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ABSTRACT 

In this paper we evaluate two methods for key estimation 
from polyphonic audio recordings. Our goal is to 
compare between a strategy using a cognition-inspired 
model and several machine learning techniques to find a 
model for tonality (mode and key note) determination of 
polyphonic music from audio files. Both approaches 
have as an input a vector of values related to the intensity 
of each of the pitch classes of a chromatic scale. In this 
study, both methods are explained and evaluated in a 
large database of audio recordings of classical pieces. 

1. INTRODUCTION 

Tonality and tonal aspects of musical pieces are very 
relevant for its appreciation. There have been attempts to 
relate those aspects with mood induction in listeners, and 
some kind of relatedness (or similarity) between different 
excerpts sharing tonality have been reported. Listeners 
are sensitive to key changes, which are also related to 
rhythm, structure, style and mood. Key changes can be 
used, for instance, as cues about the structure of a song, 
or as features to query for matching pieces in a database. 
Key and mode can also be used to navigate across digital 
music collections by computing similarities between the 
files or selected excerpts from them.  

In western music, the term key (or tonality) is usually 
defined as the relationship between a set of pitches 
having a tonic as its main tone, after which the key is 
named. A key is then defined by both its tonic (also 
called key note, for example: A) and its mode (ex: minor). 
The tonic is one in an octave range, within the 12 
semitones of the chromatic scale (ex: A, A#/Bb, B, C, 
C#/Db, D, D#/Eb, E, F, F#/Gb, G). The mode is usually 
minor or major, depending on the used scale. The major 
and minor keys then rise to a total set of 24 different 
tonalities. 

Here we compare two approaches for computing the 
tonality from audio files containing polyphonic music. 
The first one is based on a tonality model that has been 
established after perceptual studies, and uses some 
musical knowledge to estimate the global key note and 
mode attached to a certain audio segment. The second 

one is based on machine learning algorithms trained on a 
database of labelled pieces. After a description of both 
approaches, we evaluate them, present the results and 
discuss some of our findings. 

2. SYSTEM BLOCK DIAGRAM 

The overall system block diagram is presented in Figure 
1. In order to estimate the key from polyphonic 
recordings, we first extract a set of low-level features 
from the audio signal. These features are then compared 
to a model of tonality in order to estimate the key of the 
piece.  

 
Figure 1. System block diagram. 
 
In this study we have assumed that the key is constant 

over the considered audio segment. That means that the 
modulations we can find do not affect the overall tonality 
of the piece and we can estimate a tonality for the 
segment.   

3. FEATURE EXTRACTION 

The input of the key estimation block in Figure 1 is a 
vector of low-level features extracted from the audio 
signal. The features used in this study are the Harmonic 
Pitch Class Profile (HPCP), based on de Pitch Class 
Profile descriptor proposed by Fujishima in the context 
of a chord recognition system [1]. HPCP is a vector of 
low-level signal features measuring the intensity of each 
of the 12 pitch classes of the temperate scale within an 
analysis frame. The feature extraction procedure is 
summarized as follows. We refer to [2] for a detailed 
explanation. 

1. Instantaneous HPCP vector is computed for each 
analysis frame using the magnitude of the spectral 
peaks that are located within a certain frequency 
band, considered as the most significant frequencies 
carrying harmonic information. We introduce a 
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weight into the HPCP computation to get into 
account differences in tuning, and the resolution is 
changed to less than one semitone. The HPCP vector 
is normalized for each analysis frame in order to 
discard energy information.  

2. Global HPCP is computed by averaging 
instantaneous HPCP within the considered segment.  

4. TONALITY COMPUTATION USING A 
COGNITION-INSPIRED MODEL 

This algorithm is based on a key estimation algorithm 
proposed by Krumhansl et al. and summarized in [3, pp. 
77-111]: the probe tone method. It measures the 
expectation of each of the 12 tones of a chromatic scale 
after a certain tonal context. This measure is 
representative to quantify the hierarchy of notes in a 
given tonal context. The output of the model is a rating 
for each of the 12 semitones of a chromatic scale 
(starting from the tonic), shown in Figure 2. The data 
were produced by experienced musicians following tonal 
contexts that consisted of tonic triads and chord 
cadences. This profile is used to estimate the key of a 
MIDI melodic line, by correlating it with a vector 
containing the relative duration of each of the 12 pitch 
classes within the MIDI sequence [3]. 

 
Figure 2. Probe tone ratings from the study by Krumhansl and 
Kessler (1982) shown with reference to a major key (top) and a 
minor key (bottom). 

