

MTG
Music Technology
Group

Automatic Alignment of Long Syllables in A Cappella Beijing Opera

Georgi Dzhambazov, Yile Yang, Rafael Caro, Xavier Serra CompMusic Project – Universitat Pompeu Fabra georgi.dzhambazov@upf.edu

6th International Workshop on Folk Music Analysis
Dublin Institute of Technology
17 June 2016

Introduction

 What is lyrics-to-audio alignment? automatic matching between an audio recording and its lyrics: phrases/words/syllables

State-of-the-art approaches: overview in (Fujihara, 2012)

methodology	training	evaluation dataset
phoneme recognizer	speech	English pop, Japanese pop, Cantonese pop

Most work is on pop music with speech-adopted approach

What is Beijing opera (a.k.a. Jingju)

Unique singing style

Language: Mandarin + dialects

Different metrical patterns (banshi):

manban (slow) kuaiban (fast)

Different role types

Example excerpt from an aria

Average duration: 3.1 sec

Max duration: 8 sec

Motivation

Why alignment?

To facilitate navigation

- For musicological studies
- For singing students and teachers

Why design a new alignment method?

Application of state-of-the-art phonetic recognizer:

- Not satisfactory results
- Unaware of music-specific knowledge

Example excerpt from an aria: performance of baseline with phonetic recognizer

Premature transition to next syllable for long syllables

Syllable reference durations: model from score?

- (Dzhambazov et al. 2015) Lyrics-to-audio alignment on Turkish Makam recordings
- Restriction: need of musical score
- In Beijing opera actors do not follow strictly score durations!

Syllable reference durations: model from training

data?

- (Kruspe et al. 2015) Keyword spotting on English pop songs
- Restriction: loses context (position of a syllable in a line)

Beijing-opera-specific principles

- Lyrics from poetry: divided into lines
- Each line has 2 or 3 dou groups
- Each dou ends with a key syllable

玉堂春含悲泪忙往前进,

想起了当年事好不伤情!

每日里在院中缠头似锦,

到如今只落得罪衣罪裙。

Derivation of phoneme reference durations

- Assign ratios from total line durations to key syllables
- Split syllable durations into phoneme reference durations $\, R_i \,$

Phoneme models

- Train on singing voice with concatenated excerpts
- 29 phonemes + silence: GMM with MFCCs

Duration-explicit hidden Markov model (DHMM)

- Assign normal distributions centered at phoneme reference durations $\,{
 m R}_i$
- Assign exponential distributions at inter-word silences

Duration-explicit hidden Markov model

- Consider the sequence of phonemes as a HMM
- Forced Viterbi alignment
 - Maximize duration at each phoneme according to assigned distributions

$$\delta_t(i) = \max_{d} \{ \delta_{t-d}(i-1) P_i(d) [B_t(i,d)] \}$$

Duration-explicit hidden Markov model

- Consider the sequence of phonemes as a HMM
- Forced Viterbi alignment
 - Maximize duration at each phoneme according to assigned distributions

$$\delta_t(i) = \max_d \{\delta_{t-d}(i-1) P_i(d) [B_t(i,d)]\}$$

Dataset

- Especially compiled for this study, 2 singers
- 'canonical' dataset: at least two prolonged key syllables

	dataset	'canonical' dataset
duration (minutes)	67	27
#lines per aria	9.2	9.9
#syllables per line	10.7	10.3
line duration (seconds)	18.3	23.4
syllable duration (seconds)	2.4	3.1

Evaluation metric

Alignment accuracy = duration of correct regions / total audio duration Suggested in (Fujihara, 2011)

Results

- 3-fold cross validation done
- baseline: same HMM with no duration modeling
- oracle: same DHMM with annotations as if they were acoustic probabilities

	baseline	DHMM	oracle
overall	56.6	89.9	98.5
'canonical'	57.2	96.3	99.5

Demo

Efficient python implementation available under CC license: https://github.com/georgid/AlignmentDuration/tree/noteOnsets/jingju

Conclusion

- An automatic lyrics-to-audio alignment approach
- Extend a phonetic recognizer with duration modeling

Future work

- Extend to work with original polyphonic mix
- Integrate automatic segmentation of lyrics lines

References

(Fujihara, 2012): Lyrics-to-audio alignment and its application. *Multimodal Music Processing*

(Dzhambazov et al. 2015): Modeling of phoneme durations for alignment between polyphonic audio and Lyrics. In Sound and Music Computing Conference, Maynooth, Ireland.

(Kruspe et al. 2015): Keyword spotting in a-capella singing. In Proceedings of the 15th International Society for Music Information Retrieval Conference

(Fujihara, 2011): Lyric-synchronizer: Automatic synchronization system between musical audio signals and lyrics. *IEEE Journal of Selected Topics in Signal Processing*