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Abstract

This work explores the limitations of exiting approaches to computational modelling and
description of tonality. Set class theory is presented as alternative or complement to existing
approaches. Set class similarity is presented as a tool for the representation of set class infor-
mation for structural analysis. A survey of set class similarity measures from the literature is
conducted as well as a rendering of traditional musicological terminology in the language of
set class theory. Six of the most suitable measures are chosen for further evaluation. An anal-
ysis methodology is outlined which emphasises systematicity and perceptual relevance. This
methodology consists of a number of computational techniques and is used to analyse specific
musical examples. The analytical potential of the similarity measures is evidenced through the
reconstruction of basic music intuition and analysis using the proposed methodology.
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1 Introduction

The objectives of the present work are principally concerned with descriptive modelling of tonality
using set class theory. In particular, the analytical potential of set class similarity measures will be
assessed and evaluated through practical demonstration within a specific methodological framework.
The tentative goal, therefore, is to present this approach in such a way as to make it relevant to
the wider community of music researchers, such as those in MIR.

1.1 Problem

1. Existing computational description of tonality is often limited in its scope.

2. The predominant use of template matching for chord and key estimations limits the knowledge
of music-capable systems to repertoire of the major-minor paradigm. This narrow view of
tonality is insufficient for even some western music.

3. The predominant use of non-musical similarity measures in MIR such as Euclidean distance
and correlation seems counter-intuitive in many cases.

4. The above may be contributing to the “semantic gap”.

1.2 Objectives

1. To adopt a systematic approach to description of tonality.

2. To justify set class analysis as a systematic descriptive tool, capable of relating useful musical
information as well as having a degree of perceptual relevance.

3. To position set class analysis among existing methods of tonal description such as chroma
vector time-series.

4. To create a comprehensive and practical survey of set class similarity measures.

5. To examine the measures in terms of systematicity and perceptual relevance.

6. To develop techniques for the representation of set class information so as to expose meaningful
musicological information.

7. To utilise set class similarity in these representation.

8. To evaluate the utility of these similarity measures through exploration of SC information to
extract a priori knowledge about specific pieces. The analytical potential of the model will
be evidenced through specific analysis examples.

1.3 Outline

Part I comprises a concise literature review containing background information and some basic the-
ory. Chapter [2| addresses the challenges and problems involved in descriptive modelling of tonality
as a means of justification for the proposed approach. Chapter [3] introduces the basic concepts
of set class theory including set class similarity measures. Chapter [ gives a basic description of
multidimensional scaling techniques and how they can play a role in set class analysis. Chapter [f]
contains a review of the relevant tonal models that exist so as to give context work that follows.

Part II contains a description of the contribution of this work. Chapter [f] contains the outcomes
of a comprehensive survey of set class similarity measures that was carried out. Chapter [7] presents
a number of techniques for obtaining and representing a set class description of a musical piece and
describes the relationship between parameters involved in the analysis process. Chapter [§ contains
a demonstration of each computation technique using real musical examples.

Part III presents a summary of the findings and discussion of the work with Chapters [9 and
containing conclusions and future work respectively.

Part IV contains appendices. Appendix [A] contains a explanation of each similarity measure
from the literature. Appendix [B] contains additional information regarding the chosen measures.
Appendix [C] contains a set class reference guide for pairing common musical objects with their
corresponding set classes.



Part I
Background

2 Tonality

2.1 Defining Tonality
2.1.1 General Definition

Tonality is a notoriously complex musical phenomenon and numerous definitions have been proposed
from a variety of viewpoints. Perhaps the most general definition is that provided by [Hyer| (2013]):
“. refers to the systematic arrangements of pitch phenomena and relations between them.”
Explanations of tonality have been provided through many different disciplines (acoustics, music
theory, linguistics, cognitive psychology) and a detailed discussion of these areas is certainly beyond
the scope of this work. However, it is generally agreed that tonality is an abstract cultural and
cognitive construct that can have many different physical representations.

2.1.2 Babbitt’s Domains

Babbitt| (1965|) proposed three domains to categorise different types of representation of music:
acoustic (physical), auditory (perceived), graphemic (notated). Western music theory provides a
lexicon for describing abstract tonal objects with terms such as note, chord and key. These objects
have a hierarchical relationship and the meaning of these labels is highly dependent on musical
context and the scale of observation. Musicological descriptions, which constitute the majority of
reasoning about tonaility, reside mainly in the Babbitt’s graphemic domain, although arguably they
reflect some aspects of the other two. Each domain, whilst connected to every other, provides only
a projection of the musical whole and examination of tonality from just one will most likely result
in an incomplete picture. However, these three domains provide a convenient framework for the
discussion that follows.

2.2 Modelling Tonality

The challenge of mathematically modelling aspects of tonality has been approached in numerous
ways and from different domains. In the graphemic domain, musicologists and composers have
proposed theoretical models, attempting to rethink tonal theory from a mathematical perspective.
These models employ different branches of mathematics such as geometry (Tymoczko, [2012) or
group theory (Ring, 2011) to describe harmonic structure. From the auditory domain, cognitive
psychologists have built models of tonal induction based on perceptual ratings of tonal stimuli
(Krumhansl, [1990)).

2.2.1 Tonality as Context

Many models approach the concept of tonality as a context, within which the relations and hier-
archies of tonal phenomena can be understood. A sense of tonality can be induced when musical
stimuli resemble some a priori contextual category. For western music of the major-minor period,
key signatures comprise a collection of categories that give context to the tonal components of
music. Martorell| (2013)) identifies three important aspects of tonality as context: dimensionality
(the relatedness or “closeness” of categories), ambiguity (reference to two or more categories simul-
taneously) and timing (the dynamics of tonal context). He highlights the importance of a models
capability to describe these aspects.

2.2.2 Tonality in MIR

The MIR community is primarily concerned with the extraction of tonal descriptors from audio
signals such as chord and key estimates. Most systems use chroma features as a preliminary step,
obtained by mapping STFT or CQ transform energies to chroma bins. Template matching is used



to compare the chroma vectors to a tonal model (contextual category) using some distance measure.
A commonly used tonal model for key estimation are the KK-profiles (Krumhansl, [1990) (5.3) (e.g.
in |Gomez(2006|). Distance measures such as inner product (e.g. in|Gomez 2006|) and fuzzy distance
(e.g. in|Purwins et al.[[2000) are used to compare vectors. Statistical methods, such as HMMs, have
been used for chord and key tracking (Chai, [2005)). Of addition interest in the field is the concept
of musical similarity (for music recommendation, structure analysis, cover detection etc.). [Foote
(2000) computed self-similarity matrices for visualisation of structure by correlating the MFCC
feature vector time-series. |Gomez| (2006) proposed the application of this method to tonal feature
vectors.

2.2.3 Similarity

The importance of defining the similarity or closeness between musical phenomena, be it theoretical,
physical or perceptual, is central to almost every model of tonality and often leads to a geometric
configuration of tonal objects. The concepts of similarity and distance is discussed further in
Chapter [f] where a review of spatial models of tonality is given.

2.3 The Semantic Gap

2.3.1 Acoustic Domain

Wiggins| (2009)) discusses, what is referred to in MIR as, the “Semantic Gap™ the inability of
systems to achieve success rates beyond a conspicuous boundary. He examines the fundamental
methodological groundings of MIR in terms of Babbitts three domains, discussing the limits of each
representation and regarding the discarnate nature of music. He concludes that the audio signal
(acoustic domain) simply cannot contain all of the information that systems seek to retrieve. He
points towards the the auditory domain as the chief residence of music information and urges for
in not to be overlooked in MIR and wider music research.

2.3.2 Graphemic Domain

Furthermore, Wiggins criticises the purely graphemic approach and the tendency of music research
to presuppose musicological axioms. [Wiggins| (2012)) argues that music (tonal) theory is, rather
than a theory in the scientific sense, a highly developed folk psychology (internal human theory
for explaining common behaviour). Thus, the rules of music theory are not like scientific laws
but rather abstract descriptions of a specific musical behaviour. This idea challenges the validity of
formalising such rules in mathematics and prompts the question, “What is actually being modelled?”
He concludes that to apply mathematical models to musical output alone (scales or chords) without
consideration of the musical mind is a scientific failure.

2.3.3 Problems

The two assertions of Wiggins sit contrary to a number of the aspects of the tonal models discussed
in 2.2l Firstly, the major-minor paradigm, upon which many systems are based, whilst certainly
possessing perceptual significance, is still a musicological concept and therefore a misleading basis
for both mathematical and cognitive approaches. A second problem is that of the numerical methods
used by some MIR systems, in particular, distance measures. As will be discussed in Chapter 5]
similarity (and by extension distance) is a central part of the auditory domain. MIR systems often
uses distance measures from mathematics such as Mahalanobis (Tzanetakis and Cookl [1999) or
Cosine (Foote], 2000) with little consideration of their perceptual or musical significance.

2.4 Systematicity
2.4.1 The Musical Surface

Having cautioned against a purely musicological approach, Wiggins| (2009, pp. 481) proposes a
compromise: to adopt a bottom-up approach to music theory, exploring the concepts through
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systematic mid-level representations. He states that “methods starting at, for example, the musical
surface of notes is a useful way of proceeding” The concept of musical surface is illustrated by
Huovinen and Tenkanen (2007, pp. 159) with a metaphor: “...to approach a musical landscape
not by drawing a map, which necessarily confines itself to a limited set of structurally important
features, but by presenting a bird’s-eye view of the musical surface — an aerial photograph, as it
were, which details the position of every pitched component.”

2.4.2 Systematic Description

Martorell| (2013)) also advocates this mid-level approach, observing that surface description influ-
ences analytical observation and that, for an unbiased view, the researcher must be provided with
the adequate raw materials with which to make more in-depth observation. Such a systematic, de-
scriptive model would be fundamentally independent of high level concepts such as chords and key
but, at the same time, capable of capturing them. Martorell| (2013) also discusses the importance
of systematicity in terms of dimensionality, ambiguity and timing. He finds that models based on
the major-minor paradigm are incapable of adequately describing tonal ambiguity even in some
Western music (Martorell, 2013, chap. 3).

With a systematic description of the musical surface, theories and models from different domains
can be gathered and evaluated together in the same analytical arena, thus helping to bridge the
gap between traditional musicology, cognitive psychology and MIR.

