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ABSTRACT

In this chapter we discuss an approach to music representation that supports collaborative 
composition given current practices based on digital audio. A music work is represented as a 
directed graph that  encodes sequences and layers of sound objects. We discuss graph grammars as 
a general framework for this representation. From a grammar perspective, we analyze the use of 
XML for storing production rules, music structure, and references to audio files. We describe an 
example implementation of this approach.

INTRODUCTION 

The widespread adoption of internet access has raised great expectations with respect to music 
creation. On one hand, networks extend the possibilities for collaborative composition using 
computer-based tools by allowing intermediate objects to be shared. On the other, these tools can 
be accessed by a larger audience, and designed to be used by people with little or no musical 
training. 

The recent  focus on media sharing by internet users is reinforcing such expectations. The habit 
of sharing multimedia objects has facilitated an explosion in the culture of creative 
repurposement and recombination. Specifically in the case of sound recordings, there is a long 
tradition in sharing files for creative reutilization. Content  in sites such as freesound.org (http://
freesound.org), soundsnap.com (http://www.soundsnap.com) or sampleswap.org (http://
sampleswap.org) is typically downloaded to be reused in music and multimedia products. This 
trend in the use of sound samples can be seen as an expression of an audio culture (Cox & 
Warner, 2004), influenced by a number of aesthetic traditions that  have exploited the specific 
constraints of sound recordings, such as Musique Concrète, Plunderphonics, Soundscapes and 
acoustic ecology, or Hip Hop. The widespread of digital technologies has thus allowed using 
digital audio as matter for musical discourse, in a way that  can no longer be represented using 
traditional music notation. Since understanding sound files is now part  of the standard computer 
literacy, this kind of discourse can now be used as a means for expression by many computer 
users without the need of formal music training. As computers keep invading different  areas of 
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music production, sound files have become prevalent as a way to represent musical events. 
Samplers and sample based synthesizers are among the most commonly used tools, offering 
simplicity and realism over other types of synthesis. On the other hand, most  music is at  some 
point  recorded in some sort of audio sequencer or multi-track editor as an organized ensemble of 
sound files. 

Some tools have appeared that  attempt  to relate the use of audio sequencers with the explosion 
of social networking and social media. Companies such as SoundCloud  (http://
www.soundcloud.com) are offering web hosting of audio tracks, and sites such as Indaba Music 
(http://www.indabamusic.com) are already offering online tools for basic audio mixing and 
sequencing. The makers of one of the most popular programs for audio sequencing, Ableton Live 
(http://www.ableton.com), currently offer a collaboration feature based on progressive uploading 
and downloading of audio clips. 

While these movements toward the use of network servers for storing audio are allowing 
greater degrees of collaboration, current  tools and their interfaces are still focused on single user 
operation, in many cases under the influence of classic western music notation. Currently popular 
programs do little to represent  deep music structure, especially for practices based on digital 
audio manipulation. Moreover, most  music is stored in proprietary formats and can’t  be moved 
from one program to another. 

The difficulties of understanding 
music, and especially musical structure, 
when using sound recordings were 
largely explained in Schaeffer's Traité 
des Objets Musicaux. (Schaeffer, 1966). 
Given the impossibility to describe the 
practices that magnetic tapes made 
possible from the established music 
theory, Schaeffer frequently borrowed 
concepts from the linguistic theories of 
Saussure and Jackobson  (an  analysis 
of the relationships between music and 
language in the Traité can be found in 
Chion (1983)). In the 1970s, pioneers 
of computer music like Curtis Roads 
and Otto Laske proposed the adaptation 
of formal grammars to the practice of 
composing music with sound objects. 
While the use of grammars has been 
e s t a b l i s h e d i n f i e l d s s u c h a s 
computational musicology, the early 
use of grammars for sample-base music 
composition provides a ground for 
cur ren t  needs wi th respec t to 
collaborative recombination of shared Figure 1. Separation of structure and content
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media.

The separation of musical structure from audio signals allows the use of could-based services 
and shared databases for the audio, while musical structure can be represented and exchanged  
using  text markup formats such as XML (figure 1). In composition activities, music structure can 
be typically stored in lightweight  documents that  may change frequently, and transmitted through 
established text  communication channels such as email. Each music document  may make 
reference to a number of bigger sized audio files. Transmission and local caching of these files 
can be dealt  independently between each participant and the remote location through standard 
web technologies and services, which avoids the need of potentially complex specialized p2p 
tools for the synchronization of audio collections among different participants.

