
UNSUPERVISED GENERATION OF PERCUSSION SOUND SEQUENCES
FROM A SOUND EXAMPLE

Marco Marchini
Music Technology Group
Universitat Pompeu Fabra

marco.marchini3@gmail.com

Hendrik Purwins
Music Technology Group
Universitat Pompeu Fabra

hendrik.purwins@upf.edu

ABSTRACT

In this paper we present a system that learns rhythmic pat-
terns from drum audio recording and synthesizes music
variations from the learnt sequence. The procedure de-
scribed is completely unsupervised and embodies the tran-
scription of a percussion sequence into a fuzzy multilevel
representation. Moreover, a tempo estimation procedure
identifying the most regular subsequence is used to guaran-
tee that the metrical structure is preserved in the generated
sequence. The final synthesis is performed, recombining
the audio material derived from the sample itself. Some
examples of generations along with a descriptive evalua-
tion are provided.

1. INTRODUCTION

During the last two decades much effort has been devoted
to build computational architectures of musical sequence
learning [1, 2]. The result of this research in musical intel-
ligence has often inspired music psychology experiments.
One example is the Continuator [3] that has been used to
study childhood flow-experience [4]. Moreover, these sys-
tems naturally lead to the philosophical question about the
nature of ”style” in music. The problem has been attacked
from many perspectives but the debate among musicolo-
gists remains open. Mayer [5] arrives at the conclusion
that style is not only a complex concept originating from
the interplay of different description levels of a musical
piece, but also it is impossible to separate ”style” from the
social context in which the music has grown.

Many studies have been conducted for the analysis and
the generation of music sequences. In particular, in [3], a
MIDI-based system for real-time musical interaction was
developed, yielding good jazz style music generation.

The handling of memory is a core challenge in music
modeling [6]. Whereas the widely used bag-of-features
approach neglects any sequential relations between musi-
cal events, common n-gram based methods for the repre-
sentation of musical sequences usually set a maximal fixed
length of context. This leads to exponentially growing stor-
age needs to allow the model to account for more complex

Copyright: c©2010 Marco Marchini et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

structures. A solution to this dilemma is offered by the dif-
ferent length Markov model [7]. This model determines
the needed context length for each musical sequence indi-
vidually, therefore maximizing storage economy, without
the requirement of excessive storage.

Focusing on the question opened by machine listening
systems from an information theory point of view suggests
improvements to MIR techniques. In the bag-of-frames
approach the distance between two audio signals is inde-
pendent of the order of the notes. Since most of the musi-
cal content generally resides on the temporal organization
of the sound material, essential information about the mu-
sic is lost in the derived descriptors. In fact, the goal of
musical intelligence systems is to learn music excerpts in
a similar way as the brain does in the first auditory scene
analysis process [8]. Thus, these systems indirectly define
an operative notion of style.

From a statistical point of view, ”style” can be defined
as a source of symbols [9]. Equivalently, we can say that,
in this context, understanding the style means to find a way
to compress 1 the message [10]. Another approach is in the
framework of information dynamics (see [11]) in which
the analysis of music is related to music cognition. More-
over in [12, 13], causal systems are proposed to capture
the emergence of musical categories during the listening
process.

Employment of machine learning techniques in gener-
ating musical events is crucial to achieve flexibility with
respect to different musical contexts. In its architecture,
our system is inspired by cognitive principles. In addition,
it can be used as a validator for many of the results in music
analysis in the way that the quality of the synthesis reveals
if the analysis methods use to generate the synthesis have
been adequate.

