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Determinism and Sources of Predictability
Joan Serr̀a, Holger Kantz, Xavier Serra, and Ralph G. Andrzejak∗

This is the Supplementary Material for the article entitled
“Predictability of Music Descriptor Time Series and its
Application to Cover Song Detection”, submitted to IEEE
Trans. on Audio, Speech and Language Processing.

In the article we find evidence that forecasts of music
descriptor time series can still be performed at mid-term
or relatively long horizons. In addition, we show that this
ability becomes crucial for a real-world application, namely
the automatic detection of cover songs. However, prediction
errors are not as low as one would expect, even for short
horizons. Thus, we here investigate in more detail which
structures in our data are the sources of predictability.

Prediction relies on the assumption that similar initial con-
ditions are mapped to similar states after a certain time step
h. If h is so large that this property gets lost, then inaccuracy
of initial conditions, inaccuracies of the model, and the lack
of smoothness of theh-step map make predictions impossible
in practice [1]. We assess this property for our data using a
technique to quantify the expansion or contraction of sample
neighborhoods ash increases, and by comparing the behavior
of music descriptor time series to well-known processes.

Consider a time seriesS and its reconstructed state space
S∗. For each points∗n in S∗, we select a neighborhoodΩn of
radiusǫ. As done with the locally constant predictor, we use a
percentage of the average squared Euclidean norm between all
points (ǫκ = 0.4 for descriptors and noise,ǫκ = 0.01 for the
rest). In addition, samples with neighborhoods smaller than
ν = 5 elements are discarded from further processing. Once
we have the neighborhoodΩn, an average pairwise distance
between all elements inΩn is computed. This computation is
done by taking into account the evolution of these elements
as a function of the prediction horizonh:

ϑn(h) =
1

|Ωn|2

∑

s∗
n
′
∈Ωn

∑

s∗
n
′′
∈Ωn

‖sn′+h − sn′′+h‖ , (1)

wheres∗
n′ ands∗

n′′ are samples reconstructed by delay vectors
which are found in the neighborhoodΩn, andsn′+h andsn′′+h

are the future values ath steps ahead of the corresponding
unreconstructed scalar samples ofs∗

n′ and s∗
n′′ , respectively.

The quantity given by Eq. (1) is normalized by an average
pairwise distance between unreconstructed samples,

θ =
1

(N − w − h)2

∑

s∗
n
′
∈S∗

∑

s∗
n
′′
∈S∗

‖sn′ − sn′′‖ , (2)

such thatζn(h) = ϑn(h)/θ. Finally, by averaging across all
samplesn = w + 1, . . . N − h of a time series, we obtain
ζ(h) = 〈ζn(h)〉, an indicator of the expansion or contraction
of the sample neighborhoods as the time evolves.

∗ See the main article for contact data and acknowledgments.
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Fig. 1. Plots ofζ as a function ofh for a number of time series obtained
from known processes.

In Fig. 1 we represent theζ(h) curves obtained from time
series of a number of known dynamical systems [1]–[3]: white
Gaussian noise, a sinusoidal, an AR process of order 1 (AR1),
an AR process of order 2 (AR2), a realization of the Lorenz
system, and a realization of the Ulam map. The last two
provide typical realizations of chaotic time series. For example
time series and information about the processes that might
generate them we refer to the citations above.

We see that all neighborhoods have aζ value close to 0 for
h = 0 (recall that they are selected from the reconstructed state
space with a small radiusǫ). As soon ash > 0, ζ increases
until it reaches 1, i.e. untilϑ reachesθ, the average pairwise
distance between samples. The only exception is the sinusoidal
signal, whoseζ remains close to 0. This is an indicator of the
periodicity of this signal: points inside a neighborhood donot
disperse with time. On the other extreme we have Gaussian
uncorrelated noise, which already ath = 1 reachesζ = 1.
This implies that the sample spread within one time step is
already equal to the mean sample spread of the time series.
Correlated systems lead to intermediate values and behaviors.
Chaotic systems produce an exponential growth ofζ (h ≤ 5,
lines with triangles). We can also see the typical contractions
of the Lorenz system at integer multiples of the half mean
oscillation period. Finally, the shape of theζ curves for the
AR processes resemble more a square root or a logarithmic
function. A further interesting fact is the successive plateaus
of the AR2 curve, which are repeated at multiples of the main
periodicity of the time series (blue squares)1.