In collaborative composition, though, the exchange of music documents doesn’t need to be 
reduced to a single document  representing a complete work: much of this activity works through 
sharing and reusing lower level building blocks. Formal grammars provide a framework for the 
representation of different  structural levels in music composition. Formal languages already allow 
high levels of cooperation in computer music. For example, Music-N style languages and 
environments are very often driven by lively communities that continuously exchange code and 
knowledge. We propose similar approach to support collaboration in sample-based music 
composition.

MUSIC REPRESENTATION WITH FORMAL GRAMMARS

Formal Grammars

Formal grammars were introduced by Noam Chomsky in the 1950's as a means for formal 
analysis of natural language (Chomsky, 1956). The view of grammars as mathematical devices 
has since then remained at the foundation of Computer Science. From the point of view of 
linguistics it was an important revolution that  introduced a generative perspective: grammars 
served as language theories that  could explain and predict  linguistic phenomena by generating 
them from a formally defined set of laws. 

In the 1970s and 1980s, the idea of modeling music with grammars became very popular. 
Formal grammars can be used to generate expressions of a language, and they can also be used to 
parse existing expressions, and give an interpretation of how they were generated. Thus, 
grammars were used, on one hand, for automatic or computer-aided music composition, and on 
the other for musicological analysis. Both directions can be thought as complementary, and in 
some cases grammars are learned from existing musical works and then used to generate new 
ones.

For the case of collaborative music composition, grammars provide a suitable framework for  
sharing, reusing and assembling parts of music compositions. In this sense, a grammar can 



support  the metaphor of a common language, as a means for the computational representation and 
manipulation of musical fragments. From the point of view of analysis, grammars can be used for 
computational modeling of the style of different  participants or groups in collaborative 
applications. From the perspective of generation, they can serve to facilitate creativity by 
producing new combinations of sounds, or to assist  the search of sounds for a given musical 
context. 

A formal grammar is usually defined as a 4-tuple (V, Σ, S, P) , where:

·  Σ  is a terminal alphabet, a set of symbols that  are used to form sentences in the 
language. In common music notation, terminals could be notes, durations or chords, 
while in sample-based music they can be sound objects. 

·  V is an alphabet of non-terminal symbols or variables. Variables represent strings of 
terminal or non-terminal symbols in intermediate stages of the generation. In a music 
composition process, variables can be used, for example, to represent groups of terminals 
that are often used together. 

·  S is the start symbol, a special variable that is used to begin the generation process. 
·  P  is a set of production rules that allow a given string to be replaced by another string. 

For example they can specify how a part  of a musical piece can be replaced by its 
subparts. 

In summary, a formal grammar can be explained as a set of rules that  rewrite a string of 
symbols with another one. For example the rule A → AB defines that a string composed of the 
symbol "A" can be replaced (rewritten) by the string "AB". This rule can be used to generate the 
string "AB" in presence of string "A". Thus, the rule could be applied again to "AB" to produce 
"AAB", and so on. Also, it  can give one possible explanation of how the string "AB" (or "AAB" 
for that  matter) was produced in a given language. This is the idea behind the generative 
linguistics methodology: a set of rules that  is able to generate all observable sentences of a 
language constitutes a theory of that  language that is able to predict (i.e. generate) unobserved 
sentences and provide a possible explanation of how the observed ones were produced. 

Intuitively, grammars can be understood as formal way to specify structural groupings of a 
language. For example we can state that all sentences in a natural language are composed of a 
"noun"' sub-sentence and a "verb" sub-sentence, and then define a rule that defines this 
decomposition using abstract symbols (say S → NV). Thus, they can be used to specify the 
structure of a musical piece. For example we could define a structure that is always composed by 
a sequence of themes "ABA' ". 

Chomsky defined a hierarchy for formal languages and the associated grammars that  has 
become standard in linguistics and computer science. The most  general class, type 0, is the class 
of recursively enumerable languages. Grammars that  parse or generate such languages are not 
subject to restrictions in the production rules. Type 1 is the class of context-sensitive languages. 
Production rules for grammars that generate these languages can only replace a string with 
another string of equal or greater length. Still, context-sensitive rules such as aAb -> aBb are 
allowed. Type 2 is the class of context-free languages. Grammars that produce these languages 
are subject to a second restriction, which forbids context-sensitive productions. The left side of 



productions must consist  only of a non-terminal variable. Also, the right side of productions 
cannot consist exclusively of the empty word. Intuitively, context-sensitive rules seem to have 
many applications in music. However, the most general types of grammars are also the most 
complex ones and in practice they are difficult  to parse efficiently. Thus, it  is common to use 
context-free grammars, sometimes augmented with transformation rules or control mechanisms. 
Context-free grammars are also widely used to describe and design programming languages. 
Finally, type 3 defines regular languages, the most  limited class of formal languages. In addition 
to the above restrictions, the right side string of a production in a regular grammar can only 
consist  of a terminal symbol and a non-terminal variable. Chomsky described this model as an 
equivalent  to markovian processes and dismissed them for the analysis of natural language 
mainly because of their inability to describe nested structures. The stochastic nature of markovian 
processes does not  affect  this fundamental limitation. The same reason applies to their use for 
music analysis or generation. Despite this limitation, markov chains have been very popular as a 
simple mechanism for algorithmic music composition (Ames, 89). It  can be argued, though, that 
the use of markov chains does not justify by itself the grammar paradigm: markov chains are 
represented simply using transition matrices.