First, we define the system design and the interaction
of its parts. Starting from low-level descriptors, we trans-
late them into a “fuzzy score representation”, where two
sounds can either be discretized yielding the same sym-
bol or yielding different symbols according to which level
of interpretation is chosen (Section 2). Then we perform
skeleton subsequence extraction and tempo detection to

1 This means to find a concise representation of the signal without
loosing information from the original (lossless data compression). In this
way we can store a message (a sequence of symbols) using less bits and
then rebuild the original signal by uncompressing its shorter version. The
complexity of the message turns out to be the key concept that deter-
mines the compression ratio (the ratio between the bits occupied by the
original message and the ones occupied by the compressed message). The
Lempel-Ziv algorithm is an example of such a compressor.

mailto:marco.marchini3@gmail.com
mailto:hendrik.purwins@upf.edu
http://creativecommons.org/licenses/by/3.0/


align the score to a grid. At the end, we get a homogeneous
sequence in time on which we perform the prediction. For
the generation of new sequences we reorder the parts of the
score, respecting the statistical properties of the sequence
while at the same time maintaining the metrical structure
(Section 3). In Section 4, we give a descriptive evaluation
of the generated result.

2. UNSUPERVISED SOUND ANALYSIS

The system architecture consists of the following process-
ing stages (cf. Figure 1):

• Segmentation

• Symbolization

– Feature extraction

– Feature clustering

– Sequence structure analysis

– Temporal alignment

• Generation of audio

– Adaptive cluster level determination

We will now describe each step of the process in detail.

2.1 Segmentation

First, the audio input signal is analyzed by an onset detec-
tor that segments the audio file into a sequence of musical
events. Each event is characterized by its position in time
(onset) and an audio segment, the audio signal starting at
the onset position and ending at the following contiguous
onset. In the further processing, these events will serve two
purposes. On one side, the events are stored as an indexed
sequence of audio fragments which will be used for the re-
synthesis in the end. On the other side, these events will be
compared with each other to generate a reduced score-like
representation of the percussion patterns to base a tempo
analysis on (cf. Fig. 1 and Sec. 2.2).

We used the onset detector implemented in the MIR
toolbox [14] that is based only on the energy envelope,
which proves to be sufficient for our purpose of analyzing
percussion sounds.

2.2 Symbolization

We will employ segmentation and clustering in order to
transform the audio signal into a discrete sequence of sym-
bols (as shown in Fig. 3), thereby facilitating statistical
analysis. However, some considerations should be made.

As we are not restricting the problem to a monophonic
percussion sequence, non-trivial problems arise when one
wants to translate a sequence of events into a meaningful
symbolic sequence. One would like to decide whether or
not two sounds have been played by the same percussion
instrument (e.g. snare, bass drum, open hi hat. . . ) and,
more specifically, if two segments contain the same sound
in case of polyphony. With a similarity distance we can de-
rive a value representing the similarity between two sounds

but when two sounds are played simultaneously a different
sound may be created. Thus, a sequence could exist that
allows for multiple interpretations since the system is not
able to determine whether a segment contains one or more
sounds played synchronously. A way to avoid this prob-
lem directly and to still get a useful representation is to
use a fuzzy representation of the sequence. If we listen to
each segment very detailedly, every segment may sound
different. If we listen very coarsely, they may all sound the
same. Only listening with an intermediate level of refine-
ment yields a reasonable differentiation in which we recog-
nize the reoccurrence of particular percussive instruments
and on which we can perceive meaningful musical struc-
ture. Therefore, we propose to maintain different levels
of clustering refinement simultaneously and then select the
level on which we encounter the most regular non-trivial
patterns. In the sequel, we will pursue an implementation
of this idea and describe the process in more detail.

2.2.1 Feature Extraction

We have chosen to define the salient part of the event as the
first 200 ms after the onset position. This duration value
is a compromise between capturing enough information
about the attack for representing the sound reliably and still
avoiding irrelevant parts at the end of the segment which
may be due to pauses or interfering other instruments. In
the case that the segment is shorter than 200 ms, we use
the entire segment for the extraction of the feature vector.
Across the salient part of the event we calculate the Mel
Frequency Cepstral Coefficient (MFCC) vector frame-by-
frame. Over all MFCCs of the salient event part, we take
the weighted mean, weighted by the RMS energy of each
frame. The frame rate is 100 frame for second, the FFT
size is 512 samples and the window size 256.

2.2.2 Sound Clustering

At this processing stage, each event is characterized by a
13-dimensional vector (and the onset time). Events can
thus be seen as points in a 13-dimensional space in which
a topology is induced by the Euclidean distance.

