a time only, it neglects the impact of the longer-term 
melodic evolution (e.g. repetition of motives) on the 
listeners’ predictions of continuation. 
It must be stated, that all these models work with a 
symbolic description of the melody as an input. Usually, 
digital music files won’t have this symbolic description 
attached to themselves. The key problem thus remains 
in the automatic extraction of the melody from the audio 
stream. Many approaches to this kind of automated 
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transcription have been made (see e.g. [26]), but to date 
did not lead to a universal and reliable solution.  

3.2 Harmony 
Although the theory of harmony in music has a long 
tradition, the authors didn’t find one dominant model 
addressing its complexity. Research has been done on 
the expectations evoked in listeners by harmonic 
progressions especially on the field of classical music 
[27]. It turned out, that listeners usually predict a chord 
that results from a transition considered as common in 
the given musical context. Yet, to our knowledge no 
tests have been carried out that correlated the perceived 
harmonic complexity with the fulfilment or 
disappointment of these expectations. 
Temperley supposes that his preference rule system [6] 
could reveal an estimate for the interestingness of music 
(p. 307). The mapping of achieved scores would go 
from incomprehensible (breaking all rules) over tense to 
calm, and finally to boring (all rules obeyed). Although 
he doesn’t use the term complexity, this basically 
reflects what we are looking for. He names four 
different aspects of this harmonic complexity: 

1. The rate at which harmonies change. 
2. The amount of harmonic changes on weak 

beats. 
3. The amount of dissonant notes. 
4. The distance of consecutive harmonies in a 

music theoretical sense. 
A different approach could be based on the application 
of rewriting rules as proposed by Pachet in [28]. He 
addresses the effect of harmonic surprise in Jazz music. 
By learning chord progressions and applying rewriting 
rules he tries to model the predictability of a certain 
chord sequence. A high predictability would then yield 
a low complexity rating and vice versa. 
Both ideas have two drawbacks. As for the melodic 
complexity models already we here again need a 
transcription of the chords first before we can start to 
analyse the complexity. And in further accordance we 
can find many approaches (see e.g. [29], [30]), but so 
far no satisfying solution. The second drawback lies in 
the fact, that the harmonic rules to be used in the model 
might not be truly universal. Even when we restrict 
ourselves to western tonal music, it could be difficult to 
formulate rules fitting all different styles and genres. 
On the other hand it can certainly be doubted, that the 
listener performs an exact harmonic analysis while 
enjoying music. In this respect, also the perceived 
harmonic complexity should not need to rely on an 
exact transcription. The authors therefore want to 
explore more immediate ways to harmonic complexity 
in future research. A possibility would be the 
application of the pitch class profile [31], that is 
strongly related with the harmonic content of the music 
[32]. It could be mapped into the spiral array proposed 

by Chew that defines a three-dimensional space of 
harmonic instances [33]. The spiral array has the 
property that the spatial proximity reflects also musical 
proximity of harmonies to some extend. As the song 
evolves, the path through this space could be recorded 
and then analysed. Frequent changes and long distances 
would both increase the assigned level of complexity. 

3.3 Rhythm 
In 1.1 we already referred to a publication by 
Shmulevich and Povel [13] introducing the PS-measure 
for rhythmic complexity. They state, with reference to 
[14], that a listener tries to establish an internal clock, 
when hearing rhythmic music. According to this clock 
the listener then segments the rhythm pattern and tries 
to code the segments. The PS-Measure utilizes the 
induction strength of the clock, and the coding 
efficiency of the rhythm.  
Once more, the input data in their experiment was 
derived from a symbolic representation of the music. 
Nevertheless, in this case extractors exist, that can 
compute onsets and accents from the audio stream in an 
adequate manner (see e.g. [34], [35]). In human 
performances of music the timing is likely to vary 
significantly more than in a computer edited symbolic 
representation. Since we don’t want this to affect our 
complexity measure, it is necessary to apply a 
reasonable quantization. 
The authors implemented another algorithm that is 
related with rhythmic complexity, the detrended 
fluctuation analysis (DFA) of intensity. Originating 
from time series analysis in the medical domain, it was 
proposed in [36] by Jennings et al. as a feature for genre 
classification. They state that the strong periodic trends 
in dance music (as Techno or Brazilian Forró) make it 
easily distinguishable from high art music by using this 
feature. “Jazz, Rock and Roll, and Brazilian popular 
music may occupy an intermediary position between 
high art music and dance music: complex enough to 
listen to, but periodic enough to dance to,” they 
speculate. Hence, we can think of this feature as a rating 
of “danceability”. A first informal test we conducted 
revealed that even a small group of people disagrees 
about the “danceability” of a song in the majority of 
cases, giving even oppositional judgments. This could 
be due to confusion about what was actually asked for, 
and also to the personal liking and disliking of certain 
types of music. Further experiments have to be carried 
out to evaluate the suitability of this feature. 