Grammars in music composition

The application of grammars to collaborative composition can rely on a long tradition in the use 
of grammars for computer music. A brief review of some of the approaches can be helpful to 
understand their potential.

One of the first documented efforts to use formal grammars in music composition is due to 
Curtis Roads. In Composing Grammars (Roads, 1978) he described a system for music 
composition based on context-free grammars augmented with control procedures. The system 
provided the composer with a workflow for experimenting with structural and semantic aspects of 
composition. First, the composer would specify a grammar using a specialized language (Tree) 
and an associated compiler (Gram). The program would generate a compiler for the specified 
grammar. The composer would then work on valid derivations according to the grammar to create 
the syntactic surface. A second language (CoTree) and its corresponding compiler (GNGRAM) 
would aid in the generation of the score. A final task, the lexical mapping, consisted in pairing the 
terminals of the grammar with sound objects previously created by the composer. Such amount of 
relatively low-level tasks reflects the kind of interaction that  computers supported at that  time. 
Still, the emphasis on the lexical mapping and the use of sound objects makes this pioneering 
work interesting in the context of social media. 

In Grammars as representations for music (Roads, 1979), Roads presented a synthesis of 
formal grammar theory and surveyed the use of grammars for music analysis. Perhaps more 
importantly, he summarized the powers and limitations of the grammar approach. Considering 
iconic (i.e. based on analogies) and symbolic (based on convention) representations, it is quite 
obvious that, as symbolic representations, grammars rely on a discretization of the sound 
material. This limitation is however less restrictive for compositional purposes than for analysis. 
An example of discrete treatment of sound is the schaefferian concept  of sound object (Schaeffer, 
1960). A second limitation is the compromise in complexity. As we mentioned, the most complex 



types of grammars are often too complex to parse, while simple grammars can be too trivial and 
less effective than other models. A third limitation is that grammars are purely structural and 
hence they don't deal with the semantic and social implications of music. Despite these 
limitations, the scope of grammars for modeling different kinds of music is huge. In computer 
music, where most applications rely on some sort of storage, grammars can be used to represent 
structure in a very broad sense. 

Holtzman's Generative Grammar Definition Language (GGDL) was developed as a tool for 
investigation of structural aspects of music using a computer (Holtzman, 1980). The language 
could be used both by composers and musicologists. GGDL allowed to specify type 0 (i.e. free) 
grammars and provided support for phrase structure rules and transformational rules. Phrase 
structure rules are standard formal grammar string rewriting rules. Since many rules can be 
applied at  a given point, the system provided a mechanism for defining functions to control this 
choice. For example "blocked" generation allows random choice of rules but  restricts the use of a 
rule until all the possible selections have been made. Metaproductions are a special type of 
rewrite rule that  allow the generation of rewrite rules at initialization time, before actual variables 
are initialized. Transformation rules modify the strings generated by phrase structure rules in 
different  ways, such as transposing them or inverting them. Finally, GGDL provided a means for 
mapping abstract  symbols to actual sounds synthesized with the possibilities offered by 
computers of the time. Holtzman provided a complete example of the generation of a piece. As a 
given grammar can generate a large number of pieces, the composer is encouraged to experiment 
with the program until an acceptable result  is obtained. This resort  to manual experimentation can 
be seen as an effect  of the lack of restrictions that  the language imposes to grammars. The author 
also explained how Schonberg's Trio could have been generated by the example grammar. Still , 
the system doesn't provide any automatic support for such musicological analysis. 

Kippen and Bel's development  of the BOL processor system (Kippen and Bel, 1988) has been 
extensively documented along different  phases. The system was originally conceived for 
linguistic analysis of North-Indian tabla music, a very formalized system that  uses an oral 
notation system of mnemonic symbols called Bols. Tabla music is usually improvised, typically 
involving permutations of a reference pattern. Expert musicians can assess whether a given 
permutation is correct  or not. On this basis, the authors tailored several formal grammars that 
reflected correct  variations. The particularities of tabla music led to the introduction of different 
context-sensitive rules, such as negative contexts (a string is replaced except if found in a given 
context) in order to reflect  the description of the rules by musicians. The main components of the 
systems are the inference engine, which generates sentences from the grammar, and the 
membership test that  determines whether a given sentence belongs to the grammar. A graphical 
interface allowed users to perform both analysis and synthesis. In order to parse strings 
introduced in the graphical editor without the full formal structure specification, a system of 
templates was introduced. A second iteration of the Bol processor, named BP2 targeted grammar-
based music composition from a more general perspective, allowing composers to specify their 
grammars to generate sound object compositions. Because of this focus on composition, BP2 
omitted the parser mechanism and allowed a more free approach to grammar specification, 
subordinating the issue of correctness to aesthetic considerations. 