We used the single linkage algorithm to discover event
clusters in this space (cf. [15] for details). This algorithm
recursively performs clustering in a bottom-up manner. Points
are grouped into clusters. Then clusters are merged with
additional points and clusters are merged with clusters into
super clusters. The distance between two clusters is de-
fined as the shortest distance between two points, each in
a different cluster, yielding a binary tree representation of
the point similarities (cf. Fig. 2). The leaf nodes corre-
spond to single events. Each node of the tree occurs at a
certain height, representing the distance between the two
child nodes. Figure 2 (top) shows an example of a cluster-
ing tree of the onset events of a sound sequence.

The height threshold controls the (number of) clusters.
Clusters are generated with inter-cluster distances higher
than the height threshold. Noting that two thresholds lead
to the same cluster configuration if and only if their values
are both within the range delimited by the previous lower
node and the next upper node in the tree. It is therefore



Segmentation Generation of 
Audio sequences

Continuation 
indices

Audio segments

Aligned 
multilevel 

representation
Symbolization Statistic Model

Figure 1. General architecture of the system.

0 1 2 3
Time (s)

2 4 8 6 1 5 3 7

0.5

1

1.5

2

2.5

3

3.5

4

C
lu

st
er

 D
is

ta
nc

e

Threshold boundary

Figure 2. A tree representation of the similarity relation-
ship between events (top) of an audio percussion sequence
(bottom). The threshold value chosen here leads to a par-
ticular cluster configuration. Each cluster with more than
one instance is indicated by a colored subtree. The events
in the audio sequence are marked in the colors of the clus-
ters they belong to. The height of each node is the distance
(according to the single linkage criterion) between its two
child nodes. Each of the leaf nodes on the bottom of the
graph corresponds to an event.

evident that by changing the height threshold, we can get
as many different cluster configurations as the number of
events we have in the sequence. Each cluster configura-
tion leads to a different symbol alphabet size and therefore
to a different symbol sequence representing the original
audio file. We will refer to those sequences as represen-
tation levels or simply levels. These levels are implicitly
ordered. On the leaf level at the bottom of the tree we
find the lowest inter-cluster distances, corresponding to a
sequence with each event being encoded by a unique sym-
bol due to weak quantization. On the root level on top of
the tree we find the cluster configuration with the highest
inter-cluster distances, corresponding to a sequence with
all events denoted by the same symbol due to strong quan-
tization. Given a particular level, we will refer to the events

denoted by the same symbol as the instances of that sym-
bol. We do not consider the implicit inheritance relation-
ships between symbols of different levels.

Figure 3. A continuous audio signal (top) is discretized
via clustering yielding a sequence of symbols (bottom).
The numbers inside the colored triangles denote the clus-
ter index of the event, related to the type of sound, i.e. bass
drum, hi-hat, or snare.

2.3 Level Selection

Handling different representations of the same audio file
in parallel enables the system to make predictions based
on fine or coarse context structure, depending on the situa-
tion. As explained in the previous section, if the sequence
contains n events the number of total possible distinct lev-
els is n (see Fig. 4). As the number of events increases,
it is particularly costly to use all this levels together be-
cause the number of levels also increases linearly with the
number of onsets. Moreover, as it will be clearer later, this
representation will lead to over-fitted predictions of new
events.

This observation leads to the necessity to only select
a few levels that can be considered representative of the
sequence in terms of structural regularity.

Given a particular level, let us consider a symbol σ hav-
ing at least four instances but not more than 60% of the
total number of events and let us call such a symbol an ap-
propriate symbol. The instances of σ define a subsequence
of all the events that is supposedly made of more or less
similar sounds according to the degree of refinement of the
level. Let us just consider the sequence of onsets given
by this subsequence. This sequence can be seen as a set
of points on a time line. We are interested to quantify the
degree of temporal regularity of those onsets. Firstly, we



Figure 4. A sequence is displayed in a multi-level repre-
sentation. Each color represents a unique symbol, a non-
trivial cluster, whereas the singletons not belonging to a
non-trivial cluster are drawn in white. Note how the num-
ber of different colors increases from top to bottom, indi-
cating that the sounds are represented in greater refinement
by a larger number of clusters.