If now we perform the same analysis for the music de-
scriptor time series and average across songs, we see three
interesting facts (Fig 2). First, curves do not start at aζ
value close to 0 forh = 0. This characteristic is shared with

1It can be easily checked by iteration of the model coefficientsthat an AR
process of order 2 reaches subsequent plateaus around multiples of its main
period.
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Fig. 2. Averageζ curves for all the considered descriptor time series.

multivariate Gaussian noise, and it is inherent to the difficulty
of finding nearest neighbors for a noisy sample (thus having
to set a largerǫ).

Second, we see that curves do not reachζ = 1 for mid
and relatively long time spans. This is related to the behavior
we see in the self-prediction and cross-prediction figures of
the article. We conjecture that this behavior is due to non-
stationarity, resulting in an intermittent lack of recurrence.

Third, the shape of theζ curves for all descriptors resemble
those we find for the AR models (Fig. 1). Interestingly, the
work by Meng et al. [4] cited in the article reports significative
improvements in automatic music genre classification through
the summarization (or compression) of music descriptor time
series by means of AR coefficients. Furthermore, AR and
TAR models yield here the highest performance, both in self-
prediction and cross-prediction trials, being TAR models the
best ones among all models tested. Notice that TAR models
are adequate models for the abovementioned type of non-
stationarity [5].

Based on all previous evidence, we can propose a hypothesis
about the nature of the process governing the generation of
music descriptor time series and, by extension, to general
music dynamics. We could say that descriptor time series
resemble to a certain extent a non-stationary piecewise AR
processes with superimposed noise.

To provide further evidence, we implemented a simple algo-
rithm for generating artificial descriptor time series following
these guidelines. More concretely, we create artificial time
series by concatenating, after an arbitrary number of iterations,
the output of randomly chosen multivariate AR2 processes
(with different means for each component) and subsequently
superimpose white Gaussian noise with zero mean and unit
variance (we then use a multiplicative factor to control the
variance of the noise). The resultant time series generatedby
this algorithm closely resemble the real descriptor time series
(Fig. 3). Moreover,ζ curves computed from these artificial
time series are qualitatively similar to those generated for
real descriptor time series from individual songs (Fig. 5).
In particular, with an individual song analysis, we see some
periodic plateaus or small contractions (Fig. 5a). This mimics
the behavior of signals derived from AR2 processes, which
have inherent periodicities (Fig. 1). Since we also use an AR2
process for the generation of the artificial time series, this
behavior is also reflected in the artificial curves (Fig. 5b).

Overall, the outcome of these investigations, jointly with
the results reported in the self-prediction and cross-prediction
experiments of the article, suggest that the temporal evolution
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Fig. 3. Examples of artificially generated univariate (a) anda multivariate
(b) time series. Compare these plots with the real descriptor time series of
Fig. 4.
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Fig. 4. Representative examples of a loudness (a) and a tonal centroid (b)
descriptor time series. These correspond to a recording of the song “All along
the watchtower” as performed by Jimi Hendrix.
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Fig. 5. Examples of individualζ curves obtained with the PCP descriptor for
5 individual songs (a) and with 5 realizations of the algorithm for generating
artificial descriptor time series (b).

of music descriptors might be explained by a concatenation
of multiple autoregressive processes with superimposed noise.
Since autoregressive models are linear stochastic models,this
might imply that the irregularity of music is, to a large extent,
due to random variations with more or less strong correlations.
Evidently, non-stationarity is a very relevant element in music,
and this is related to the succession of different sections in the
course of a musical piece (introduction, verse, chorus, etc.).
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