3 Set Class Theory

One such method available for systematic description of the musical surface is set class theory. Set
class theory is a system for analysing the pitch content of music. It uses class equivalence relations
to reduce the amount of data required to describe any collection of pitches. This chapter will outline
the basic principles.

3.1 Pitch Class Set

Set class theory uses octave equivalence. In Western equal temperament (TET), a pitch class (PC)
is an integer representing the residue class modulo 12 of a pitch (?)Babbitt1965) and indicates the
position of a note within the octave. A PC-set is a collection of PCs ignoring any repetitions and
the order in which they occur. PC-sets are notated as follows {0,1,2,3,4} with PCs ordered from
lowest to highest as a convention (Example 1). The cardinality of a set, denoted #S8, is the number
of PCs it contains (Example 2). There are 4096 (2'2) unique PC-sets with which any segment of
music can be represented.

Table 1: Notes and corresponding pitch-classes

Note C C# D D# E F F# G G# A A# B
PC 0 1 2 3 4 5 6 7 8 9 10 11

Example 1: PC-set Pitch-set S = {A4,C5,E5,A5} (A minor)
PC-set S ={9,04,9} = {0,4,9}
Example 2: Cardinality #S =3

3.2 Set Classification

Defining equivalence classes of PC-sets further reduces the total number of tonal objects. A set-class
(SC) is a group of PC-sets related by a transformation or group of transformations. The two types of
transformation commonly used are transposition and inversion. A transposition, Tn(S), transposes
the set, S, by the interval, n, (by adding n to all PCs, Example 3). An inversion, I(S), inverts the
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set S, replacing all PCs with their inverse (12-PC, Example 4). From these two transformations it
is possible to define three types of SC: Tn, Tnl and I.

Example 3: Transposition S = {0,4,9}, T3(S) = {3,7,0} = {0,3,7}
Example 4: Inversion S ={0,4,9}, I(S) = {11,7,2} = {2,7,11}

Transpositional (Tn):  All PC-sets that can be transformed to each
by transposition belong to the same class.
There are 351 distinct Tn types.

Inversional (I): All PC-sets that can be transformed to each
other by inversion belong to the same SC.
There are 200 distinct I types.

Transpositional/ All PC-sets that can be transformed to each

Inversional (Tnl): other by transposition, inversion or both
belong to the same SC.
There are 223 distinct Tnl types.

The Prime Form of a PC-set is a convention for denoting the SC it belongs to. The convention
was introduced by Allan Forte (Forte] [1973) for Tnl types and has since been adopted by the
majority of theorists. In addition, he devised a system for ordering Tnl-type SCs and assigning to
each one a cardinality-ordinal number. For example, the Forte number 3-11 refers to the 11th SC
of cardinality 3. This convention has been modified for use with Tn types by adding A and B to
the names of inversionally related SCs.

One additional concept is that of cardinality-class (nC), which refers to all the SCs of cardinality
n. Cardinality-class 2 is commonly referred to as interval-class (IC) and there are 6 distinct interval-
classes.

Table 2: Forte’s Prime form and numbering convention

PC-set {0,4,9}
Prime Form (Tnl) {0,3,7}
Prime Form (Tn)  {0,4,7}

Forte Name (Tnl) 3-11
Forte Name (Tn)  3-11A

Table 3: Numbers of objects

Object type  No. Objects

Pitch 88
Pitch set 3e26
PC 12
PC-set 4096
Tn-Type SC 348
I-Type SC 197
Tnl-Type SC 220

3.3 Vector Analysis
3.3.1 Membership and Inclusion

Two concepts that are crucial in set class theory are membership and inclusion. Membership of a
set is denoted p € S and means that PC p is a member of set S (Example 5). Inclusion in a set is
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Table 4: Cardinality Class

#nC
n Tn I Tnl
1C 1 1 1
2C 6 6 6

3C 19 12 12
4C 43 28 29
5C 66 35 38
6C 80 35 50
7C 66 35 38
8C 43 28 29
9C 19 12 12

10C 6 6 6
11C 1 1 1
12C 1 1 1

denoted Q C S and means that all members of set Q are also members of set S (Example 6). Q is
said to be a subset of S.

Example 5:  Membership 4 € {0,4,9}
Example 6: Inclusion {0,4,9} c {0,1,4,5,9}

3.3.2 Embedding Number

Lewin| (1979) applied these concepts to SCs to develop his Embedding Number, EMB(X,Y). Given
two SCs, X and Y, EMB(X,Y) is the number of instances of SC, X, which are included in (are
subsets of) SC, Y (Example 7). X is ring-shifted 11 times and each unique resulting set which is
included in Y adds one to the embedding number.

Example 7:  Embedding Number X = {0,4} and Y = {0,4,8}
so... EMB(X,Y) = 3

3.3.3 Subset Vectors

An n-class subset vector of X, nCV(X), is an array of values of EMB(A,X) where A is each of the
SCs in the cardinality-class, nC (Example 8). The Interval-Class Vector (ICV) is a special instance
of the nCV with n equal to 2. Vector cardinality, denoted #nCV(X), is the sum of all the terms
in the vector (Example 9). The length of a subset vector is given by the number of SCs in the
cardinality class, #nC.

Subset vectors form the basis of the majority of analysis performed by set class theorists. In
addition, many theorists have proposed modifications to the basic nCV to suit their specific purposes
and some of these modifications will be discussed in context where necessary.

Example 8:  Subset Vector S ={04,9}
20V(S) = ICV(S) = [001 11 0]
Example 9:  Vector Cardinality #ICV(S) = 0+0+1+1+1+0 =3

3.4 Set Class Similarity

3.4.1 Similarity Relations

The assessment of similarity between two SCs has been discussed in the literature for decades and
a large number theoretical models have been proposed. Different models approach the problem
from different conceptual standpoints and theorists have different opinions about the contributing
factors. All these models are described under the blanket term “similarity relations”. Despite the
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perennial fascination with the concept, little or no consensus exits as to what constitutes a good
similarity relation.

Castrén| (1994) provides a comprehensive and in-depth review of a large number of similarity
relations and categorises them according to some fundamental principles. Firstly, he distinguishes
between methods that produce binary outcomes and those that produce a range of values. The
former category, termed “plain relations”, include Forte’s R-relations (Forte, [1973)) and indicate
whether the two SCs are related in a specific way, which in turn may give some indication of
whether they are similar. The latter category, termed “similarity measures”, indicate a degree of
similarity, returning a value from a known range. This property appears to be more inline with the
perceptual notion of similarity and therefore the focus of this work shall be exclusively on similarity
measures.

3.4.2 Similarity Measures

The vast number and diversity of approaches to similarity measures renders concise summation
challenging if not impossible. The problem can only be approached by narrowing the focus to
a specific type. This work focuses on measures that use the Tn and Tnl-type SCs , and
furthermore we will only consider those methods based on vector analysis . These measures
usually involve the comparison of the SCs’ nCVs. Of this (still sizeable) subset, (Castrén| (1994)
identifies two main categories.

Single nC: Single nC measures compare the nCVs of the two SCs
for one particular value of n. Many of the relations
in this category compare ICVs (2CVs).

Total Measures: Total Measures consider the subsets of all
cardinalities contained within in two SCs. All the
relevant nCVs are compared to produce a final value.

Table 4 shows the majority of the Tn and Tnl-Type, vector based similarity measures from
the literature organised by theorist. Vector Type indicates whether the measure compares ICVs or
nCVs (nC%V, nSATV and CSATYV are all variations on the basic nCV). Card (Cardinality) indicates
whether the measure is capable of comparing SCs of different cardinalities while the Measure Type
indicates which of Castren’s categories it belongs to. nC indicates it is a Single nC measure and
TOTAL indicates it is a Total Measure. All these measure are described more thoroughly in [A]

3.4.3 Castren’s Criteria

In addition to his categorisation, Castren specifies a number of criteria which a good similarity
relation should meet. Later, these criteria will be used in assessing the suitability of the various
similarity measures.
Castren says that a similarity measure should:
C1: Allow comparisons between SCs of different cardinalities
C2: Provide a distinct value for every pair of SCs
C3: Provide a comprehensible scale of values such that...
C3.1: All values are commensurable
C3.2: The end points are not just some extreme values but can be meaningfully associated
with maximal and minimal similarity.
C3.3: The values are integers or other easily manageable numbers
C3.4: The degree of discrimination is not too coarse and not unrealistically fine
C4: Produce a uniform value for all comparable cases
C5: Observe mutually embeddable subset-classes of all meaningful cardinalities
C6: Observe also the mutual embeddable subset-classes not in common between the SCs being
compared.
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Table 5: Comparison table of similarity measures

SIMILARITY VECTOR MEASURE
THEORIST MEASURE TYPE CARD TYPE
K ICV SAME nC
SIM 1CV SAME nC
MORRIS ASIM ICV ANY nC
LORD sf ICV SAME nC
TEITELBAUM  s.i. ICV SAME nC
IcVD1 ICv ANY nC
IcVD2 ICV ANY nC
ROGERS COS ICV ANY nC
AMEMB2 ICV ANY nC
IcVSIM ICV ANY nC
ISIM2 ICV ANY nC
ISAACSON ANGLE ICV ANY nC
AK ICVv ANY nC
MEMBn nCV ANY nC
TMEMB nCV ANY TOTAL
RAHN ATMEMB nCV ANY TOTAL
REL2 ICV ANY nC
LEWIN REL nCVvV ANY TOTAL
%RELn nC%V ANY nC
T%REL nC%V ANY TOTAL
CASTREN RECREL nC%V ANY TOTAL
SATSIM nSATV ANY nC
TSATSIM nSATV ANY TOTAL
BUCHLER AvgSATSIM nSATV ANY TOTAL

3.5 Perceptual Relevance

The many equivalence relations used in PC-set theory give rise to a highly abstract description of
musical objects. Thus, an important question to be asked is whether these theoretical assumptions
and models of similarity reflect perceptual equivalence. This chapter contains a summary and
discussion of some relevant studies.

3.5.1 Octave Equivalence

Pitch is a percept that derives from a particular harmonic structure and is roughly proportional
to the logarithm of the fundamental frequency. This allows pitch to be perceptually modelled as a
straight line. Music psychologists have observed a strong perceptual similarity between pitches with
fundamental frequencies in the ratio of 2:1. This property of octave similarity leads the straight line
model of pitch to be bent into a helix. Division of the octave into a number of categories is thought
to offer a more efficient cognitive representation in memory and thus confers evolutionary advantage.
The resulting pitch equivalence classes are implicitly learned through repeated exposure. TET has
12 pitch equivalence classes which, in PC-set theory, are modelled as a circular projection of the
pitch helix. Thus the two most fundamental components of PC-set theory, i.e. octave equivalence
and pitch-class labelling, would appear to have a solid basis in perception.