computed the histogram 2 of the time differences (CIOIH)
between all possible combinations of two onsets (middle
Fig. 5). What we obtain is a sort of harmonic series of
peaks that are more or less prominent according to the self-
similarity of the sequence on different scales. Secondly,
we compute the autocorrelation ac(t) (where t is the time
in seconds) of the CIOIH which, in case of a regular se-
quence, has peaks at multiples of its tempo. Let tusp be the
positive time value corresponding to its upper side peak.
Given the sequence of m onsets x = (x1, . . . , xm) we de-
fine the regularity of the sequence of onsets x to be:

Regularity(x) =
ac(tusp)∫ tusp

0
ac(t)dt

log(m)

This definition was motivated by the observation that the
higher this value the more equally the onsets are spaced in
time. The logarithm of the number of onsets was multi-
plied to the ratio to give more importance to symbols with
more instances.

Then we extended, for each level, the regularity con-
cept to an overall regularity of the level. This simply cor-
responds to the mean of the regularities for all the appro-
priate symbols of the level. The regularity of the level is
defined to be zero in case there is no appropriate symbol.

After the regularity value has been computed for each
level, we yield the level where the maximum regularity is
reached. The resulting level will be referred so as the reg-
ular level.

We also decided to keep the levels where we have a
local maximum because they generally refer to the levels

2 We used a discretization of 100 ms for the onset bars.

0 2 4 6 8 10 12 14 16

Onset sequence of one symbol

0 2 4 6 8 10 12 14 16
0

5

10

n
u
m

b
e
r 

o
f 

in
te

rv
a
l 
in

s
ta

n
c
e
s

Histogram of complete IOI

−1 0 1 2 3 4 5

1K

time interval (s)

h
is

to
g
ra

m
 

s
e
lf
 c

o
rr

e
la

ti
o
n

Cross Correlation of histogram

Upper
side peak

Energy

Figure 5. The procedure applied for computing the regu-
larity value of an onset sequence (top) is outlined. Middle:
the histogram of the complete IOI between onsets. Bot-
tom: the autocorrelation of the histogram is shown for a
subrange of IOI with relevant peaks marked.

where a partially regular interpretation of the sequence is
achieved. In the case where a sequence of consecutive lev-
els share the same regularity only the higher one is kept.
Figure 6 shows the regularity of the sequence for different
levels.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Cluster Distance Threshold

R
e
g
u
la

ri
ty

 o
f 
th

e
 s

e
q
u
e
n
c
e

Figure 6. Sequence regularity for a range of cluster dis-
tance thresholds (x-axis). An ENST audio excerpt was
used for the analysis. The regularity reaches its maximum
value in a central position. Towards the right, regularity in-
creases and then remains constant. The selected peaks are
marked with red crosses implying a list of cluster distance
threshold values.

2.4 Beat detection

In order to predict future events without breaking the met-
rical structure we use a tempo detection method and intro-
duce way to align onsets to a metrical grid.

Our starting point is the regular level that has been found
with the procedure explained in the previous subsection.
On this level we select the appropriate symbol with the



highest regularity value. The subsequence that carries this
symbol will be referred to as the skeleton subsequence
since it is like an anchor structure to which we relate our
metrical interpretation of the sequence.

2.4.1 Tempo Detection (Inter Beat Interval)

Once the skeleton subsequence is found, the inter beat in-
terval is estimated with the procedure explained in [16].
The tempo is detected considering the intervals between
all onset pairs of the sequence using a score voting crite-
rion. This method tends to give higher scores to the inter-
vals that have more instances and that share many integer
ratios with other intervals.

Then the skeleton subsequence onsets are parsed in or-
der to detect a possible alignment of the grid to the se-
quence. A tolerance of 6% the duration of the inter beat
interval is allowed for the alignment of an onset to the grid
position. We chose the interpretation that aligns the high-
est number of instances to grid. After discarding the onsets
that are not aligned we obtain a preliminary skeleton grid.
In Fig. 7 the procedure is visually explicated.