Our approach relies on extending this model to deal 
with audio recordings in a polyphonic situation. We 
consider the profile value for a given pitch class to 
represent also the hierarchy of a chord in a given key. 
Given this assumption, we consider all the chords 
containing a given pitch class when measuring the 
relevance of this pitch class within a certain key. For 
instance, the dominant pitch class (i=8) appears in both 
tonic and dominant chords, so that the profile value for 
i=8 adds the contribution of the tonic and the dominant 
chords of the key. We only consider the three main triads 
of the major/minor key as the most representative chords 
(tonic, subdominant and dominant).  

 We also adapt the method to work with audio features 
(HPCP related to energy) instead of MIDI. The spectrum 
of a note is composed of several harmonics, whose 
frequencies are multiples of the fundamental frequency f 
(f, 2f, 3f, 4f, etc.). When a note is played, HPCP increases 
at the pitch classes of the different harmonics. A note has 
then different associated pitch classes, one for each 
harmonic (not only the considered fundamental 
frequency). Each of the notes of the considered chords 
contributes to the profile values of its different 
harmonics. We make this contribution decrease along 
frequency using a linear function, in order to simulate 
that the spectrum amplitude decreases with frequency. 
Final profiles are represented in Figure 3.  

 
Figure 3. Profiles adapted to polyphony and HPCP shown with 
reference to a major key (top) and a minor key (bottom). 

In order to build the profiles for the 24 different keys, 
we consider that the tonal hierarchy is invariant with 
respect to the chosen tonic. For instance, the B major 
profile is equal to the A major profile but shifted two 
bins (as A and B from a 2 semitones interval). The global 
HPCP vector is correlated with the different profiles, 
computed by circular shifting the adapted profiles. The 
maximum correlation gives the estimated key note and 
mode, as well as a correlation factor measuring the 
proximity of HPCP and the estimated key. More details 
on the method are found in [2]. 

5. MACHINE LEARNING FOR TONALITY 
MODELLING 

Different experiments have been performed, all of them 
involving comparisons between different inductive 
strategies, including the most usual ones like binary trees, 
bayesian estimation, neural networks, or support vector 
machines, but also some interesting meta-learning 
schemes such as boosting, or bagging. Meta-learning can 
be defined as the enhancement or extension of basic 
learning algorithms by means of incorporating other 
learners [5], which, in general, improve the performance 
and generalization capabilities of the base learners. Most 
of the experiments were carried out using Weka1:  
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1. Learning the tonic or key note using the low-level 

descriptors HPCP as input. 
2. Learning the mode using HPCP information. 
3. Learning the key note and the mode altogether. 
4. Learning tonality (key note and mode) using the 

HPCP vector and the estimation derived from the 
perceptual/cognitive model (Section 4), which is 
considered as a mixed approach. 

6. RESULTS 

6.1. Audio material 
 
We have built an audio database of 878 excerpts of 
classical music for evaluation, including many 
composers as, for instance, Mozart, Chopin, Scarlatti, 
Bach, Brahms, Beethoven, Handel, Pachelbel, 
Tchaikovsky, Sibelius, Dvorak, Debussy, Telemann, 
Albinoni, Vivaldi, Pasquini, Glenn Gould, 
Rachmaninoff, Schubert, Shostakovich, Haydn, 
Benedetto, Elgar, Bizet, Liszt, Boccherini, Ravel, 
Debussy, etc. We also include some jazz versions of 
classical pieces (e.g. Jacques Lousier, The Swingle 
Singers, etc).  Most of the included titles were first 
movement (in case that the piece is a multi-movement 
form as sonata or symphony). All the key note and mode 
annotations were taken from the FreeDB database1. Some 
additional manual corrections were made to include other 
movements or because of FreeDB wrong metadata, 
although systematic checking has not been performed.  

We divided the database in two sets: the training 
set, consisting of 661 audio files and the holdout set 
including the remaining 217 titles. We kept this holdout 
in order to test the generalization capabilities of the 
models using none of the instances used in the training 
phase. The tonality models were then derived using the 
661 instances not assigned to the holdout.  Most of the 
tests involved between 10 and 20 instances for each 
tonality. 

6.2. Model for tonality perception 
 
The results of the evaluation over the holdout database 
are presented in Figure 4, with 59,5% of correct tonality, 
82% of correct mode and 65% of correct key note 
estimation. The confusion matrix is found in the author’s 
web page2.  