Finally, one of the most well-known uses of grammars for music composition is David Cope's 
Experiments in Music Intelligence (EMI) (Cope, 2001). Over the years, Cope has refined a 
database-driven system that  imitates the compositional style of classic composers. The works of 
the target composers are segmented and described in a database, and each fragment is assigned to 
a category according to a system called SPEAC: Statement, Preparation, Extension, Antecedent 
and Consequent. Such categories attempt to define a basic formalization of the dynamics of 
tension and relaxation in western tonal music. Thus, the system defines a set of rules that make a 
sequence of patterns of different  categories correct. For example, an Antecedent fragment can 
only be followed by an extension or a consequent  fragment. The music generation engine is based 
on an Augmented Transition Network, which allows for faster parsing and generation of context-
sensitive rules.

One issue of music grammars that  is not covered by linguistics or formal languages literature 
is parallelism (Roads, 1982). Both Roads and Holtzman made use of parallel rules, where two 
parallel tokens are meant to start at the same time. However, parallel rules introduce some 
ambiguity. For example if we have a musical sequence "AB" and a parallel rewriting rule "A → 
D/E" (meaning that D and E start at  the same time), it is not clear, upon replacement of A, if B 
will follow after D or after E. Graph grammars provide a general framework that  allow us to deal 
explicitly with sequential and parallel structures. 

Graph Grammars

Graph grammars were introduced by Pfaltz and Rosenfeld in the late 1960s (Pfatz and Rosenfeld,
1969) as an extension of traditional grammars to languages of directed graphs. A directed graph is 
defined as a tuple (N,E) where N is a set  of nodes and E a set of edges that connect  nodes in a 
certain direction. Clearly, strings are a class of directed graphs where symbols are nodes and 
edges define the sequence of symbols. In this sense, edges of a string define a total order relation. 
If cycles are forbidden in a directed graph (where cycles are defined as loops involving more than 
one node), the set of edges defines a partial order relation on the nodes, which allows the 
generalization of string grammars to acyclic directed graphs. 

A graph grammar can be defined in similar terms to string grammars. However, graph 
rewriting productions are more complex than string rewriting productions as they have to define 
how to connect the result of the production to the enclosing graph. Thus, productions are defined 
as triples (α, β, E) where α is the (sub)graph to be replaced and β is the replacement, while E 
defines the embedding of β in the host graph. Graph grammars can be categorized in the same 
way as string grammars. For example, node replacement grammars (Engelfriet  and Rozenberg, 
97) are context-free graph grammars where the left hand of each production is restricted to a 
single node. 

Development of graph grammars has continued over the years both at a theoretical and at  a 
practical level fostered by applications very diverse fields such as image recognition or graphical 
languages for engineering (Ehrig, H., Engels, G., Rozenberg, G. and Kreowski, H., 1999). The 
extension of strings to graphs seems naturally suited for music representation by allowing 
parallelism. However, explicit  mention of graph grammars for music is rare in the literature. 



Some works  (Cook and Holder, 2000, Madsen, 2003) have showed their use for mining classical 
music scores represented as graphs with multiple possible connections between consecutive 
notes. Since these connections are not  specified in the score, this approach bears a high level of 
complexity that is not needed in the context  of music composition. In the tradition of composing 
grammars, music surface may be represented by a rooted tree, where the direction of links 
indicates temporal sequences (note that  this is different  from parse tree that could represent  a 
musical piece as a vertical hierarchy). A rooted tree can be defined as a directed acyclic graph 
with a root node where there is a unique path from the root node to any node. Intuitively, this 
structure forbids two things. On one hand, no cycles can exist  in the graph. This means that edges 
define a partial order relation, which allows them to represent time sequences. Also as shown by 
Pfatz and Rosenfeld (1969), acyclic graphs have the property of being contractable, which allows 
the definition of grammar expansion rules. One problem with  acyclic graphs is that it's quite 
common in music to use cyclic structures. Since loops (i.e, edges from one node to itself) are still 
possible with respect to the partial order relation, musical cycles can be understood as a finite 
number of repetitions of a single node, to which a graph has been contracted (figure 2). A second 
restriction of this representation is that  a given node can only be the target  of one edge. Two 
edges arriving at  the same target would imply the scheduling of the same node (and all the 
following structure) at two different moments in time, which has the effect of creating multiple 
auditory tracks from the same graph specification, and breaking the intuition of the temporal 
sequence of the representation.