1 1 1 1

1 2

2

2

Figure 7. A skeleton sequence is represented in a time-
line. Below, some possible alignments of the sequences are
given based the measure duration provided by the Dixon
method. Each phase interpretation catches some onsets
(represented with its own graphical marker) and discards
some others. The phase that allows to catch more onsets
(the filled red crosses) is selected and the remaining onset
are removed from the skeleton grid.

2.4.2 Creation of Skeleton Grid

The preliminary skeleton grid is a sequence of onsets spaced
in multiples of a constant time interval. But, as shown in
the case of Fig. 7, it can still have some gaps (due to miss-
ing onsets). The missing onsets are, thus, detected and,
in a first attempt, the system tries to align the missing on-
sets with one of the onsets of the entire event sequence
(not only from the onsets of a certain symbol). A toler-
ance value of 6% determines whether there is no onset to
be aligned and, in this case, the system creates a grid bar
in the expected beat position.

At the end of this completion procedure, we obtain a
skeleton grid that will be considered to be a sequence of
beats or, more generally, a sequence of events sharing the
same metrical position (the same phase).

Because of the tolerance used for building such a grid
it could be noticed that sometimes the effective measure
duration could be slightly longer or slightly shorter. This
fulfills the idea that the grid should be elastic in the sense
that, up to a certain degree, it adapts to the timing of the
actual sequence.

The skeleton grid catches a part of the complete list of
onsets, but we would like to built a grid where most of the
onsets are aligned. Thereafter, starting from the skeleton
grid, the intermediate point between every two subsequent
beats is found and aligned with an onset (if it exists in a
tolerance region otherwise a place-holding onset is added).
The procedure is recursively repeated until at least 80% of
the onsets are aligned to a grid position or the number of
created onsets exceeds the number of total onsets.

In Fig. 8, an example is presented along with the result-
ing grid where the skeleton grid, its aligned, and the non-
aligned subdivisions are indicated by different line mark-
ers.

Note that, for the sake of simplicity, our approach as-
sumes that the metrical structure is binary. This causes the
sequence to be eventually split erroneously. However, we
will see in a ternary tempo example that this is not a lim-
iting factor for the generation because the statistical repre-
sentation somehow compensates for it even if less variable
generations are achieved. A more general approach could
be implemented with little modifications.

The final grid is made of blocks of time of almost equal
duration that can contain none, one, or more onset events.
It is important that the sequence given to the statistical
model is almost homogeneous in time so that a certain
number of blocks corresponds to a defined time duration.

We used the following rules to assign a symbol to a
block (cf. Fig 8):

• blocks starting on an aligned onset are denoted by
the symbol of the the aligned onset,

• blocks starting on a non-aligned grid position are de-
noted by the symbol of the previous block.

Finally, a phase value is assigned to each block describ-
ing the number of grid positions passed after the last beat
position (corresponding to the metrical position of the block).
For each level of representations the new representation of
the sequence will be the Cartesian product of the instru-
ment symbol and the phase.

3. STATISTICAL MODEL LEARNING

Now we statistically analyze the structure of the symbol
sequence obtained in the last section.

We employ variable length Markov chains (VLMC) for
the statistical analysis of the sequences. In [7, 17], a gen-
eral method for inferencing long sequences is described.
For faster computation, we use a simplified implementa-
tion as described in [3]. We construct a suffix tree for each
level based on the sequence of that level. Each node of
the tree represents a specific context that had occurred in
the past. In addition, each node carries a list of continu-
ation indices corresponding to block indices matching the
context.

For audio, a different approach has been applied in [18].
This method does not require an event-wise symbolic rep-
resentation since it employs the factor oracle algorithm.
VLMC has not been applied to audio before, because of
the absence of an event-wise symbolic representation we
presented above.



Figure 8. The event sequence derived from a segmentation by onset detection is indicated by triangles. The vertical lines
show the division of the sequence into blocks of homogeneous tempo. The red solid lines represent the beat position (as
obtained by the skeleton subsequence). The other black lines (either dashed if aligned to a detected onset or dotted if no
close onset is found) represent the subdivisions of the measure into four blocks.

