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In the article we find evidence that forecasts of music
descriptor time series can still be performed at mid-term
or relatively long horizons. In addition, we show that this

ability becomes crucial for a real-world application, néne Ot Ulam map o
the automatic detection of cover songs. However, predictio 0 10 20 20 20 50
errors are not as low as one would expect, even for short h

horizons. Thus, we here investigate in more detail whith L Plots of¢ function oft £ ber of fi o5 obtained
. . - 1g. 1. Oots o1 as a ftunction O Oor a numper or time series obtaine
structur_es_, in our data are the sources of prgdl_ctab_m_ty. from known processes.
Prediction relies on the assumption that similar initiah-co
ditions are mapped to similar states after a certain timp ste

h. If h is so large that this property gets lost, then inaccuracyIn Fig. 1 we represent the(h) curves obtained from time

of initial conditions, inaccuracies of the mpdgl, and thek_la series of a number of known dynamical systems [1][3]: white

.Of smoo_thness of th-step map make predictions 'mposs_'bl%aussian noise, a sinusoidal, an AR process of order 1 (AR1),
n pra_ctlce [1]. We_assess this p_roperty for our data UsiNg-3 AR process of order 2 (AR2), a realization of the Lorenz

tec_hnlque to quant_|fy the expansion or contr_actlon of sam.pé stem, and a realization of the Ulam map. The last two

neighborhoods ak increases, and by comparing the behav'cf:?r/ovide typical realizations of chaotic time series. Faraple

of cr:nu5|§:ddescr|_ptor t'm:;e”zs_to well-known p()jrocesses. time series and information about the processes that might
onsider a time serie§ and its reconstructed state Spacﬁenerate them we refer to the citations above.

S". For each poing, in 57, we select a neighborhodd, of We see that all neighborhoods have walue close to 0 for

radiuse. As done with the locally constaqt predictor, we use o) (recall that they are selected from the reconstructed state
percentage of the average squared Euclidean norm between al

points €, = 0.4 for descriptors and noise,, = 0.01 for the space with a small radiug. As soon ash > 0, ¢ increases

- . . until it reaches 1, i.e. until) reached, the average pairwise

rest). In addition, samples with neighborhoods smallentha, . . .
. ; istance between samples. The only exception is the sitalsoi

v = 5 elements are discarded from further processing. Once : o .
. L . signal, whose& remains close to 0. This is an indicator of the

we have the neighborhoof,,, an average pairwise distance

L ; . periodicity of this signal: points inside a neighborhoodruoi
between all elements if,, is computed. This computation is’,. s .
o . isperse with time. On the other extreme we have Gaussian
done by taking into account the evolution of these elements : .
. . i uncorrelated noise, which already /at= 1 reaches( = 1.
as a function of the prediction horizdn C - ; .
This implies that the sample spread within one time step is
1 Iready equal to the mean sample spread of the time series
'lgn h - Sn/ — Sn// s 1 a y q . p - p g .
(%) |£2,]2 Z Z I +nl @) Correlated systems lead to intermediate values and bekavio
Chaotic systems produce an exponential growtly ¢f < 5,
wheres;, ands],, are samples reconstructed by delay vectofiges with triangles). We can also see the typical contoasti
which are found in the neighborhodd),, ands, . ands. 1 of the Lorenz system at integer multiples of the half mean
are the future values &t steps ahead of the correspondingscillation period. Finally, the shape of tijecurves for the
unreconstructed scalar samplesspf and s, respectively. AR processes resemble more a square root or a logarithmic
The quantity given by Eq. (1) is normalized by an averag@inction. A further interesting fact is the successive edais