Gibson| (1988) investigated the perceived similarity of pairs of chords with varying numbers of
octave related pitches. He found that in general chords with identical PC contents were perceived
as more similar than chords with near identical PC contents, regardless of the octave of the pitch
components. However, in further studies he his findings suggest that there are other factors that
play a significant role (Gibson 1993).
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3.5.2 Set Class Equivalence

Some researchers have attempted to examine whether there is perceived equivalence between differ-
ent manifestations of a PC-set. [Krumhansl et al.| (1987 presented subjects with sequences of tones
derived by transforming two different PC-sets. They noted that subjects were able to distinguish
between the different sets both in neutral and musical contexts.

Millar| (1984) investigated the perceptual similarity of different PC-sets derived from the same
set class under Tnl classification. Subjects were presented with three-note melodies and asked
to judge which was equivalent to a reference melody. Some melodies preserved the SC identity
whilst others did not. She found transpositions to be perceived more similar than inversions and
in addition she discovered that the order of the notes and melodic contour was a strong factor in
perceived similarity.

Some authors have questioned the perceptual relevance of using Tnl and I equivalence as a basis
for set classification. |Deutsch| (1982)) seems unconvinced by evidence for the perceptual similarity
of inverted intervals. This can be illustrated by the example of major and minor triads which, while
perceptually distinct, are equivalent under Tnl and I equivalence.

3.5.3 Perceived vs Theoretical Similarity

A number of studies have been done to ascertain the connection between perceptual similarity
ratings and the theoretical values obtained from some set class similarity measures. A large number
of relevant studies are summarised by Kuusi (2001) and the most significant ones are mentioned
here.

Bruner| (1984)) used multidimensional scaling on subjects’ similarity ratings between trichords
and tetrachords and on the similarity values obtained from SIM. She compared the 2-dimensional
solutions and found there to be little correlation.

Gibson|(1986) investigated non-traditional chords. He compared subjects’ ratings with similarity
assessments calculated from Forte’s R-relations and Lord’s similarity function. He also concluded
there was little correspondence between the two.

Stammers| (1994) compared subjects’ ratings of 4 note melodies with the theoretical values
obtained from SIM. She found the ratings of subjects with more musical training to be more
correlated with the SIM values.

Lane| (1997) compared subjects’ ratings of pitch sequences with corresponding values of seven
ICV-based similarity measures: ASIM, MEMB2, REL2, s.i., IcVSIM and AMEMB2 and concluded
there to be a strong relation.

Kuusi| (2001) compared subjects’ ratings of pentachords with the values obtained from 9 sim-
ilarity measures. He found there to be a connection between aurally estimated ratings and the
theoretical values and concluded that the abstract properties of set-classes do have some perceptual
relevance. He also comments on the way in which this kind of study is conducted, suggesting that
the way in which subjects are presented with the stimuli has a significant effect on the outcome.

3.6 Set Class Analysis

PC-set theory as means for descriptive modelling of tonality is not widely known outside of highly
theoretical circles and the use of set-class similarity measures seems mainly restricted to the theorists
who proposed them (for example, Isaacson||1996). The basic premise is simple: a musical piece is
segmented and each segment described by its SC. Similarity measures can be used to assess the
similarity between segments or between a segment and some reference SC.

Huovinen and Tenkanen! (2007) used a pentachordal tail segmentation policy (each successive
note defines a segment that includes the preceding four notes) and compared these segments to sets
7-1 (chromaticism) and 7-35 (diatonicism) using the REL distance (A.8.1)). They claim that the
visual results of their analysis “reflect pertinent aspects of our listening experience” (Huovinen and
Tenkanen), 2007, pp. 204).

Martorell (2013, chap. 5.3) uses a more systematic approach to segmentation using multiple
time scales. He proposes the class-scape, a two-dimensional visualisation of a piece of music with
time on the x-axis and segmentation time-scale on the y-axis. The presence of a single SC can be
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indicated by highlighting the segment or alternatively each segment can be shaded according to
its REL distance from a comparison SC. He emphasises that the class-scape is an exploratory tool
rather than an automated analysis system.

Perhaps the most crucial aspect of using SC descriptions for tonal analysis is the way in which
a piece of music is segmented. The issue of segmentation will be discussed further in Chapter

4 Multidimensional Scaling

Multidimensional scaling (MDS) is a numerical visualisation technique that, given a matrix of pair-
wise distances between objects, provides a geometric configuration of the objects in some abstract
space. It provides an efficient means of observing relationships in large, complex data sets and the
resulting dimensions often give valuable insight into the data as a whole.

4.1 Non-Metric MDS

Non-Metric MDS was first described by |Shepard| (1962) and it assumes that the distance matrix
values are related to points in an abstract N-dimensional Euclidean space. An important consid-
eration is that of the dimensionality of the solution. For comprehension and visualisation it is
important to minimise the number of dimensions however, there is a trade-off between the number
of dimensions and the accuracy of the model. For a given dimensionality, we obtain a value of
stress. Stress is a “goodness of fit” measure which characterises the distortion that occurs in a given
number of dimensions. As the number of dimensions increases the stress decreases and the choice
of dimensions should be based on interpretation.

4.2 Cluster Analysis

Cluster analysis (CA) is method for dealing with dimensions that are highly separable. First, the
most similar pair of objects are selected and grouped together in a cluster. The process is repeated,
creating a binary tree structure. The distance between objects is then related to their separation
along the branches of the tree.

4.3 MDS with Similarity Measures

Using MDS on the values produced by similarity measures is one way to approach an understanding
of the constructs they are measuring. There are two potentially interesting issues to consider.
Firstly, a measure may be inconsistent with itself, meaning that the geometries it produces are
not “robust”; changing the set of objects changes the distances between the original set. This kind
of problem cannot be observed through inspection of the values alone. The second issue is that
two different measures that are both self-consistent may produce very different geometries from the
same group of SCs. The question then is, what exactly do the measures measure?

5 Spatial Models of Tonality

5.1 Similarity and Distance

Judgements of similarity form the basis of many cognitive processes including the perception of
tonality. Similarity between two objects is often conceived as being inversely related to distance
between them in geometric space. For example, some tonal objects (chords, for example) are
perceived as close to one another whereas others are further apart. In addition, the number of
dimensions of the geometric space is in connection with the number of independent properties
that are relevant for similarity judgments. |Gardenfors| (2000) suggests that humans are naturally
predisposed to create spatial cognitive representations of perceptual stimuli due to the geometric
nature of the world we have evolved to inhabit. Therefore spatial modelling of tonality, as well as
helping to visualise the complex multidimensional relationships between tonal phenomena, has the
potential to reflect cognitive aspects of the way they are perceived.
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5.2 Spatial Representations

Throughout history theorists have proposed many spatial representations of tonality from different
domains. From the graphemic domain, Weber| (1851)) and |Schoenberg| (1954) both proposed simple
2-dimensional charts to display the proximity between keys. For representation of chords, [Riemann!
(1877) models major and minor triads as regions in a 2-dimensional space whilst 'Tymoczko| (2011])
proposes a variety high dimensional, non-euclidean chord spaces that reflect the theoretical princi-
ples of voice leading. From the acoustic domain, Shepard| (1982) proposes a five-dimensional model
to represent interval relations between pitches. Some theorists have attempted to incorporate rela-
tions between several levels of tonal hierarchy into one configuration. The “spiral array” of [Chew]
(2000)) is a three-dimensional mathematical model which simultaneously captures the relations be-
tween pitches, chords and keys. The “chordal-regional space” of [Lerdahl| (2001)) models the relations
between chords within a certain key.

5.3 Cognitive Psychology

The auditory domain has been addressed through cognitive psychology by [Krumhansl| (1990) who
used the probe-tone methodology (Krumhansl and Shepard, [1979) to establish major and minor
key profiles (12-dimensional vectors containing the perceptual stability ratings of each of the 12
pitch classes within a major or minor context). These profiles, know as Krumhansl-Kessler profiles
(KK-profiles), show the hierarchy of pitches in major and minor keys. Correlating each of the 24
major and minor profiles produced a matrix of pairwise distances which was fed to a dimensional
scaling algorithm. The resulting geometrical solution was found to have a double circular property
(circle of fifths and relative-parallel relations) which can be modelled as the surface a 3D torus.
Many spatial models of tonality have this double circular property whether it is implicit (Weber]
1851; |Schoenberg, [1954) or stated explicitly (Lerdahl, |2001)).

5.4 Set Class Spaces

Most of these models are limited to description of music in the major-minor paradigm and are not
capable of generalising beyond the “western common practice”. PC-set theory, once again, provides
a possible means to generalise to any kind of pitch-based music. By considering a collection of tonal
objects described by SCs, a geometric space can be constructed to model their relations based on
some theoretical principle. Some PC-set theorists have proposed explicit geometric spaces to model
relations between SCs. The distances in these spaces are expressed by models of similarity based
on voice leading (Cohnl 2003; [Tymoczkol 2012)) or ICVs and the Fourier transform (Quinn) 2006
2007)). However, these models are only designed to represent SCs of one cardinality-class at a time
and cannot model the relations between arbitrary collections of pitches.

Alternative spatial models are provided by the implicit geometries of the values produced by
the SC similarity measures discussed in [3:4] As mentioned in [f.3] MDS can be used on values
produced by similarity measure to create a geometric space. Kuusi (2001) and [Samplaski| (2005)
both applied MDS to the values produced from a variety of similarity measures. Samplaski used
Tnl-type SCs while Kuusi used Tn-type. They both found reasonably low-dimensional solutions and
attempted to interpret each of the dimensions. Kuusi interpreted three dimensions as corresponding
to chromaticism, wholetoneness and pentatonicism. Samplaski made similar observations but found
some dimensions in the higher-dimensional spaces difficult to interpret. Nevertheless, he concluded
that values from similarity measure tend to agree (with some exceptions) and that they measure
constructs relating to familiar scales (diatonic, hexatonic, octatonic, etc.).
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Part 11
Contribution

6 Similarity Measure Survey

So far, brief reference has been made to the extensive existing literature on set class similarity
measures . This chapter summarises the outcomes of an extensive survey of the different
models. The large number of measures are discussed in relation to Castren’s criteria in
order to gauge their suitability for use in systematic surface description models. The most suitable
models will be examined further.