3.1 Generation Strategies

If we fix a particular level the continuation indices are drawn
according to a posterior probability distribution determined
by the longest context found. But which level should be
chosen? Depending on the sequence, it could be better to
do predictions based either on a coarse or a fine level but
it is not clear which one should be preferred. First, we se-
lected the lower level at which a context of at least l̂ existed
(for a predetermined fixed l̂, usually l̂ equal 3 or 4). This
works quite good for many examples. But in some cases a
context of that length does not exist and the system often
reaches the higher level where too many symbols are pro-
vided inducing too random generations. On the other side,
it occurs very often that the lower level is made of single-
ton clusters that have only one instance. In this case, a
long context is found in the lower level but since a particu-
lar symbol sequence only occurs once in the whole original
segment the system replicates the audio in the same order
as the original. This behavior often leads to the exact re-
production of the original until reaching its end and then a
jump at random to another block in the original sequence.

In order to increase recombination of blocks and still
provide good continuation we employ some heuristics tak-
ing into account multiple levels for the prediction. We set
p to be a recombination value between 0 and 1. We also
need to preprocess the block sequence to prevent arriving
at the end of the sequence without any musically mean-
ingful continuation. For this purpose, before learning the
sequence, we remove the last blocks until the remaining se-
quence ends with a context of at least length two. We make
use of the following heuristics to generate the continuation
in each step:

• Set a maximal context length l̂ and compute the list
of indices for each level using the appropriate suf-
fix tree. Store the achieved length of the context for
each level.

• Count the number of indices provided by each level.
Select only the levels that provide less than 75% the
total number of blocks.

• Among these level candidates, select only the ones
that have the longest context.

• Merge all the continuation indices across the selected
levels and remove the trivial continuation (the next
onset).

• In case there is no level providing such a context and
the current block is not the last, use the next block as
a continuation.

• Otherwise, decide randomly with probability pwhether
to select the next block or rather to generate the ac-
tual continuation by selecting randomly between the
merged indices.

4. EVALUATION OF EXAMPLES

As a descriptive evaluation, we asked a professional per-
cussionist to judge several examples of continuations as if
they were performances of a student. Moreover, we asked
him to record two beat boxing excerpts trying to push the
system to the limits of complexity and to assess critically
the sequences that the system had generated from these
recordings. The examples are available on the web site
[19] along with some graphical animations explaining the
analysis process.

Let us briefly explain what can be seen in these anima-
tions. In each video, we see the original sound fragment
and the generation derived from it. Each video shows an
animated graphical representation where each block is rep-
resented by a triangle. The horizontal axis corresponds to
the time in seconds and the vertical axis to the cluster-
ing quantization resolution. In the beginning, the origi-
nal sound is played and the animation shows the discov-
ered block representation. At each moment, the currently
played block is represented by an increased colored trian-
gle and highlighted by a vertical dashed black line. The
other colored triangles highlight all the blocks from the
starting point of the measure to the current block. In the
second sequence, only the skeleton subsequence is played.
In the last sequence, the generation is shown. The col-
ored triangles represent the current block and the current
context. The size of the colored triangles decreases mono-
tonically from the current block backwards displaying the
past time window considered by the system. The colored
triangles are represented only on the levels selected by the



generation strategy. The colors correspond to a symbol in
a one-to-one manner.

Four examples were taken from the ENST database (see
[20]), one from FreeSound.org and two examples were re-
corded with the percussionist. From the ENST database,
we have selected medium/high complexity examples that
we numbered according to our collection list. They are
Examples no. 15, 21, 28, and 31 corresponding to the fol-
lowing files of the ENST database:

053_phrase_afro_complex_slow_sticks
072_phrase_shuffle-blues_complex_slow_sticks
079_phrase_hard-rock_complex_medium_sticks
088_phrase_waltz_simple_medium_brushes

From FreeSound we have selected the popular “Amen
Break” loop, because of its common use and manipulations
during improvisation sets.