 

An example of such approach is shown in figure 3. Figure 3a shows a rhythmic pattern in a 
visual time grid as is common in many music programs. Each row of this grid is mapped to a 
different  percussion instrument. Figure 3b represents the same pattern in a graph. An initial node 
has been added to represent the common starting point. From then on, time is determined by the 
duration of each sound object, including silences. Assuming all nodes have a fixed duration, this 
representation is obviously equivalent to the previous one, but is based on the sound objects 
instead of the time grid. As this pattern could appear a number of times, one might wish to 

Figure 2.
A cycle can be 
avoided by 
contracting and 
repeating the graph



identify groupings. Figure 3c shows a layout that  better represents the relationship between the 
bass drum and the snare drum pattern. This sub-pattern can now be collapsed and reused 
elsewhere. 

The rest of this chapter presents and discusses XML representation of music as a network of 
sound samples using graph grammars. This implies the representation of music at  three distinct 
levels: grammar rules, musical surface and lexical mapping. Grammar rules represent  patterns 
that can be extracted from musical compositions. If a normative approach is pursued, 
compositions must  validate against these rules. In the field of computer music composition, we 
have seen that  grammars have been used by composers to define the rules that govern their 
pieces. Other examples of normative forms are conventional pop songs or sonatas. The process of 
composition then consists in the application and refinement  of the rules. Representation of music 
grammars can be used by music editing programs both to parse and validate compositions created 
by users.  Rules can also be understood as frequent  patterns that  are mined from several musical 
pieces and used to model the style of a user, group or community, and generate new pieces that 
follow these patterns. At  the surface level, it is useful to represent  music structure in an analog 
way to what  is presented to the listener. This is the most common kind of document that  is used to 
store and exchange music. The grammar approach provides the appropriate framework for the 
representation and computational manipulation of different  fragments of the surface 
representation. Finally, we need to represent  the mapping of the symbols in the surface 
representation to actual sounds and their physical location. This mapping can be defined as a 
direct link to sound resources, or it can be specified as an abstract description of a sound segment.

Figure 3.
Representation 
o f a d r u m 
pattern as a 
graph



GRAMMAR REPRESENTATION 

We have seen how grammars can be used both to parse or analyze the structure of musical 
compositions and to generate new compositions. This implies that  a grammar can be used as a 
compositional aid to analyze and model the style of different users or groups, and suggest 
potential interesting combinations of sounds. A grammar can also be seen as an agreement 
between remote collaborators working in different parts of a musical work. A central issue is how 
can we encode grammars in XML documents so that they can be shared among different 
programs and still remain readable. 

The most well known representation of (context free) grammars is the Backus-Naur Form 
(BNF). Essentially, it defines a grammar as a set of production rules, each one composed of a 
non-terminal symbol (the left  hand side of the production) and a set  of alternative possible 
replacement  strings, composed of both terminal and non-terminal strings. Several variations of 
this form exist and are widely used in the definition of programing languages and protocols. An 
example of XML representation of grammars that  is equivalent to a BNF variant can be found in 
the speech recognition grammar specification (http://www.w3.org/TR/speech-grammar), which 
provides the option of ABNF and XML representations. Rule definitions have an attribute that 
uniquely identifies the rule within a document. Thus the Universal Resource Identifier (URI) of a 
rule is absolutely defined by the URI of the document  and the identifier attribute of the rule. A 
rule definition contains rule expansions, which may be tokens, rule references, or sets of any of 
both (sequences, alternatives and repeats). This limits the scope of these grammars to context-free 
grammars, where each rule represents a variable in the grammar and can be expanded to 
sequences or alternatives of variables and terminals. Tokens are terminal symbols (in the case of 
speech recognition grammars, tokens are usually text). Rule references are simply references to 
URIs of other rules. Sequences are defined by the order of XML elements, while alternatives are 
defined by a specific tag. Repeats are marked by an attribute in the repeated element. 

This example illustrates some straightforward aspects of the design of XML representations of 
grammars, such as the nesting of rules and the use of references. For music representation it  is 
common to try to preserve context  sensitivity, depending on the level of automation that is 
needed. Context-sensitive grammars are usually quite complex for computational manipulation, 
but some composers chose to manually deal with such grammars in the 80s. Context sensitivity 
implies that  both the left  hand and the right  hand of a production rule can be represented as a 
compositions of tokens and references to other rules. On the other hand, musical grammars will 
need to accommodate parallelism, so these compositions can be represented as graphs. The 
representation of graphs is discussed in the next  section. However, graph grammars introduce the 
issue of embedding, which must be taken into account for the representation of rules.