6.1 Criteria

Castren’s criteria (see for similarity measures provide a basis for assessment of similarity
measures for our purposes. A detailed descriptions and justification for the criteria can be found in
Castrén| (1994, chap. 2), however here we will focus on one or two specific aspects. Table |§| shows
the list of similarity measures with marks indicating whether each of the criteria is met. In sections
to[6.4] specific criteria are used to exclude measures from further consideration with justification
in terms of systematicity and perceptual relevance.

Table 6: Castren’s Criteria
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6.2 Cardinality

Measures which fail to meet criteria C1, i.e. that cannot compare SCs of different cardinalities,
are clearly inadequate for systematic analysis of music, which might require the comparison of any
two arbitrary segments regardless of how many PCs they contain. Both s.i. and sf
were proposed specifically for SCs of the same cardinality and so will be excluded from further
discussion. Some other measures which were intended to compare SCs of different cardinalities
nonetheless have problems. Measures such as SIM and K give unintuitive values
when the cardinalities of the SCs being compared differ greatly and, in addition, the range of values
produced depends on the cardinality of the sets (failure to meet criteria C3.1). Measures of this
type will also be excluded.

6.3 Set Class Type

An important consideration when using similarity measures is the type of SC being compared.
Many of the measures are designed for comparison of Tnl-type SCs, however, owing to issues riased
in[3:5 regarding the perceptual relevance of invertionally related sets, here, measures will be selected
for use with Tn-type SCs. This means that the measure should be able to discriminate between
inversionally related sets. All the single-nC measures which exclusively consider interval content
(ICVs) in the comparison procedure can therefore be discounted, as inversionally related sets have
identical ICVs.

6.4 Measure Type

Although many theorists have supposed that interval-class subsets are of paramount importance
in similarity judgments, no thorough investigation has been carried out as to the exact perceptual
significance of subset cardinality. Single-nC measures presuppose that subsets of one particular
cardinality contribute to similarity above all others. In the interest of systematicity, we will not
make this assumption, instead assuming that subsets of all cardinalities are equally relevant and
should be considered. Similarity measures that exhaustively consider all subset cardinalities meet
criteria C5 and are “total” measures (see . The six total measures from shall therefore
become the focus of this work. Details on the specific formulations (including three versions of
REL) are given in Appendix

6.5 Total Measure Comparison

For a preliminary idea of the utility of the total measures it is useful to visualise the values produced
for comparisons involving some of the common tonal objects described in Appendix [C] This infor-
mation can be visualised as 2D grids with each square corresponding to the comparison between two
tonal objects and shaded according the distance between them i.e. the value of MEASURE-prime
(see . Figures|l{and [2|show two such grids for ATMEMB-prime and AvgSATSIM-prime respec-
tively. As can be seen, the values produced by the two measures are quite different. Thus, measure
selection will be an important part of the analysis and these grids will form a useful reference guide
when selecting parameters.

Plotting the absolute difference between the values in these grids gives a local indication of
comparisons for which the measures most disagree. Figure [3|shows such a plot, in which the lighter
areas indicate a higher degree of discrepancy between the measures’ values. A more quantitative
comparison of the measures can be obtained by correlation of the vectors containing all 61425
values. Figure [4 shows a grid with each square corresponding to a comparison between measures
and coloured according to the correlation value.

The shear quantity of values for all the measures means that a thorough and meaningful com-
parison of the would be difficult and time consuming. Still, from a superficial inspection of these
grids it is possible to draw some basic conclusions:

1. The values produced by the measures are sufficiently different as to produce different outcomes

in the proposed analysis.
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Figure 1: Chord Comparisons: ATMEMB-prime distances between common tonal objects
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Figure 2: Chord Comparisons: AvgSATSIM-prime distance between common tonal objects

2. Different measure possess different discriminatory power and give different contrast for differ-
ent collections of set classes.

3. Whilst all the measures can in principle discriminate between inversionally related sets only
ATMEMB and REL discriminate between major and minor triads.

4. AvgSATSIM and TSATSIM are very similar and the values they produce are overall lower
indicating greater proximity between common chord set classes.

5. AvgSATSIM and TSATSIM discriminate poorly between smaller set (cardinality 3/4) but
between between larger sets (cardinality 7+).

6. The values produced by TPREL are overall higher indicating greater separation between
common chord set classes.

7. ATMEMB gives a high degree of discrimination between set classes of very different cardinal-
ities.

8. RECREL and REL discriminate the best between smaller set classes (cardinality 3/4).

7 Analysis Methodology

This chapter describes a set of computational techniques that can be used in conjunction for analysis
of a musical piece. [7.1] gives a concise overview of the analysis process and introduces the key
variables whilst to give a more detailed explanation of the factors involved in the selection
of the parameters. In the interests of clarity, demonstration of the techniques with examples will
be postponed until chapter

In this work, analysis is done from digital scores in MIDI format. The advantage of this is that

it avoids the potential inaccuracies involved in extracting chroma from an audio signal. Symbolic
data such as MIDI allows direct access to the pitch material upon which the analysis techniques
are applied.
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7.1 Overview

The central component in analysis using similarity measures is the distance time series. This
provides a simple means of capturing how the pitch content of a piece evolves in time with respect
to a specific set class or sonority. It involves segmenting the piece using a fixed sliding window and
calculating the distance between each segment and a reference set class. Such representations of
tonal progression in time lend themselves very well to analysis of harmonic and musical structure.
Specific features of the curve can indicate structurally important events while repetitions in the
time series can indicate passages with similar tonal progressions. The first examples of distance
time series are in Figure .

There are three interdependent parameters which must be selected according to the specific
intentions of the analyst: Segmentation (window and hop size), the reference set class and the
similarity /distance measure. The segmentation determines the captured set class content, which
should be targeted according to its relationship to the reference set class. This relationship is
determined by the measure used, which must possess an adequate degree of discrimination so as to
produce characteristic changes in the time series.

7.2 Reference Set Class Selection

Selection of the reference SC will vary depending on the intentions of the analyst; different selections
will reveal different musical features and types of harmonic structure. In traditional musicology,
the components of harmonic structure are described by scales, chords and chord progressions. As
a preliminary step towards the reconstruction of this conventional analysis, it is necessary to make
some connections between common musical objects and set class theory. Appendix [C] contains
tables that list common chords, cadential progressions and scales with their corresponding set
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classes. Before selecting a reference set it is necessary to identify which of these basic groups are
most relevant to the analysis aims i.e. to establish the sets of interest. Below, three potential
reference sets are proposed with and given musicological motivation.

1. Major/Minor Triad (3-11A/3-11B): The triad is widely considered to be the basic building
block of western harmony. A distance time series with reference to the basic major or minor
triad will give an indication as to the complexity of the chords and harmonic progressions.

2. Perfect Authentic Cadence (6-Z25A): In much of western music cadences punctuate harmonic
progressions by suggesting varying degrees of resolution. A distance time series with refer-
ence to the perfect authentic cadence might contain characteristic features at the boundaries
between distinct passages.

3. Diatonic Scale (7-35): The pitch content of much western music is confined to the diatonic
scale. A distance time series with reference to the diatonic set would indicate the degree to
which the music is diatonic or signal the use of other scales and modulations.

7.3 Segmentation

Using a fixed sliding window to segment the music requires considered selection of the window
length and hop size so as to best target the sets of interest. The selection of these parameters
is a crucial stage in the analysis process, which is highly sensitive to the scale of observation. The
window size determines the cardinality of the sets which are captured, with larger windows typically
containing larger cardinality sets. The relationship between hop size and captured set class contents
is rather subtle: smaller hop sizes are required for observing the note-wise change in set class that
occurs in passages of sequential (horizontal) notes, whereas larger hop sizes can be used when the
harmony is built from concurrent (vertical) notes.

When working in the MIDI domain, an alternative segmentation policy can be adopted to
supplement the analysis process. This method, from Martorell| (2013}, chap. 5.3), is a fully system-
atic segmentation policy which exhaustively windows every possible combination of adjacent notes.
Martorell (2013} chap. 5.3.5) also specifies two compact representations of this data as a means of
observing the the global set class content of a piece:

Class Matrix is a 2d plot with time on the x axis and set class on the y axis. The set class of
each window is calculated and plotted as a horizontal line.

Class Vector shows the relative active duration of each class in the class-matrix expressed as a
percentage of the total duration of the piece.

The first examples of class matrix and class vector are shown in Figure |§| . This infor-
mation gives a global indications as to the types of sonorities contained within a piece and can
aid reference set selection. From this complete information it is also possible to view statistical
information about the time scale in which specific set classes or cardinality classes occur. This
information can inform the selection of window and hop size so as to best target the sets of interest.
The first example of this is in Figure |z| . Once the sliding window segmentation has been
performed, the captured set class contents can be viewed by superimposing them on top of the class
matrix and class vector. This representation gives an indication of the proportion of the overall
class contents that have been retrieved and thus the efficacy of the sliding window parameters. The

first example of this is in Figure [L1] (8.3)).

7.4 Measure Selection

As mentioned previously, different measures may be appropriate for different analysis contexts.
Grids such as those shown in form a simple way to visualise the values produced by a measure
and can give an indication of the relationship between the set classes in a in a specific time scale.
Comparison of these grids can reveal the strengths and weaknesses of the different measures. Often
it is useful to directly compare the time series produced by two measures by plotting both. This
technique is used throughout [§] In many cases this is the simplest way to select the best measure.

A further method available for understanding the relationship between set classes is through
multidimensional scaling. Spaces formed from the set classes contained in a specific segmentation
time scale can be used for comparing different measures and can aid the selection of comparison
set. Examples of this are in [8.6]

23



8 Analysis Examples

In this chapter the analytical potential of the similarity measures is evaluated through specific
analysis examples. The subjects of the analysis are described in [8.1] while, [8:2] to [8.6] contain
examples of the computation techniques described in [7}

In examples where distance time series are displayed, different measures are plotted in different
colours. Figure [5| shows a colour key for these plots. In each example a selection of measures
are presented together for comparison. Each selection is intended to demonstrate the variation in
measure selection.