3.4 Timbre 
There is no clear and precise definition of timbre that 
could be regarded as a common agreement on the music 
analysis field. By the American Standards Association 
([37] p. 45) the following statement was released: 
“[Timbre is] that attribute of auditory sensation in terms 
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of which a listener can judge that two sounds similarly 
presented and having the same loudness and pitch are 
dissimilar.” 
For our purpose we think of timbre as the entity that is 
the most tightly knotted with sound production (i.e. the 
source of the sound and the way this source is exited). 
We then can derive several specifications of the general 
attributes 4 and 5 of complexity we itemised in section 
1.2. This gives us features like the number of 
instruments playing, the rate at which the leading 
instrument changes, or the amount of modulation of the 
sound sources. 
As reported in [38], source separation and instrument 
recognition systems for arbitrary polyphonic music 
signals are not yet available. Nevertheless, we are 
planning to conduct experiments with machine-learning 
techniques for example in the way Aucouturier and 
Sandler used HMMs for music segmentation [39]. Our 
application has the advantag, that we need only a rough 
estimate for the number of instruments, but no exact 
classification of each one of them. 

3.5 Structure 
Musical structure forms one of the highest levels of 
abstraction in content analysis. It is unique compared to 
the other dimensions in the sense that all of them are 
potentially relevant for its computation. 
We want to refer to structure on a rather macroscopic 
level (i.e. in terms of intro, verse, and chorus rather than 
motive or theme). Along with our remarks in section 1.2 
we can identify attributes of structural complexity such 
as the number of distinguishable parts, or the level of 
periodicity of their appearance. It would also be 
desirable to estimate the dissimilarity of consecutive 
parts. Very contrasting parts following each other 
would be very surprising and thus probably enhance the 
perceived complexity. 
Once more, we have to face the fact, that before we can 
perform any structural complexity processing, first the 
structure itself has to be extracted. Various approaches 
to this problem have been taken and are still explored 
(see e.g. [40], [41]). The general purpose solution has 
yet to be found. 

3.6 Acoustics 
As we mentioned in 1.2 acoustic complexity is not 
completely intrinsic to the music, but rather to the 
recording (or the performance). We want to distinguish 
between two aspects of acoustical effects here, forming 
subdimensions of our descriptor: dynamics and space. 
Dynamic complexity could be referred to in terms of 
abruptness and frequency of changes in dynamic level.  
There are different options for defining the time scope. 
By keeping the frame size small one would find the 
distinction between dynamically compressed and 
uncompressed material. With longer windows one could 