. .
s, €02, ", €2,

pairwise distance between unreconstructed samples, of the AR2 curve, which are repeated at multiples of the main
B 1 periodicity of the time series (blue squares)
b= (N —w — h)? 2. > lsw=sul @ If now we perform the same analysis for the music de-

s*,eS*s*,, €S* . . .
" " SCI’IptOI’ time series and average across songs, we see three

such that¢, (h) = 9,(h)/6. Finally, by averaging across allinteresting facts (Fig 2). First, curves do not start at a
samplesn = w+ 1,... N — h of a time series, we obtain value close to 0 fo = 0. This characteristic is shared with
¢(h) = (¢.(h)), an indicator of the expansion or contraction

of the sample neighborhoods as the time evolves. LIt can be easily checked by iteration of the model coefficiéinas an AR
process of order 2 reaches subsequent plateaus aroundlesulifpits main
* See the main article for contact data and acknowledgments. period.
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Fig. 2. Average( curves for all the considered descriptor time series.
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multivariate Gaussian noise, and it is inherent to the diffic Time [windows]

of finding nearest neighbors for a noisy sample (thus having
to set a Iargerz). Fig. 3. Examples of artificially generated univariate (a) anthultivariate

. b) time series. Compare these plots with the real descrif series of
Second, we see that curves do not regck 1 for mid (Fié. 4. P P e

and relatively long time spans. This is related to the bedravi
we see in the self-prediction and cross-prediction figures o
the article. We conjecture that this behavior is due to non-
stationarity, resulting in an intermittent lack of recurce.

Third, the shape of thé curves for all descriptors resemble
those we find for the AR models (Fig. 1). Interestingly, the 90 . .
work by Meng et al. [4] cited in the article reports signifigat 500 1000
improvements in automatic music genre classification tiinou Time [windows]
the summarization (or compression) of music descriptoetim ] T
series by means of AR coefficients. Furthermore, AR and " “ il H N‘M‘ il
TAR models yield here the highest performance, both in self- )\ ’ | | | \ \M ’
prediction and cross-prediction trials, being TAR modéis t ‘\ |\ ‘ \ \”H‘ ‘\H
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best ones among all models tested. Notice that TAR models 500 1000 1500 2000
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are adequate models for the abovementioned type of non- Time {windows]

stationarity [5] . . Fig. 4. Representative examples of a loudness (a) and a tentio@ (b)
Based on all previous evidence, we can propose a hypothegisriptor time series. These correspond to a recordingeagahg “All along

about the nature of the process governing the generationthgfwatchtower” as performed by Jimi Hendrix.
music descriptor time series and, by extension, to general
music dynamics. We could say that descriptor time series () (b
resemble to a certain extent a non-stationary piecewise AR 1 1
processes with superimposed noise.
To provide further evidence, we implemented a simple algo- 05 o Mﬁ
rithm for generating artificial descriptor time series éwling ' ' f//\__,,
these guidelines. More concretely, we create artificialetim
series by concatenating, after an arbitrary number oftitars, 0 0
the output of randomly chosen multivariate AR2 processes 0 20 40 0 20 40
(with different means for each component) and subsequently h h
superimpose white Gaussian noise with zero mean and ynit

. L. . LHJ; 5. Examples of individuaf curves obtained with the PCP descriptor for
variance (we then use a multiplicative factor to control theindividual songs (a) and with 5 realizations of the aldaritfor generating

variance of the noise). The resultant time series genetatedartificial descriptor time series (b).

this algorithm closely resemble the real descriptor tinéese

(Fig. 3). Moreover,( curves computed from these artificial ] } } ) )

time series are qualitatively similar to those generated f8f music descriptors might be explained by a concatenation

real descriptor time series from individual songs (Fig. 5f multiple autoregressive processes with superimposeno

In particular, with an individual song analysis, we see somaNce autoregressive models are linear stochastic mats,

periodic plateaus or small contractions (Fig. 5a). This fogm Might imply that the irregularity of music is, to a large exte

the behavior of signals derived from AR2 processes, whiéi€ to random variations with more or less strong corretatio

have inherent periodicities (Fig. 1). Since we also use ag AfEvidently, non-stationarity is a very relevant element iasio,

process for the generation of the artificial time seriess thnd this is related to the succession of different sectiorise

behavior is also reflected in the artificial curves (Fig. S5b). course of a musical piece (introduction, verse, chorus).etc
Overall, the outcome of these investigations, jointly with

the results reported in the self-prediction and crossiptied

experiments of the article, suggest that the temporal deolu
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