Measure Colour Key

ATMEME
RELal

RELb

RELc
RECREL|

TpREL,
AVGSATSIV]
TSATSIM

Figure 5: Measure colour key

8.1 Musical Examples

Two pieces were chosen as subjects for analysis: a) BWV-846: C Major Prelude from Book I of The
Well-Tempered Clavier by JS Bach b) Dvorak-Op101-1: Humoresque No. 1, Vivace by Antonin
Dvorak. Each piece is short and for solo piano/keyboard, which limits the number of voices complicit
in the harmony. In addition, each piece exemplifies some example of common musical practise.

8.1.1 BWYV-846

This piece was chosen for the relative simplicity of its tonal contents. The harmonic progression is
expressed through a series of arpeggiated chords which are mainly confined to familiar triads and
seventh chords and arranged in common cadential progression. The structure of the piece is as
follows:

Bars 1-4: A full cadence in C major

Bars 5-11 Modulation to G major

Bars 12-19 Modulation back to C major

Bars 20-35 Complex extended cadence in C major

Figure [6] shows the pianoroll (top), class matrix (middle) and class vector (bottom) for the prelude.
Peaks in the class matrix correspond to 3-11B (major triads), 4-27B (dominant seventh chords),
6-Z25A (perfect authentic cadences) and 7-35 (diatonic scales). Figure [7| shows the window length
statistics. From these plots it can be see that three and four mainly occur in windows of around 2
beats.

8.1.2 Dvorak-Opl101-1

This piece was chosen for its regular structure. It is comprised of several distinct sections of
contrasting tonal material. The piece starts with the main theme which appears unambiguous in
its mode and tonal centre. This theme is repeated at intervals throughout the piece. A number of
other sections can also clearly be identified. The sections appear to depart from the tonality of the
main theme to varying degrees. Some sections appear similar to each other save for a transposition.
The identifiable sections of the piece are as follows:

A Main theme in Eb (natural) minor

B Harmonic minor scale (D)

C Dolce, major mode

D Stacatto, major mode

C* Related to C

D* Related to D
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Figure 6: BWV-846: Pianoroll (top), class matrix (middle) and class vector (bottom)
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Figure |8 shows the pianoroll(top), class matrix (middle) and class vector (bottom) for the piece.
Peaks in the class matrix correspond to 4-26 (Min7), 5-27B (Min9), 6-32 (Minl1), 6-Z25B (minor
cadence) and 7-35. It should be noted that extended chords and cadences often have the same set
class (e.g. Minll and a iv — i progression). Figure @] shows the window length statistics for the
piece.

8.2 Distance Time Series

e This example shows how the distance time series can be plotted to represent the tonal charac-
teristics of a piece. To facilitate an initial, rudimentary analysis example, an reduction of the
Bach prelude is used (BWV-846-Chords), in which each bar was replaced with a single semi-
breve chord containing every note from that bar. This reduction, in effect, replaces the piece
with its underlying chord progression, removing the rhythmic element of the arpeggiation and
providing a clearer expression of the tonal contents.

e BWV-846-Chords was segmented using 3 separate sliding windows.

e Figure shows the pianoroll (top) and three distance time series, plotted as lines, with
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Figure 8: Dvorak-Op101-1: Pianoroll (top), class matrix (middle) and class vector (bottom)
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Figure 9: Dvorak-Op101-1: Window length statistics

reference sets 3-11B, 6-Z25A and 7-35.

3-11B: Single chords were targeted using a window length of 1 bar and a hop size of 1 bar.
Thus, each point corresponds to a single bar/chord in the progression. Points where the curve
is at zero correspond to bars containing major triads, while peaks in the curve correspond to
more complex of less familiar chords.

6-Z25A: Cadential progression were targeted using a window length of 2 bars and a hop size
of 1 bar. Thus, each point corresponds adjacent pairs of bars/chords. The occurrence of
cadences is marked by zeros in the time series.

7-35: Diatonicism was targeted using a window length of 4 bars and a hop size of 1 bar.
Common in diatonic music of this type are chord progressions that move by descending fifths,
three of which in succession comprise a diatonic set (eg. ii-V-I). Areas of steady flatness at
zero denote diatonic passages where as the higher points in the curve indicate more chromatic
passages or less familiar scales.

Time Series Differential

This example shows how the cadential punctuation of a musical piece can be detected by
calculating the approximate differential of the distance time series.
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Figure 10: BWV-846-Chords: Distance time series targeting chords (top), cadences (middle) and
diatonicism (bottom).

e BWV-846 was segmented so as to target 3 and 4 note chords using a window length of 2
beats. Window size selections was informed by Figure [/l A hop size of 1 beat was chosen so
as to capture the cadential overlap of these chords.

e Figure[II]shows the class matrix and class vector for BWV-846 with the contents of the sliding
superimposed on top in red. The class vector shows that a high proportion of major triads
and seventh chords were captured at this time scale while the class matrix shows the position
of these captured set classes in time.

BWV-846.mid

Pianoroll

} |
|
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Figure 11: BWV-846: Pinaoroll (top), class matrix (middle) and class vector (bottom) with sliding
window contents (red)

N
62254 6-338 735

e Figure [12| shows the pianoroll (top), distance time series (middle) and approximate second
order differential of the time series. The time series was computed using 6-Z25A as a reference
set.

e The highest peaks correspond to the centre of windows containing perfect authentic cadences
(V7 —I) and denote the boundaries of distinct musical units. The first two peaks have been
highlighted with red arrows and labelled “A” and “B”.

e The peak at “A” in bars 3-4 is at the conclusion of a full cadence in C which establishes the
tonality of the prelude.

e The peak at “B” in bars 6-7 is where, following a modulation, the new key of G major is
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confirmed with a V7 — I cadence.
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Figure 12: BWV-846: Cadential punctuation Example 1

e Other types of cadence can be observed by using different comparison sets, for example, 7-32B
(vii°” — I cadence).

e A more general approach can involve exploiting the distance between subclasses within the
cadential classes, such as that between the dominant and tonic chords.

e Figure shows the approximate first order differential of the time series computed with
reference to 3-11B (tonic chord).

e The negative peaks correspond to sudden drops in the time series resulting from the distance
between dominant and tonic chords. The plot not only marks V7 — I cadences but also other
types. An example has been highlighted with a red arrow and labelled “C”.

e The peak marked by “C” in bars 14-15 is a vii®” — I cadence as part of the modulation back
to C major.
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Figure 13: BWV-846: Cadential punctuation Example 2

8.4 Time Series Autocorrelation

e These examples demonstrates how autocorrelation of the distance time series can be used to
detect repetitions and some structural aspects of the tonal progression.

e BWV-846 was segmented using a window length of 2 beats and a hop size of 1 beat so as to
target 3 and 4 note chords.

e Figure [14] shows the autocorrelation of the time series which was calculated using a reference
set of 3-11B. Peaks occur at regular intervals indicating a certain degree of structural repetition
in the tonal progression. Put another way, the time varying distance between the music and
3-11B is periodic, repeating at 2 bar intervals.

28



BWV-846.mid

Pianoroll

RefSet 3-118

M A A A P A

Distance
[

Autocorrelation

Figure 14: BWV-846: Detection of structural boundaries with autocorrelation

Dvorak-Op101-1 was segmented so as to target 3 and 4 note chords using a window length of
2 beats and hop size of 1 beat. Window length selection was informed by figure [0}

Figure shows the pianoroll (top) with red dotted lines marking the boundaries between
the structural elements of the piece described in The distance time series (middle)
was computed using a reference set of 3-11A. The autocorrelation (bottom) shows a similar
type of periodicity as figure [14] and the pattern of major pattern of peaks correspond to the
boundaries between section at regular 4 bar intervals.
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Figure 15: DvorakDvorak-Op101-1: Detection of structural boundaries with autocorrelation

8.5

Self-Similarity Matrix

The self-similarity matrix is a widespread technique for detecting repetitions in a time series.
In this context, the time series is the set class time series and the metric used is a set class
similarity measure.

This examples demonstrates how a self-similarity matrix computed in this way can be used
to obtain structural information about a musical piece. Here, there is no need for a reference
set as each window is systematically compared with every other.

e Dvorak-Opl01-1 was segmented using a window length of 2 beats and hop size of 1 beat.
e Figure [I6] shows the self-similarity matrix computed using the ATMEMB-prime distance.
e The area highlighted in red corresponds to section A, the main theme, and it can be clearly

seen to repeat at various points within the piece. The area highlighted in blue shows how the
sections C and D are related to sections C* and D*. The broken black diagonal down the
middle of this section indicates the points at which the set class material of C* and D* are
not identical to C and D.

e BWV-846 was segmented using a window length of 4 beats and hop size of 2 beats.
e Figure [17] shows the self similarity matrix computed using the ATMEMB-prime distance.
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Dvorak-Op101-1.mid

Time (bars)
ATMEME: prime Distance

Time (bars)

Figure 16: Dvorak-Op101-1: Self-similarity matrix (ATMEMB-prime)

e The area highlighted in red contains a black diagonal indicating the repetition of a 5 bar
sequence: bars 7-11 in G major repeated in bars 15-19 in C major. Of additional interest is
the region to the top left of the area where the diagonal is continued by way of several dark
grey squares. This shows that there is a small and constant distance between these sections,
indicating a degree of musical similarity that goes beyond mere transposition.

BWV-846.mid
=
o

ATMEMB-prime Distance

Time (bars)

Figure 17: BWV-846: Self-similarity matrix (ATMEMB-prime)

8.6 Set Class Space

e This example demonstrates how multidimensional scaling can be used to visualise a geometric
configuration of the set classes captured by a specific segmentation policy.

e Grids such as those shown in [6.5]

o BWV-486-Chords was segmented with a window length of 1 bar and a hop size of 1 bar to
obtain the basic chord progression.

e Figure [I8 shows a grid containing the distance values between the captured set classes and
a reference set of 3-11B. Each row contains the values from a different measure and gives a
basic, 1-dimensional projection of the implicit set class space. WHAT DOES THIS SHOW?
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Figure 18: BWV-846-Chords: 1-dimensional set class space

e Figure [I9 shows the 2-dimensional configuration resulting from non-metric multidimensional
scaling of the RELa-prime distances between the captured set classes. The size of each point
is proportional to the relative active duration and they are coloured according to a ternary
cluster analysis. Although the global stress of the configuration is high (0.1967) it gives an
indication as to the relationship between harmonic components. The green cluster contains
the chords Maj, Min, 7, Maj7 and Min7 and these constitute the greater part of the music.
The blue cluster contains the perfect cadence and 7sus4 chord which both contain a higher
number of 4th intervals and occur less frequently. The red cluster contains chords Dim7 and
Dim7b9 both of which contain high numbers of minor 3rds and also occur infrequently.