A graph grammar rewriting rule defines that  a given subgraph (embedded in a host graph) can 
be replaced by another subgraph. The problem is: how will this new subgraph connected to the 
host graph? In string grammars, embedding is trivial. A string can be seen as a simple graph 
where each token is a node connected to the following token with a directed edge. A string 
replacement  rule obviously implies connecting the first token of the new string to the token that 
preceded the replaced string, and the last token to the token that followed the replaced string. In 
graph grammars, the replaced subgraph can have an arbitrary number of connections to the host 
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graph depending on the problem. Again, this can be simplified in the case of context-free 
grammars. Several strategies, such as Node Label Controlled (NLC) embedding have been 
defined for node replacement  grammars (Engelfriet  and Rozenberg, 1990). In NLC grammars, 
embedding rules are defined globally for all rules as relations among nodes with some specific 
labels. It  has been shown that this kind of grammars is less general for the purpose of graph 
rewriting than other grammars where embedding rules are defined locally. However, this 
mechanism can be used as a simple approach to define musical grammars. For example, one may 
concede that any music fragment has a starting point and an ending point. A node replacement 
grammar can then be defined so that when a node is replaced by a graph, the starting point 
inherits incoming edges of the replaced node, and the ending point  inherits its outgoing edges. 
The ending node does not need be the one that ends last. Continuing with the example of a drum 
loop, the last  cymbal sound in a drum pattern can be less important than the last  bass drum or 
snare sound to define the end of the pattern. This strategy does not allow maintaining parallel 
connections among "tracks" in a single expansion. Still, it can be argued that the need of such 
parallel connections implies the need of separate rules. On the other hand, synchronous start  of 
several sounds (parallelism) will require the addition of a virtual initial node with no sound. An 
example implementation of this idea is described later.

SURFACE REPRESENTATION 

The concept of surface structure was introduced in the context of linguistics by Chomsky to 
emphasize the power of grammars to describe the "deep structure" of a language. From the point 
of view of a generative grammar, the observable structure of sentences is able to convey meaning 
because it  has been generated by the rules of a grammar. Jackendoff and Lehrdal (Jackendoff and 
Lehrdal, 1981) popularized the identification of the score representation of music in the western 
tradition with the "musical surface". While the score representation is limited with respect  to 
other musical cultures, the use of structured documents to represent musical surface can be used 
to share musical ideas of a wide range of styles and cultures. The point  of the grammar approach 
is that the surface representation should reflect sequences and parallelism as relationships among 
musical events, and not merely represent  their position in a time line. In this sense, the general 
use of timed events for storing and reproducing music implies that the actual musical structure is 
not taken into account by programs, which hinders their use for collaborative composition. 

Many XML representations of music surface have been proposed for traditional western 
notation. Since they are subdivided in parts and measures, music scores can be represented 
naturally in XML as hierarchies. This is the case for example of MusicXML and MDL (Good, 
2001). Still, there is a wide variety of musical practices that cannot be represented with western 
notation. A representation of music as an ensemble of audio segments can be used for some of 
them. This approach was enabled by the MPEG-7 standard with the definition of the Segment 
Descriptor Scheme (DS), a description scheme for multimedia objects that allows defining them 
as compositions of segments. The MPEG-7 Segment DS allows the definition of hierarchies and 
arbitrary relationships between media segments such as audio. Still, the standard is more oriented 
to the description of existing content (e.g. for indexing and navigation) than to the creation of the 



new content.  On the other hand, the standard addresses all kinds of multimedia content, including 
video, images and 3D. This generality adds a lot  of overhead by introducing many complexity 
layers that are not needed for music composition.

As described earlier, a relatively general approach to music surface representation is to use a 
graph where nodes represent  sound objects that can be linked to audio files. By restricting this 
graph to a rooted tree we can then easily cut and collapse fragments of a music document into 
grammar variables, or meaningful units that can be shared and reused. From a conceptual 
standpoint, the main issue with this approach is that  silence is no longer considered an empty 
space, but  a part of the composition. This contrasts with the “ruler-style” representation of time 
that has become general in music sequencers, although not with the representation of silence in 
traditional music notation. In this sense, the use of graph notation assumes that  the sound objects 
associated to terminal tokens of the grammar already have an appropriate length with respect  to 
the rhythm of the piece. The lexical map should allow to specify start and end points if the 
represented object is a fragment of the referenced sound file.