Starting from the latter, according to the percussionist,

�As the starting material is relatively rich
the continuation is very good considering the
length of the original. Especially interesting
is the small looping part in 0.58s. It is very
similar to what I would do as a percussionist�.

It is possible to note how the metrical structure is pre-
served in those examples due to the introduced tempo re-
strictions. Moreover, an important feature is that it creates
relatively original variations given the short length of the
learned examples. Example 28 is commented by the per-
cussionist in the following way:

�Very good. Meter is kept perfectly, and
the “drum fills” are provided in appropriate
times. A problem is that all fills are played
as they appear in the song, and not extended
or slightly more complex�.

For Example 31, the percussionist expressed surprise
for the realism of the generation and he referred to Exam-
ple 15, saying:

�The starting material is very good and
rich in this case, so the continuation is rich
too. Some fills are expanded and more com-
plex which is very good, although other se-
quences appear exactly as they did in the orig-
inal�.

Referring to the beatboxing examples, he pointed out
that the metrical structure is kept correctly but the beats do
not vary too much in terms of accent. Then, he added:

�Especially good is the looping of a sin-
gle beat at 1.20s of the first example, although
normally the looping shouldn’t be repeated too
much to maintain a phrase balance�.

Finally, as an overall consideration, he pointed out an
interesting application of the system:

�If these continuations are used as an ac-
companiment, they are excellent since they,
firstly, maintain a steady rhythm but at the same

time evolve and, secondly, they more or less
keep the time signature (i.e. strong beats usu-
ally land on the strong part of the meter, me-
ters sound conceptually as distinct units)�.

However, he also mentioned several missing features in
comparison to a human percussionist solo.

From our point of view, it is worth mentioning that in
Examples 21 and 31 even if the tempo is ternary the gen-
eration still preserves the metrical structure. In this case,
three ternary beats constitute an event together, causing a
bad representation of the sequence (a sort of swing subdi-
vision). The statistical model is still able to select a good
block position each time.

The behavior of the system depends on the correct be-
havior of all its parts. In particular, see [16] for a sys-
tematic evaluation of the tempo detection. Nevertheless,
some examples show that even when the computed sym-
bolic representation of the audio does not respect directly
the underlying musical sequence (e.g. the ternary tempo)
the statistic model tends to generate sequences that do not
break the metric structure.

5. DISCUSSION

Our system effectively generates sequences respecting the
structure and the tempo of the original sound fragment for
medium to high complexity rhythmic patterns.

The descriptive evaluation of a professional percussion-
ist confirmed that the metrical structure is correctly man-
aged and that the statistical representation generates musi-
cally meaningful sequences. He noticed explicitly that the
drum fills (short musical passages which help to sustain
the listener’s attention during a break between the phrases)
were handled adequately by the system.

The critics by the percussionist were directed to the lack
of dynamics, agogics and musically meaningful long term
phrasing which we did not address in our approach.

Part of those feature could be achieved in the future by
extending the system to the analysis of non-binary meter.
To achieve musically sensible dynamics and agogics (ral-
lentando, accelerando, rubato. . . ) of the generated musi-
cal continuation for example by extrapolation [21] remains
a challenge for future work.

6. ACKNOWLEDGMENTS

Many thanks to Panos Papiotis for his patience during lengthy
recording sessions and for providing us with beat boxing
examples, the evaluation feedback, and inspiring comments.
Thanks to Ricard Marxer for his helpful support. The first
author (MM) expresses his gratitude to Mirko Degli Es-
posti and Anna Rita Addessi for their support and for mo-
tivating this work. The second author (HP) was supported
by a Juan de la Cierva scholarship of the Spanish Ministry
of Science and Innovation.

7. REFERENCES

[1] S. Dubnov, G. Assayag, and R. El-Yaniv, “Universal
classification applied to musical sequences,” in Pro-



ceedings of the International Computer Music Confer-
ence, pp. 332–340, 1998.

[2] D. Cope, Virtual Music: Computer Synthesis of Mu-
sical Style. Cambridge, Massachusetts: MIT Press,
2004.