43 Set Class Space (RELa-prime)
40 o . ’

: 62254

426 4278

s i 3
: WA

Figure 19: BWV-846-Chords: 2-dimensional chord space (RELa-prime)

e BWV-846-Chords was segmented using a window length of 4 bars and a hop size of 1 bar.

e Figure shows a similar set class space based on larger sets (window length of 4 bars and
hop size of 1 bar). The global stress is 0.0760.

e The clusters here can be interpreted by the cardinality of the sets and amount of chromaticism
they contain. A space such as this might contain some familiar set classes and others less
familiar. Visualisation of the space is helpful in understanding the material being analysed
and could lead to selection of a less conventional reference based on its geometric location.
A key concept to consider when viewing these spaces is that of orthogonality. By identifying
dimensions that correspond to linearly independent properties, the set class space can be
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better exploited in analysis and a better musical and/or mathematical comparison of the
measures can be performed.
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Figure 20: BWV-846-Chords: 2-dimensional scale space (RELa-prime)
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Part 111
Discussion
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Conclusions

. This work has successfully demonstrated the analytical potential of set class similarity mea-

sures.

. Systematic set class descriptions of music have been discussed in terms of their perceptual

and analytical relevance and have been shown to possess a lot potential as a starting point in
many music research areas.

. A comprehensive rendering of musicological concepts and terminology in the language of set

class theory has facilitated the reconstruction of some basic traditional analysis.

. In isolation, individual sets that correspond to chords of interest are of less interest than the

hierarchical relationship between these sets’ subsets and supersets and their evolution in time.

. A comprehensive survey of set class similarity measures from the literature resulted in the

selection of six models as suitable for systematic descriptive modelling.

. Basic conclusions were drawn about the different capabilities and discriminatory power of the

measures, however, it is presumed that no one measure is the best: “There is, after all, no
single tool makes all other tools obsolete. It is up to each theorist and analyst to decide which
are appropriate in any given circumstance” (Buchler}, [1997).

. Two segmentation policies have been presented to work in conjunction for extracting a set

class description of a musical piece: Systematic and sliding window.

. When working in the symbolic domain, the systematic segmentation can be used to supple-

ment the analysis process.

. The class matrix and class vector are concise and informative representations of systematic

segmentation data and convey global characteristics about a musical piece.

The efficacy of a specific sliding window can be assessed by plotting the captured contents
on top of the class matrix and class vector. This technique can be used to tune the window
parameters so as to target the sets of interest.

Five techniques have been presented for representing set class information: Distance time
series, differential, autocorrelation, self-similarity matrix and MDS. These techniques exploit
set class similarity measures to retrieve structural information.

The distance time series has been shown to reflect intuitions about the tonal progression of a
piece.

Approaches to parameter selection can be divided into three categories depending on the sets
of interest: chords, cadences, scales.

By targeting common chords and using a reference set of the basic triad, the distance time
series can be interpreted as reflecting harmonic complexity or perhaps musical tension.

By targeting two-chord progressions and using a reference set of a cadence, the distance time
series can characteristic features points of cadential punctuation.

By targeting scales and using a reference set of the diatonic scale, the distance time series can
indicate whether the music is harmonically stable, very chromatic or modulating.

The first and second order differentials of the time series can reveal the cadential punctuation
of a piece or locate instances of any particular set class.

Repetitions in the distance time series can be quantified through autocorrelation. Peaks in
the autocorrelation can point to important structural boundaries in a piece.

The self-similarity matrix can reveal the structural makeup of a piece including repeated
sections and related sections.

Both autocorrelation and the self-similarity matrix are capable of capturing not only ex-
act/transposed repetitions, but passages in which some quality of distance or ratio is pre-
served. These relationships are determined by the measure used and might have a sophisti-
cated musicological or perceptual basis that is not easily observed from listening or from the
score.

Visualisation of set class space through multi-dimensional scaling can give insight into the

33



22.

23.

24.

25.

10

10.

11.

12.

relationship between tonal objects.

Through interpretation of the dimensions, set class spaces can be used to understand and
compare different measures.

Set class spaces constructed using set classes from a specific timescale can be used to inform
the reference set selection.

The large number of interdependent parameters prompted the development of an Analysis
Tool for MATLAB in which these techniques can be used in conjunction, enabling the analyst
to explore the numerous combinations and approaches. The demonstrations here are just the
beginning of what could potentially be explored.

A systematic set class description combined with these representation techniques could be
employed in MIR systems for the automatic detection of structure and musical similarity.

Future Work

. A greater understanding of the set class contents of a piece could be achieved through a more

exhaustive exploration of systematic set class descriptions of simple examples.

. Understanding the hierarchical relationship between set classes and the role of the sets of

interest would allow for a more discerning selection of parameters.

. One particularly fascinating line of inquiry is whether the class matrix is unique for a given

piece. Can pitch classes in the piece be changed without changing the class matrix? To what
extent can a piece be reconstructed from its class matrix?

. A more concrete and quantitative analysis of the discriminatory power of the similarity mea-

sures will better inform the selection of appropriate comparison sets and measure.

. A more thorough mathematical evaluation of the measures could be starting point for com-

parison as well as yield information relevant to parameter selection.

. Comparison of set class similarity measures with numerical distance measures such as Eu-

clidean and Mahalanobis distance would be a necessary component in the justification of
their use.

Examination of the implicit spaces created by different measures could provide an intuitive
method of measure comparison. Interpretation of the dimensions could reveal the musical
quantities that they are measuring.

. Computationally combining different distance plots (multiplying, convolving, correlating etc.)

could reinforce or weaken a particular analytical hypothesis.

. The addition of peak selecting and structural marking in the analysis tool would inform tests

as to the suitability of the proposed techniques for automatic structual segmentation.

The use of multiple measures, comparison sets and sliding windows could allow for a more
finely tuned targeting of structural information.

The use of multiple distances simultaneously would allow the combining of approaches spec-
ified here. It would also be a step towards describing tonal progressions in multidimensional
space.

The use of set class spaces could provide deeper understanding of tonal progressions by analogy
to trajectories in space.
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Part IV
Appendices

A Set Class Similarity Measures

This chapter contains a concise summary of the set class similarity measures from the literature
organised by theorist. Each section specifies the publication in which the measure was proposed
and brief description of the theoretical approach adopted by the theorist. A mathematical formula
is given where possible using standard notation. A reference for notation can be found in [A71] and
commonly used symbols are defined in the glossary. Where a mathematical formula does suffice, the
comparison procedure is described in words. In addition, each section contains a table specifying
important statistics:

e SC-Type: the type of SC the measure compares (Tn or Tnl)
Cardinality: whether the measure can compare SCs of different cardinalities.
Vector Type: the type of vector used in the comparison procedure (see .
Criteria Met: a list of Castren’s criteria which the measure meets.
I-related: whether the measure discriminates between inversionally related sets.
Z-related: whether the measure discriminates between Z-related sets.

A.1 On Notation

Many of the formulas for similarity measures in the following sections appear differently to the way

they were originally published. The reason for this is an attempt to standardise their symbolic

representation through common vector notation in order to illuminate and compare the underlying

mathematical concepts. Below are definitions of the of the required symbols.

Difference Vector is the absolute difference between corresponding terms in the nCVs of two
SCs, X and Y:

DV (nCV(X),nCV(Y)) = |nCV(X) —nCV(Y)|
Vector Magnitude is the length of the nCV in euclidean space:

#nC

InCV (Xl = 4| Y (nCV(X),)?

i=1
Unit Vector is the normalised nCV (unit length):
nCV(X)
[InCV ()]l

Euclidean Distance is the distance between the points defined by two nCVs in n-dimensional
Euclidean space:

nCV(X) =

3 (X - Y2 = IDV(X.Y)]
i=1

A.2 MORRIS
A21 K

Presented in Morris| (1979, pp. 448), the K measure gives the number of intervals-classes (dyad-
classes) shared by two SCs, X and Y.

6
K(X,Y) = MIN(z;y,)

=1
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SC Type: Tnl

Cardinality: ~ Any

Vector Type: ICV

Criteria Met: C1,C2,C3.3,C3.4,C4
I-related: No

Z-related: No

A.2.2 SIM

Presented in Morris| (1979} pp. 446), SIM compares the ICVs of two SCs (the value is the cardinality
of the DV).

SIM (X,Y)=#DV (ICV (X),ICV (Y))
SIM is also a function of K:

SIM(X,Y) = #ICV(X) + #ICV(Y) — 2.K(X,Y)

SC Type: Tnl

Cardinality: Any

Vector Type: ICV

Criteria Met: (C1,C2,C3.3,C3.4,C4
I-related: No

Z-related: No

A.2.3 ASIM

Presented in [Morris| (1979, pp. 450), ASIM (Absolute SIM) is a scaled version of SIM to address
criteria C3.1. Scaling is done as a final step. Whilst the scale of values is now fixed, the resolution
is course when cardinalities differ greatly.

B SIM (X,Y)
ASIM(X.Y) = 275y (X) + #ICV ()

SC Type: Tnl

Cardinality: ~ Any

Vector Type: ICV

Criteria Met: C1,C2,C3.1,C3.2,C3.4,C4
I-related: No

Z-related: No

A.3 LORD
A.3.1 sf

Presented in (Lord, (1981, pp. 93), sf (Similarity Function) is similar to SIM but developed inde-
pendently. sf is a subset of SIM:

_ #DV (ICV (X),ICV (YV)) _ SIM(X,Y)

sf (X,Y) ;

SC Type: Tnl
Cardinality: Same

Vector Type: ICV

Criteria Met: (C3.3,C3.4,C4
I-related: No

Z-related: No
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A.4 TEITELBAUM

A.4.1 s..