We find that the 19% of the estimation errors 
correspond to confusions between minor/major relatives 
(e.g., C major confused with A minor), and other 24% 
correspond to tuning errors (e.g., E minor confused with 
Eb minor). It can also be seen that  the 5,7 % of the 
errors have been made by estimating the upper 5th  
within the circle of fifths (e.g., C major confused with G 
major) or the key whose tonic form a 5th ascending 
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interval  with the correct one (e.g., D minor confused 
with A minor). 19% of the keys were confused with the 
near key down on the circle of fifths (A major confused 
with D major) or the key whose tonic is located at a 5th 
descending interval (e.g., A minor confused with D 
minor). Only 44% of the errors correspond to non-related 
tonality confusions.  

6.3. Machine learning models 

We present the results according to the addressed 
subproblems: mode induction, key note induction, and 
combined key note and mode induction. We observe, 
among other things, that there is no single “best learner” 
capable of optimally approximating the solutions for all 
of them. 

6.3.1. Mode induction 

The best results for mode induction were obtained using 
an instance-based learner which bases its decision on the 
class assigned to the five nearest neighbour cases (84% 
of correct decisions). Surprisingly, the rest of studied 
methods scored far below this family of models. The 
second best method was a multilayer perceptron with 
one hidden layer containing 20 units, which achieved 
71% of correct decisions. In all cases, there were much 
more errors because of wrong assignment of minor mode 
than the other way round. 

6.3.2. Key note induction 

The application of “agnostic” machine learning strategies 
to the problem of assigning an overall key to a music 
piece yielded slightly better results than the 
perceptual/cognitive strategy. In this case, a Bayesian 
classifier with Density Estimation was the best of the set 
(72% of correct decisions). The Sequential Maximum 
Optimization algorithm (a kind of Support Vector 
Machine) scored close to that (70%), and again a 5 
Nearest-Neighbour provided good results (69%).  

6.3.3. Simultaneous key note and mode induction 

Achieving a combined answer for key note and mode is 
the most complex problem addressed in this series, as 
there were 24 different classes to classify the input 
patterns. Here, the best approach was that of a multilayer 
back-propagated perceptron with a single hidden layer of 
20 units (63% of correct decisions). Again, instance-
based strategies scored among the best (60%), although 
the best results were not quite far from those from the 
perceptual/cognitive model (59%). The confusion matrix 
for this approach is shown in the author’s web page3. 

6.4. Combination of approaches 

As it is the case in some meta-learning approaches, the 
combination of two different algorithms can improve the 



  
 
performance provided both generate different error 
patterns. Our experiments using the output of the 
perceptual/cognitive model as an additional input for the 
best machine learning algorithm has yielded no 
improvement to the presented results except in the case 
of key estimation, where the Bayesian learner yielded 
77% when we included the predicted key, mode and 
strength from the perceptual/cognitive model. This 
addition amounts to an improvement of 5% (11% 
compared to the performance of the perceptual/cognitive 
model alone).       

Tonality estimation evaluation
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Figure 4. Evaluation results. % of correct estimation. 

7. DISCUSSION  

Comparing the tonal cognition-inspired approach to the 
machine learning techniques that we can consider as 
“tools of the trade”, modest improvements in 
performance can be achieved by the latter (7% when 
computing the key note) or by embedding the former 
into the latter (12% for key note computation).  

As it is pointed out by Krumhansl, the tonal 
descriptors we have considered are severely restricted, in 
the sense that they do not capture any musical structure. 
These features take into account neither order 
information nor the chords’ position in the event 
hierarchy, as for instance, its place in the rhythmic or 
harmonic structure [3, pp. 66]. In fact, some of the 
estimation errors may be caused by tonality changes that 
affect the overall key measures and labelling. We will 
work on these structural and rhythmic aspects along 
future research. 

8. CONCLUSIONS 

We have presented a comparison between two different 
approaches for tonality estimation from polyphonic 
audio. The first one is inspired in the probe tone method 
and considers some aspects of tonality cognition. The 
second one uses “blind” machine learning techniques to 
model key by analyzing a training annotated collection. 
We have evaluated both methodologies over a large 
audio database, achieving a 64% of correct overall 
tonality estimation. Very small improvements were found 
by only using machine learning algorithms, which is 

somehow a puzzling observation that requires further 
experiments with different data representations and more 
intensive parameter tweaking of the algorithms. We have 
still room for improvement in order to come up with a 
robust technique that allow us to exploit tonality 
information for retrieval in a general-purpose popular 
music database and also for aiding the discovery of 
music information in a similar way to what Purwins et al. 
[4] have recently presented.   
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