[3] F. Pachet, “The continuator: Musical interaction with
style,” in Proceedings of ICMC (ICMA, ed.), pp. 211–
218, ICMA, September 2002. best paper award.

[4] A. Addessi, L. Ferrari, S. Carlotti, and F. Pachet,
“Young children’s musical experiences with a flow ma-
chine,” in Proceedings of the 9th International Confer-
ence on music perception and cognition, 2006.

[5] L. Meyer, Style and music: Theory, history, and ideol-
ogy. University of Chicago Press, 1996.

[6] H. Purwins, M. Grachten, P. Herrera, A. Hazan,
R. Marxer, and X. Serra, “Computational models of
music perception and cognition II: Domain-specific
music processing,” Physics of Life Reviews, vol. 5,
pp. 169–182, 2008.

[7] P. Buhlmann and A. J. Wyner, “Variable length markov
chains,” Annals of Statistics, vol. 27, pp. 480–513,
1999.

[8] F. Lerdahl and R. Jackendoff, A Generative Theory of
Tonal Music. The MIT Press, June 1996.

[9] C. E. Shannon, “A mathematical theory of commu-
nication,” SIGMOBILE Mob. Comput. Commun. Rev.,
vol. 5, pp. 3–55, January 2001.

[10] M. J. Weinberger, J. J. Rissanen, and M. Feder, “A uni-
versal finite memory source.,” IEEE Trans. Inf. Theory,
vol. 41, no. 3, pp. 643–652, 1995.

[11] S. Abdallah and M. Plumbley, “Information dynamics:
patterns of expectation and surprise in the perception
of music,” Connect. Sci, vol. 21, no. 2-3, pp. 89–117,
2009.

[12] A. Hazan, R. Marxer, P. Brossier, H. Purwins, P. Her-
rera, and X. Serra, “What/when causal expectation
modelling applied to audio signals,” Connection Sci-
ence, vol. 21, pp. 119 – 143, 2009.

[13] R. Marxer and H. Purwins, “Unsupervised incremental
learning and prediction of audio signals,” in Proceed-
ings of 20th International Symposium on Music Acous-
tics, 2010.

[14] O. Lartillot, P. Toiviainen, and T. Eerola, “A mat-
lab toolbox for music information retrieval,” in An-
nual Conference of the German Classification Society,
2007.

[15] R. Duda, P. Hart, and D. Stork, Pattern classification.
Citeseer, 2001.

[16] S. Dixon, “Automatic extraction of tempo and beat
from expressive performances,” Journal of New Music
Research, vol. 30, no. 1, pp. 39–58, 2001.

[17] D. Ron, Y. Singer, and N. Tishby, “The power of
amnesia: learning probabilistic automata with vari-
able memory length,” Mach. Learn., vol. 25, no. 2-3,
pp. 117–149, 1996.

[18] S. Dubnov, G. Assayag, and A. Cont, “Audio oracle: A
new algorithm for fast learning of audio structures,” in
Proceedings of International Computer Music Confer-
ence (ICMC), pp. 224–228, 2007.

[19] “www.youtube.com/user/audiocontinuation.”

[20] O. Gillet and G. Richard, “Enst-drums: an extensive
audio-visual database for drum signals processing,” in
ISMIR, pp. 156–159, 2006.

[21] H. Purwins, P. Holonowicz, and P. Herrera, “Polyno-
mial extrapolation for prediction of surprise based on
loudness - a preliminary study,” in Sound and Music
Computing Conference, (Porto), 2009.


	 1. Introduction
	 2. Unsupervised Sound Analysis
	2.1 Segmentation
	2.2 Symbolization
	2.2.1 Feature Extraction
	2.2.2 Sound Clustering

	2.3 Level Selection
	2.4 Beat detection
	2.4.1 Tempo Detection (Inter Beat Interval)
	2.4.2 Creation of Skeleton Grid


	 3. Statistical Model Learning
	3.1 Generation Strategies

	 4. Evaluation of examples
	 5. Discussion
	 6. Acknowledgments
	 7. References