Presented in |Teitelbaum| (1965, pp. 88), s.i. (Similarity Index) is the Euclidean distance between

the Cartesian coordinates defined by the ICVs of
the difference vector.

two SCs. This is equivalent to the magnitude of

5.0.(X,Y) = || DV{ICV(X),ICV(Y))|

SC Type:
Cardinality:
Vector Type:
Criteria Met:
I-related:
Z-related:

A.5 ROGERS
A.5.1 IcVD,

Presented in [Rogers| (1992), IcVD; (Distance Formula 1) is a modification of SIM (A.2.2).
ICV components are scaled before being summed. IcVDj is related to Castren’s %REL,

%RELy(X,Y) = IcVD; (X,Y)x 50.

Tnl

Same
ICV
C3.3,C3.4
No

No

The

ICV(X) ICV(Y)

IcVD,(X,Y) = #DV (

SC Type: Tnl
Cardinality: ~ Any
Vector Type: ICV

Criteria Met:
I-related:
Z-related:

No
No

A.5.2 ICVD2

)

HICV(X)' #ICV(Y)

C1,02,03.1,03.2,03.4,04

Presented in [Rogers| (1992), IcVDy (Distance Formula 2) is similar to s.i. (A.4.1]), but instead

returns the Euclidean distance between the ends

of the normalised ICVs.

[V Ds(X,Y) = HDV(IC’V(X), IOV(Y))H

SC Type: Tnl

Cardinality: ~ Any

Vector Type: ICV

Criteria Met: C1,C2,C3.1,C3.2,C3.4
I-related: No

Z-related: No

A.5.3 Cos(9)

Presented in [Rogers| (1992)), Cosf, gives the cosine of the angle between the ICVs in six-dimensional
Euclidean space. As the angle decreases the similarity approaches 1.

ICV(X)-ICV(Y)

Cosf(X,Y)

4

VX > [ICv (Y]]

0



SC Type: Tnl

Cardinality: ~ Any

Vector Type: ICV

Criteria Met: C1,C2,C3.1,C3.2,C3.4
I-related: No

Z-related: No

A.6 RAHN

A.6.1 AK

Presented in [Rahn| (1979, pp. 489), AK is an absolute or adjusted version of Morris’ K (A.2.1]),
addressing the C3.1 criteria. AK is related to Morris’ ASIM: AK(X,Y)=1-ASIM(X,Y).

B 2K (X,Y)
AR (XY) = 275y (X) +#ICV (Y)

SC Type: Tnl

Cardinality: ~ Any

Vector Type: ICV

Criteria Met: C1,C2,C3.1,C3.2,C3.4,C4
I-related: No

Z-related: No

A.6.2 MEMB,

Presented in [Rahn| (1979} pp. 492), MEMB,, (Mutual Embedding Number) compares the nCVs of
two SCs for one nC at a time. It measures the mutual embedding of subsets such that only non-zero
components of the nCVs contribute. By setting n = 2 (MEMB;) it compares ICVs.

#nC
MEMB, (X,Y) =Y _ nCV(X); +nCV(Y);
i=1
such that nCV(X);>0 and nCV(Y);>0.
SC Type: Tnl or Tn

Cardinality: Any
Vector Type: nCV
Criteria Met: C1,02,C3.3,C3.4,C4
I-related: Yes*
Z-related: Yes*

A.6.3 TMEMB

Presented in Rahn| (1979, pp. 492), TMEMB (Total Mutual Embedding Number) counts the
mutually embedded subsets of every cardinality. TMEMB is a total measure.

12
TMEMB(X,Y) =Y MEMB, (X,Y)

n=2

SC Type: Tnl or Tn
Cardinality: Any

Vector Type: nCV

Criteria Met: C1,02,C3.3,C4,C5
I-related: Yes

Z-related: Yes
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A.6.4 ATMEMB

Presented in [Rahn (1979, pp. 494), ATMEMB (Adjusted Total Mutual Embedding Number) is a
scaled version of TMEMB to address criteria C3.1 (like SIM and ASIM; A and AK). ATMEMB is
a total measure.

B TMEMB (X,Y)
ATMEMB(X,Y) = s o7 — (aX + 7 +2)

SC Type: Tnl or Tn

Cardinality: Any

Vector Type: nCV

Criteria Met: C1,02,C3.1,C3.2,C3.4,C4,C5
I-related: Yes

Z-related: Yes

A.7 ISAACSON
A.7.1 AMEMB2

Proposed by [Isaacson| (1990, pp. 8), AMEMB, (Adjusted MEMBs) is a scaled version MEMBy
(A.6.2), measuring the mutual embedding of ICs.

2 x MEMBs(X,Y)

AMEMB, =
THXH#X -+ #Y (HY - 1)
SC Type: Tnl
Cardinality: ~ Any
Vector Type: ICV
Criteria Met: C1,C2,C3.1

A.7.2 IcVSIM

Presented in [Isaacsonl (1990, pp. 18), IcVSIM (Interval-Class Vector Similarity Relation) is the
standard deviation of the entries in the ICVs of two SCs. IcVSIM is a scaled version of s.i. (A.4.1).
IdV; is the ith term in the vector defined by ICV(X)-ICV(Y) and DV is the average (mean) of its

entries.

IeVSIM(X,Y) = \/ L(IdV; — Idv)®

6
SC Type Tnl
Cardinality: Any
Vector Type: ICV
Criteria Met: C1,C2,C3.4
I-related: No
Z-related: No

A.7.3 ISIM2

Presented in |Isaacson| (1996)), ISIM2 is a scaled version of IcVSIM ({A.7.2)). The squre root is taken
of each term in the ICVs. Isaacson argues that each additional instance of an IC contributes less
to similitude. However, Samplaski (2005) found ISIM2 to be inconsistent with itself when applying

MDS to the values produced.

SC Type Tnl
Cardinality: Any
Vector Type: ICV
Criteria Met: C1,C2,C3.4
I-related: No
Z-related: No
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A.7.4 ANGLE (Isaacson & Scott)

Scott and Isaacson| (1998) proposes a geometric method which is identical to that of Cos/theta
(A.5.3) but instead gives the size of the angle in degrees.

ANGLE(X,Y) = arccos Cosf(X,Y)

SC Type Tnl

Cardinality: ~ Any

Vector Type: ICV

Criteria Met: C1,C2,C3.1,C3.2,C3.4
I-related: No

Z-related: No

A.8 LEWIN
A.8.1 REL

Presented in [Lewin| (1979)), REL compares the nCVs of two SCs for all the nCs. Like MEMB,,
(A.6.2), REL only considers non-zero entries however, this is achieved by multiplication (taking the
geometric mean) of corresponding nCV terms.

-1 V/SUB(X); x SUB(Y);
V#SUB(X) x #SUB(Y)
where SUB(X) consists of concatenated nCVs and has a length p.

REL(X,Y) =

SC Type: Tnl or Tn

Cardinality: Any

Vector Type: nCV

Criteria Met: C1,02,C3.1,C3.2,C3.4,C4,C5
I-related: Yes

Z-related: Yes

A.8.2 REL,

Rahn/ (1979) suggested a number of manifestations of the basic REL concept including RELs which
measures only intervallic similarity.

) 2x 3 vV (zi:)
V#HX#X - D#Y (#Y - 1))

SC Type: Tnl

Cardinality: ~ Any

Vector Type: ICV

Criteria Met: (C1,C2,C3.1,C3.2,C3.4
I-related: No

Z-related: No

RELy(X,Y

A.9 CASTREN
A.9.1 Castrén’s Difference Vector

Castrén specifies a different type of DV, which we shall call ¢cDV to distinguish it from the regular
DV. It consists of two rows, cDV,(X,Y) =X —Y and cDV,(X,Y) =Y — X. Any negative values
in either of the rows are set to zero. In addition Castren defines the weighted difference vector
(weDV) of two vectors X and Y as:



A.9.2 nC%V

Presented in |Castrén| (1994)) for use in %REL,,, nC%V(X) (n-class subset percentage vector) gives
the percentage subset-class contents of an SC, X. The 2C%V is the Interval percentage vector.

A.9.3 %REL,

_leoo

Presented in [Castrén| (1994), %REL,, (Percentage Relation) is a modification of sf (A.3.1)) using
the nC%Vs (A.9.2)) instead of ICVs. %REL,, can be used as a stand-alone measure, however it is
primarily intended as an intermediate step in T%REL and RECREL (|A.9.4] and |A.9.5)).

%REL,(X,Y)

#DV (nC%V (X),nC%V (Y))

2
SC Type Tnl or Tn
Cardinality: Any
Measure Type: Single nC
Vector Type: nC%V
Criteria Met: C1,C2,C3.1,C3.2,C3.3,C3.4,C4
I-related: Sometimes
Z-related: Sometimes

A.9.4 T%REL

Presented in |Castrén| (1994), T%REL (Total Percentage Relation) is the mean average of the
values of %REL,, for all values of n from 2 to m where, if #X # #Y, m = MIN(#X,#Y) else

m=#X —1. .
T%REL(X,Y) = Lonzp PREL, (X, Y)
m—1
SC Type: Tnl or Tn
Cardinality: Any
Measure Type: Total
Vector Type: nC%V
Criteria Met: C1,C2,C3.1,C3.2,C3.3,C3.4,C4,C5
I-related: Yes
Z-related: Yes

A.9.5 RECREL

Presented in |Castrén| (1994), RECREL (Recursive Relation) recursively compares the subsets and
subsets of subsets of two SCs using %REL,, (A.9.3). The comparison procedure is quite complicated
and potentially involves evaluating %REL,, thousands of times. The full algorithm is explained in

Castrén| (1994).