detect fades and dynamic changes between larger 
segments. The regularity of dynamic changes has to be 
observed as well, since an uncompressed drumloop will 
have many abrupt changes in short-term dynamic level, 
but because of its periodicity these will not be found 
very complex by a listener. 
Calculating a very accurate estimate of the perceived 
loudness of the complex sounds that form a musical 
performance is a very complicated task. Several aspects 
of psychoacoustics have to be considered [42]. Finally, 
since there are also subjective components, and the final 
playback level can not be known, the loudness can only 
be approximated.  
In [43] Vickers proposes a simplified algorithm to 
calculate long-term loudness and dynamic spread of 
whole audio files. He proposes the mean absolute 
deviation of the per-frame loudness as a definition for 
dynamic spread. Scheirer in contrary defines the 
dynamic range as “the greatest of the local differences 
in total loudness within short windows throughout the 
signal” ([18] p. 166). He uses windows of only 200ms 
to compute this feature. 
To compute spatial complexity we consider only stereo 
recordings and no advanced multi-channel formats in 
this paper. So far, they form by far the majority of items 
in digital music file databases. A straightforward 
example for spatial complexity thus could be the 
disparity of the stereo channels. A quasi mono situation 
with similar channels would reveal less complexity than 
a recording that has only little correlation between the 
two channels. But also more advanced aspects could be 
considered, such as the movement of the acoustical 
center of effect within the stereo image. Yet, this is not 
trivial from a computational point of view. 
There is also another aspect of spatial complexity which 
originates from either natural or artificial sound effects. 
Namely these are all types of delay and reverberation. 
Filter, flanger or chorus effects we would rather group 
under timbral complexity (3.4).  
The measurement of reverberation has a solid tradition 
in room acoustics, where several different measures 
exist. Griesinger gives an overview over several 
measures of spaciousness in [44]. Usually, these 
measures take the room impulse response as their input 
and are thus not suited for a continuous signal. An 
exception is the InterAural Difference (IAD) introduced 
by Griesinger, which, as he states, can also be found as 
a continuous function of music signals. 
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where the equalization eq consists of a low frequency 
enhancement of 6dB per octave below 300Hz. 
At the time of writing of this paper our experiments 
regarding acoustic complexity are still ongoing. First 
results seem to indicate, that for extreme cases the 
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features coincide with human perception, whereas a 
sensible continuous resolution, also for intermediate 
values has not been achieved yet. 

4 STRATEGIES FOR EVALUATION 
In this section we want to give a very brief overview of 
possible ways to evaluate the complexity estimation 
algorithms. 
A straightforward approach for the evaluation of content 
analysis algorithms is the correlation of computed 
results with manually edited ones. This is the way for 
example the melodic complexity models mentioned in 
section 3.1 have been evaluated. It must be stated 
though, that these tests were performed on isolated 
melodies and not on real recordings of songs. For the 
“danceability” judgements mentioned in section 3.3 we 
saw already, that subjects’ ratings are not necessarily 
consistent. It can not be counted out, that at least some 
of the complexity dimensions are perceived in an 
unconscious manner by some listeners. 
Alternatively, the subjects could be asked to rank a 
given set of items according to one complexity 
dimension.  The results could be clustered and matched 
against the automatically extracted values. Yet, this task 
could be even more difficult for untrained listeners, 
especially when the items are very distinct in their 
genre, instrumentation, etc. 
A third way of evaluation could comprise the 
presentation of a list of items to the subjects and the task 
to identify the underlying concept of arrangement. The 
ordering of the list would be done according to the 
output of the extraction algorithm under test. This 
involves much more effort in the interpretation phase; 
the subjects would make statements in verbal form 
instead of providing simple numbers. The advantage is 
that untrained listeners might be less confused with this 
kind of task. 

5 CONCLUSIONS 
We have presented a musical content descriptor concept 
to capture aspects of music complexity as they are 
perceived by listeners. Looking at the experimental 
results reported by others and cited in this paper, the 
application of a music complexity descriptor in the field 
of musical content retrieval and interaction seems very 
promising. As we have shown, providing a content 
description in terms of complexity could serve to 
facilitate and enhance the interaction with digital music 
databases. 
Regarding the computability of the descriptor, we have 
pointed to several algorithms and approaches that could 
be suitable for our needs. Further investigation and 
experiments are planned by the authors to fathom this. 
For certain dimensions of complexity, like Melody and 
Harmony, current extraction algorithms seem still very 
far from our demands. But, as Scheirer points out, the 

normal human listener does not perceive music in the 
way a transcription system does. “When human listeners 
are confronted with musical sounds, they rapidly and 
automatically orient themselves in the music. Even 
musically untrained listeners have an exceptional ability 
to make rapid judgments about music from very short 
examples, such as determining the music’s style, 
performer, beat, complexity, and emotional 
impact.”([18] Abstract). 
 In other words, we can perceive one melody or chord 
sequence as more complex than another one without 
being able to write down the musical score. Therefore, 
other ways of complexity estimation could be thought 
of, that don’t rely on a symbolic representation of the 
music. We want to address this as well in further 
studies. 
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