We can now simply focus on the representation of music fragments as graphs. A graph is 
usually described as a set of nodes and a set of edges. A general approach to representing graphs 
in XML is GraphML (http://graphml.graphdrawing.org). GraphML documents basically contain 
lists of node and edge elements. Node elements have a mandatory identifier attribute, and edges 
refer to node identifiers in their source and target  attributes. A node identifier is necessarily 
unique only within a graph document, and is used to represent the structure of the graph. Thus, it 
cannot be used to represent  any other information. Additional data can be defined for nodes and 
edges but  is kept  separate from the structure. GraphML aims to gather some consensus as a 
general way to exchange graph data. In this sense, using GraphML for music applications could 
enable the use of general purpose graph drawing programs and libraries for music editing. 
However, GraphML is not targeted at the definition of grammars. On the other hand, music 
applications can benefit from a more specific format that  defines music oriented restrictions 
directly in the XML schema definition. For the case of music surface representation, nodes 
represent terminal tokens that at  some point  are associated to sounds. While in GraphML nodes 
can be absolutely identified by the document  URI and the node identifier, it may be convenient 
that node elements can directly point to their lexical mapping (in the case of the musical surface) 
or to a rule definition (when graphs are used in the grammar specification). With respect  to edges, 
additional information may typically not be necessary, but  some uses can be described. For 
example for the representation of algorithmic compositions, edges can be labeled with probability 
values. 

LEXICAL MAP

The interest in formal grammars for music composition was mainly influenced by their success 
with natural language. In linguistics, formal grammars have made possible an understanding of 
the importance of structure in the transmission of information with independence of the meaning 
of words. In natural languages, the meaning of words has generally nothing to do with their 



written or phonetic representation but is conventionally defined. Musical objects, such as notes,  
generally do not refer to real objects or concepts, but  they are articulated into higher level 
structures like in other languages. This parallelism in the use and articulation of discrete symbol 
systems has been related to a more general principle of self -diverifying systems (Merker, 2006). 

The concept of a lexical map between terminal tokens of a grammar and actual sound objects was 
investigated by Roads (Roads, 1979). Roads defined three general forms of lexical mapping. The 
first  form is arbitrary mapping. The other two forms require a lexicon of sound objects that is 
grouped according to some acoustic features. This grouping is understood as relevant to a 
grammatical function, so that  the mapping is not  arbitrary. In our drum loop example, this could 
be illustrated by a classification of percussion instrument  sounds. Roads distinguished between 
injective (each terminal maps to one sound from the ordered lexicon) and polymorphic (one-to-
many, many-to-one) mappings. Polymorphic mappings were regarded as a complex situation 
equivalent to context-sensitive rules.

 Current  audio description technologies based on feature extraction and machine learning 
techniques allow us to establish functional groupings. This means that  grammars that use discrete 
descriptors as their terminal alphabet can be used for analysis and generation of music based on 
audio segments. Generally speaking, a lexical map will describe how the alphabet  of terminals 
used in the production rules is assigned an actual sound object. In this sense we will consider any 
alphabet to be a partition of a collection of sound objects, so that all elements of the database are 
mapped to some symbol of the alphabet. If the partition is hard (i.e., each sound belongs to only 
one group), the mapping is equivalent to “one-to-many” (“injective” mapping being a particular 
case when there is one sound per group). Soft partitions, such as fuzzy or overlapping partitions 
will pose additional problems. For example mining patterns in musical graphs where each node 
can have more than one label will result in a combinatorial explosion. A perhaps preferable 
approach is to consider different  musical facets (e.g.  pitch, timbre, amplitude ...) where hard 
partitions can be used to obtain a discrete symbol system, and use different grammars for each 
musical facet. 

 One question with regard to a partition of a database is how many symbols are desirable. 
While the answer to this question will depend on the application, it  may be desirable to consider 
symbol hierarchies. One example of hierarchy could be the a general classification of musical 
instruments into families and subfamilies. This approach allows the extraction of patterns with 
different  levels of detail. If patterns have to be found in a small amount of audio graphs, it  may be 
easier to work at  a higher level in the hierarchy. This generality can be called the “lexical level” 
of an alphabet. Many hierarchical clustering algorithms allow the construction of such 
hierarchies.  Supervised approaches based on hierarchies of classifiers are also common in audio 
data mining.



THE GRAPHEME REPRESENTATION 

As part of our ongoing research in collaborative composition systems, we have implemented a 
music representation based on the ideas exposed in this chapter. The system evolved from the 
graph representation used in freesound radio (http://radio.freesound.org), an online radio station 
based on sounds freesound.org where a genetic algorithm generates recombinations of sounds 
from the compositions created by users (Roma, 2008; Roma, Herrera and Serra, 2008). The 
composition program in freesound radio and the associated graph representation were developed 
with the perspective that  the sound file sharing community could benefit from greater possibilites 
for collaborative composition based on the sounds from the database. While the graph 
representation had a general good reception, it  lacked the modularity of the grammar approach. 
The current framework based on graph grammars makes it  possible for users to share 
intermediate representations, and to exploit the generative aspect of grammars as a compositional 
aid.