SC Type: Tnl or Tn
Cardinality: Any
Measure Type: Total
Vector Type: nC%V
Criteria Met: All
I-related: Yes
Z-related: Yes
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A.10 BUCHLER
A.10.1 nSATV

Presented in [Buchler| (1997, chap. 2.3) nSATV(X) (Saturation Vector) is a dual vector consisting
of two rows, nSATV4(X) and nSATV(X). It shows extent to which an SC is saturated with
subclasses of cardinality n. The steps for computing nSATV(X) are as follows:
1. Compute the nCVs for all SCs of cardinality #X.
2. Find the minimum and maximum values for each vector position. These values form vectors
Max,(#X) and Min, (#X).
3. Compute the following two vectors: MaxzMinus = DV (nCV (X), Max,(#X)) and MinPlus =
DV (nCV (X), Min, (#X))
4. nSATVA(X); = MIN(MaxMinus;, MinPlus;) and nSATVp(X); = MAX (MaxMinus;, MinPlus;)
5. If MaxMinus; = MinPlus;, nSATVA(X); = MaxMinus; and nSATVg(X); = MinPlus;

A.10.2 SATSIM,,

Presented in Buchler| (1997, chap. 2.4), SATSIM,, (Saturation Similarity index) compares the
nSATVs of two SCs and involves the following steps:
1. Calculate nSATV(X) and nSATV(Y)
2. Calculate the vectors nSATV, oy (X) and nSATV 4 (Y).
3. The function “row” maps the MaxMinus values of one nSATV to the MaxMinus values of the
other. If nSATV 4(X); is a MaxMinus value and nSATV 4(X); is also a MaxMinus value, row
= A (nSATV,0w(X); = nSATV 4(X);), otherwise row = B.
4. Finally SATSIM,, (X,Y) is given by the formula:

_ #DV(nSATV(X),nSATV,0u(Y)) + #DV (RSATVA(Y), SATV; 0, (X))
SATSIMA(X,Y) = #DV (nSATV4(X),SATVE(X)) + #DV (SATVA(Y),SATV5(Y))

SC Type: Tnl or Tn
Cardinality: Any
Measure Type: nC

Vector Type: nSATV
Criteria Met: C1,C2,C3.1
I-related: Sometime
Z-related: Sometime

A.10.3 AvgSATSIM

Presented in [Buchler| (1997, chap. 2.10), AvgSATSIM (Average Saturation Similarity index) is the
mean of SATSIM,, values where m = MIN(#X,#Y).

" SATSIM, (X,Y)
m—2

SC Type: Tnl or Tn
Cardinality: Any

Measure Type: TOTAL
Vector Type: nSATV
Criteria Met: C1,C2,C3.1,C5
I-related: Yes

Z-related: Yes

AvgSATSIM(X,Y) = by

A.10.4 TSATSIM

Presented in [Buchler| (1997, chap. 2.10), TSATSIM (Total Saturation Vector Similarity index) is
an extension of SATSIM,,. TSATSIM is the quotient of the sum of all SATSIM,, numerators and
denominators for all values of n from 2 to m-1 where m = MIN(#X,#Y).
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SC Type: Tnl or Tn
Cardinality: Any

Measure Type: TOTAL
Vector Type: nSATV
Criteria Met: C1,C2,C3.1,C5
I-related: Yes

Z-related: Yes

B Total Measures: Additional Information

This appendix contains information regarding the specific formulation of the total measure, in
particular, how they deal with comparisons involving the trivial forms.

B.1 Trivial Forms

Three of the 351 Tn-type SCs are known as trivial forms: 1-1, 11-1 and 12-1. Due to their lack
of musical or harmonic significance, these SCs are usually excluded from the work of SC-theorists.
However, it is important that they be included in any systematic description and that their similarity
to other sets be given a meaningful value.

The total measures make comparisons based on the subset content of a set. SC 1-1, which has
no subsets, is rarely accounted for in such measures and in these cases a simple method will be
used: Comparisons involving X = 1-1 and Y will be given the value 1#Y. Thus, the value will be
the ratios of the cardinalities with 1 indicating maximum similarity.

Table 7: Trivial Forms

11 {0}
11-1 {0,1,2,3,4,5,6,7,8,9,10}
1221 {0,1,2,3,4,5,6,7,8,9,10,11}

B.2 Scale of Values

The values of each measure were adjusted to the same scale for comparability by the same method
as [Kuusi (2001} pp. 48)). This scale is from 0 to 100 with with 0 indicating maximum similarity.
The modified values are signalled by adding the symbol “prime” to the name.

Table 8: Adjustment for MEASURE-prime scale

ATMEMB-prime(X,Y) = (1-ATMEMB(X,Y))*100
REL-prime(X,Y) = (1-REL(X,Y))*100
AvegSATSIM-prime(X,Y) = T%REL(X,Y)
TSATSIM-prime(X,Y) = RECREL(X,Y)
TpREL-prime(X,Y) = AvgSATSIM(X,Y)*100
RECREL-prime(X,Y) = TSATSIM(X,Y)*100

B.3 ATMEMB (Rahn)

Details on how to calculate ATMEMB are give in [A76.4] In his analysis of the measure, Castren
concludes that “divisor term is flawed, resulting in values suggesting suspiciously high degrees of
dissimilarity between SCs of clearly different cardinalities. The general reliability and usefulness of
the measure is difficulty to determine” (Castrén, |1994, pp. 89). The trivial forms 11-1 and 12-1 are
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accommodated explicitly by the formulation of Rahn| (1979), however SC 1-1 is not and thus values
will be obtained using the method specified in [B.1]

B.4 REL (Lewin)

Details on how to calculate REL are given in[A:81] From the basic equation it is possible to define
three different formulations depending on the exact nature of SUB(X). In each formulation the
trivial forms 11-1 and 12-1 are accommodated. The three formulations are as follows:
1. SUB(X) consists of the concatenated nCVs from 2 to 12. Here comparisons involving SC 1-1
will be evaluated with the method specified in
2. SUB(X) consists of the concatenated nCVs from 1 to 12 ($1CV(X) = #X%). This formulation
accommodates SC 1-1.
3. Martorell| (2013) specifies an alternative formulation where SUB(X) begins with the ICV
(2CV) followed by the concatenated nCVs from 1 to 12. This formulation accommodates SC
1-1.

B.5 AvgSATSIM and TSATSIM (Buchler)

Details on how to calculate AvgSATSIM and TSATSIM are given in [A.10.3] and [A.10.4] respectively.
Comparisons involving SC 1-1 are not accommodated and thus the method specified in [BI] will
be used to provide values. Comparisons involving SCs 11-1 and 12-1 are accommodated except
for the single comparison that involves both. This is because their MAX,, (#X) and MIN,, (#X)
vectors are equal and thus all terms of the nSATVs are 0. The value for this comparison will be
set to 0 (indicating maximal similarity). For comparisons involving ICs the value will be given by

SATSIM,(X,Y) (see|A.10.2)).

B.6 T%REL and RECREL (Castren)

Details on how to calculate TREL and RECREL are given in and respectively. Com-
parisons involving SCs 11-1 and 12-1 are accommodated in both by Castren’s formulation. Com-
parisons involving SC 1-1 will be given values by the method specified in Castren comments
that some T%REL values are too high to be intuitively plausible. Finally, it should be noted that
the basic algorithm provided by Castren for calculating RECREL is not feasible for large sets.
Comparisons of such sets require tables of pre-computed branch values.

C Set Class Reference

This appendix contains a reference guide for converting common musicological terminology into
the language of set class theory. Table [J] contains common chord types and their corresponding
set classes. Table contains common scales and their corresponding set classes. Both tables
also include the Forte Name and the Tn-type index of the set classes. Table [11] contains common
chord pairs and cadential progression. Each position in the table contains the set class composed
of the two chords corresponding to the row and the column. Chord symbols are in standard roman
numeral notation.
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Table 9: Chords to set classes

Chord Set Class Name Tdx
Maj {0,471 3B 25
Maj7 {0,1,5,8) 4-20 57
Maj9 {0,1,3,5,8} 527TA 116
Majl1 {0,1,3,5,6.8)  6-Z25A 176
Maj13 {0,1,3,5,6,8,10}  7-35 276
Majj(6) {0,3,5,8) 4-26 64
Maj(6/9) {0,2,4,7,9} 5-35 130
7 {0,3,6,8) 4278 66
9 {0,2,4,6,9} 5-34 129
11 {024,6,7,9)  6-33B 189
13 {0,1,3,5,6,8,10}  7-35 276
7h9 {0,2,3,6,9} 531B 125
min 03,7} 311A 24
min7 {0,3,5.8} 4-26 64
min9 {0,3,5,7,8} 527B 117
minl1 {0,2,4,5,7.9) 632 187
minl3 {0,1,3,5,6,8,10} 7-35 276
min(6) {0,2,5,8} 4-27TA 65
min(b6) {0,158} 4-20 57
min(6,/9) {0,2,5,7,8} 529B 121
min7h9 {0,3,5,6,8} 5238 113
min,/Maj7 {0,148} A19A 55
min/Maj9 {0,1,3,4,8) 5717 98
min/Majl11 {0,1,3,4,6,8)  6-Z24B 174
min/Maj13 {0,1,3,4,6,8,10} 7-34 275
Dim {0.3.6) 310 23
hDim7 {0,2,5,8} 427TA 65
hDim7(9) {0,2,4,5,8} 526A 114
Dim7 {0,3,6,9} 4-28 67
Dim7(h9) {0,1,3,6,9} 531A 124
Aug {0,4,8] 312 26
Aug? {0,2,4,8} 4-24 62
Aug(maj7) {0,3,4,8} 4-19B 56
Aug(maj9) {0,3,4,6,8} 5-26B 115
Aug(majll) (01,3569} 6728 181
Aug(majl3) {0,1,3,4,6,89} T-32A 272
Sus4 {0,2,7} 3-9 22
7Sus4 {0,2,5,7} 4-23 61
Maj7Sus4 {0,2,6,7} 416B 51
Sus2 {0,2,7} 3-9 99
7Sus2 {0,3,5,7} 422B 60
Maj7Sus2 {0,457} A14B 47
N6 (bIl) {047} 311B 25
It6 (bVI7/no5) {0,2,7} 3-8A 20
Fi6 (bVI7/b5)  {0,2,6,8} 425 63
Gr6 (bVI7) {0,3,6,8} 427B 66
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Table 10: Scales to set classes

Scale Set Class Name Idx
Diatonic 10,1,3,5,6,8,10} 735 276
Melodic Minor {0,1,3,4,6,8,10} 7-34 275
Harmonic Minor  {0,1,3,4,6,8,9} 7-32A 272
Harmonic Major  {0,1,3,5,6,8,9} 7-32B 273
Neapolitan {0,1,2,4,6,8,10} 7-33 274
Neapolitan Minor {0,1,2,4,6,8,9} 7-30A 268
Double Harmonic  {0,1,2,5,6,8,9} 7-22 253
Hungarian {0,1,3,4,6,7,9} 7-31A 270
Octatonic {0,1,3,4,6,7,9,10} 8-28 322
Whole-Tone {0,2,4,6,8,10} 6-35 192
Augmented {0,1,4,5,8,9} 6-20 168
Pentatonic {0,2,4,7,9} 5-35 130
Blues {0,2,3,4,7,9} 6-74TB 212
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