Our current  prototype consists in a music creation program based on sounds from the freesound 
database. This database currently holds more than 100.000 sounds. The interface allows a user to 
search for sounds in the database, with the help of a partition performed by a clusteirng algorithm.
Selected sounds are added to a palette, from which they can be dragged to a composition canvas.
The conposition interface allows the piece to be specified as a set of relationships between 
objects, rather than placing them in a predefined temporal grid. It  is possible, though, to 
arbitrarily add silence nodes and to clip existing sounds as well to edit  the start and ending points 
of an object. However, an important restriction with respect  to the previous version is that cycles 
are not allowed, which, as discussed, makes subgraphs contractable. The user is presented an 
initial and final special nodes that facilitate the embedding of any graph as a node of another 
graph. Since cycles involving several nodes are not possible, the only way to create a loop is to 
effectively contract a subgraph. This, along with the space limitation of the canvas, forces the 
user to continuously define the groupings that are meaningful in the composition, and hence the 
compositional process is split in several structural levels.

Each of the collapsed graphs are stored in an XML file that  describes structure of the 
composition, as well as an automatically rendered audio file and a bitmap file for representing the 
node in higher level compositions. The structure is divided betwen a “mappings” section and a 
“graph” section. The mappings section contains the lowest  level lexical mappings, which refer to 
actual sound files (terminals) or other graphs (variables). In the first case th mapping may include 
segment  boundaries. The graph section consists of a sequence of nodes and a sequence of edges. 
Each node refers to one of the mappings, and many nodes can refer to the same mapping. The 
surface of a complete piece can be obtained by recursively expanding all of the referenced 
subgraph using the embedding rules based on virtual start and end nodes, while collecting all of 
the terminal mappings.

Higher level lexical mappings are generated in the same format  using information stored in a 
generic database used by the application. These mappings depend on partitions of the database 
computed by a clusteirng algorithm. Thus, for the same graph, we can derive multiple patterns at 
different  levels of lexical generality, which allows us to detect common patterns among users. 
Some initial experiments with this system were described in (Roma and Herrera, 2010).



CONCLUSIONS AND FUTURE DEVELOPMENTS

Current  practices in computer-aided music composition often imply the manipulation and 
organization of sound objects represented as digital audio files. In this context, representations 
based on traditional notation are limited for music created with digital technologies. Still, 
meaningful structural representations are needed for collaborative use of these technologies 
enabled by networks. We have shown that graph grammars provide a comprehensive framework 
for the representation of music structure independently from the actual sounds that are used. 
Grammars provide mechanisms for analysis and generation of music that  can be used in 
networked applications with simple interfaces. As an extension of string grammars, graph 
grammars allow the manipulation of both sequential and parallel structures. Representation of 
musical graph grammars can be encoded in XML. 

We have presented an example implementation of this approach. Still, many possibilities 
remain to be explored. The described language has originated from a specific application but aims 
to be generalizable. We plan to evaluate it  in several applications related with popular practices 
such as rhythm programming or soundscape composition. Specific applications can benefit from 

Figure 4. Main elements of an editing session in audiograph: surface element (audiograph), 
lexical map (audionodemap), and extracted rules (audiographrule)

<xml>
    <audiograph name="4keys" author="simple machines">
        <maps>
            <audionodemap 
                key="9185__melack__claus_2#66267_141725"
                url = "9185__melack__claus_2"
                start="66267"
                end="141725"
                icon = "9185__melack__claus_2.png">
        </maps>
        <graph start="0" end="1">
            <nodes>
                <node id="0" x="-9" y="250"/>
                <node id="1" x="970" y="250"/>
                <node id="2" x="180" y="252" map="9185__melack__claus_2#66267_141725"/>
                <node id="3" x="401" y="268" map="9185__melack__claus_2#66267_141725"/>
                <node id="4" x="604" y="277" map="9185__melack__claus_2#66267_141725"/>
                <node id="4" x="795" y="269" map="9185__melack__claus_2#66267_141725"/>
            </nodes>
            <edges>
                <edge source="2" target="3"/>
                <edge source="3" target="4"/>
                <edge source="4" target="5"/>
                <edge source="5" target="1"/>
                <edge source="0" target="2"/>
            </edges>
    </audiograph>
</xml>



the definition of appropriate sound object  ontologies. Finally, probabilistic grammars can be used 
when many example compositions are available.
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