
Universitat Pompeu Fabra

From gesture to sound: A study for a
musical interface using gesture following

techniques

Author:

Charalampos Christopoulos

Supervisor:

Alfonso Perez

Master Thesis

MSc in Sound and Music Computing

September 2014

Department or School Web Site URL Here (include http://)

“Without music, life would be a mistake.”

Friedrich Nietzsche

Abstract

Gestures are an integral part of our daily life for communication, expression and scientific

research. This work deals with the task of implementation of a real-time sound synthe-

sis interface for artistic purposes, based on gesture recognition and trajectory tracking

techniques. Gesture recognition is being carried out using Hidden Markov Models and

Gaussian Observations. We define a gestural “vocabulary” that consists of three differ-

ent shapes which after evaluation are assigned to a specific sound using explicit mapping

strategies.

Acknowledgements

The first in the list of acknowledgements would by no other than my supervisor, Alfonso

Perez, for his continuous support and guidance throughout the whole thesis project.

Secondly, I would like to thank Emilia Gomez and Jordi Janer for their advices in the

procedure of organising and writing the thesis. My friend and colleague Stylianos-Ioannis

Mimilakis was also a main contributor to my work through exchanging ideas and helping

in debugging. Last but not least, I would like to thank Xavier Serra for giving me the

opportunity to gain the knowledge by attending the SMC master this year.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1

2 State of the Art 3

2.1 Overview . 3

2.1.1 Gestures . 3

2.1.2 Gesture Tracking . 4

2.1.3 Gestures in Music . 4

2.1.4 Gesture Mapping to Sound . 5

2.2 Sensors and Hardware Interfaces . 6

2.2.1 Interactive Gloves . 7

2.2.2 Vision-Based Tracking . 8

2.2.3 Inertial Sensors . 9

2.3 Gesture-Based Applications . 9

2.3.1 Physically-Based Manipulation . 9

2.3.2 Linguistic Gestures . 10

2.3.3 Musical Interfaces . 11

2.4 Methods for Gesture-Following in 3D . 11

2.4.1 Hidden Markov Models (HMM) . 12

2.4.2 Gaussian Mixture Models (GMM) 13

2.4.3 Particle Filtering and Condensation Algorithm 14

2.4.4 FSM Approach . 14

2.4.5 Problems of Methods . 14

3 Methodology 16

3.1 Experimental Design . 16

3.2 Technical Framework . 17

3.2.1 Hardware . 17

iv

Contents v

3.2.2 Software . 19

3.2.3 External Object . 20

3.3 Proposed Method . 23

3.3.1 Gestural Vocabulary . 24

3.3.2 Hidden Markov Models (HMM) . 24

3.3.3 Gaussian Mixture Models (GMM) 26

4 Gesture Recognition 28

4.1 Data Acquisition & Preprocessing . 28

4.2 Data Analysis & Feature Extraction . 30

4.2.1 Descriptors . 30

4.2.2 Triangle Analysis . 33

4.2.3 Rectangle Analysis . 35

4.2.4 Circle Analysis . 36

4.3 HMM Probability Distribution & Classification 37

4.3.1 Triangle Model . 37

4.3.2 Rectangle Model . 41

4.3.3 Circle Model . 43

4.3.4 HMM Models’ Matlab Code . 45

4.4 Evaluation Results . 48

4.4.1 Likelihood Estimation . 48

5 Mapping Gesture to Sound 50

5.1 Mapping Strategy . 52

6 Conclusion & Future Work 55

6.1 Conclusion . 55

6.2 Future Work . 55

6.2.1 Max/Msp Sound Interface . 56

6.2.2 Additional Descriptors . 56

6.2.3 Real-time Probability & Projection of Gesture 56

6.2.4 Vocabulary Expansion . 56

6.2.5 Enhanced Mapping . 57

6.2.6 Sensory Fusion . 57

List of Figures

3.1 Proposed System Overview . 16

3.2 System Process . 17

3.3 Polhemus Liberty tracker . 18

3.4 Polhemus Liberty setup . 19

3.5 Gestural Vocabulary . 24

3.6 Left-right HMM . 26

4.1 Performed gestures in 3D . 29

4.2 Performed gestures in 2D . 31

4.3 Triangle descriptors . 34

4.4 Rectangle descriptors . 35

4.5 Circle descriptors . 36

4.6 Triangle states . 38

4.7 Triangle model states graph . 38

4.8 Triangle states scatter plot . 39

4.9 Rectangle states . 41

4.10 Rectangle states scatter plot . 42

4.11 Rectangle model states graph . 42

4.12 Circle states . 43

4.13 Circle states scatter plot . 44

4.14 Circle model states graph . 44

5.1 Mapping components in an acoustic instrument 51

5.2 Mapping components in a digital instrument 51

5.3 Pulse Code’s Modular Synthesizer . 53

vi

List of Tables

4.1 Raw gestural data example of a recorded triangle. 29

vii

Chapter 1

Introduction

Gesture recognition is a highly active research topic both in scientific and artistic dis-

ciplines. Music Research is one of the most dynamic fields, where a large amount of

gesture-based devices and applications are being developed [1], [2], [3], [4]. The inspira-

tion for the specific project came out of the intuition that a gesture confers in musical

expression. The initial idea was to combine specific type of gestures with the potential

of the “endless” sound and expressivity that an analog modular synthesizer can produce.

The whole project was built up by having in mind the goal of an additive digital mod-

ular synthesiser that its controls would be manipulated straightforward by the user’s

gestures. However, taking into account the complexity that such a modular synthesis

engine implies [5], a simplification to a core working engine was rather inevitable. For

this reason, influence by [6], we developed a sound synthesis engine that can be triggered

by a simple or multiple sequence of gestures that belong to a gestural “vocabulary”. In

this way it is easier to obtain a straightforward mapping approach between gestures and

sound manipulation from the user perspective.

The novelty that our system offers relies, apart from the idea of the gestural modu-

lar synthesizer, is the performance in 3D space. That means that the gesture can be

performed and recognised in any position of the 3D space that the Polhemus sensor

range allows being coordinate-independent. In addition, the performed gesture can be

recognised effectively independent of speed or size. From the artistic point of view, al-

though there have been some works using a database of trained gestures as a vocabulary,

there is no evidence of a straightforward application for controlling the parameters of a

synthesizer.

Among the variety of sensor interfaces, Polhemus sensors have been used for gesture

recognition purposes [7], [8], [9], [10], but a few applied it to sound manipulation [11].

In terms of the methods that are being used for gesture recognition, Hidden Markov

1

Chapter 1. Introduction 2

Models (HMM) appear to be of the most preferable [12], [13] , [14], [15]. In the proposed

system we use all the aforementioned sources in combination in order to build a modular

musical interface based on real-time gesture following and trajectory tracking.

The organisation of the presented work is being done as follows. Following the presen-

tation of the initial idea in this chapter, an overview of the already used techniques,

tools and applications are being outlined in next chapter. Afterwards, we present the

experimental framework and the technical equipment on which we was based to perform

the experiments, the data acquisition and the analysis of gestures. The next chapters are

dedicated to the description of the methodology that was used for the gesture recogni-

tion, the evaluation results and the mapping between gesture and sound. Finally, there

is a discussion of the possibilities of an extension of this application as a future work.

Chapter 2

State of the Art

2.1 Overview

Human Computer Interaction (HCI) is considered to be among the most quickly devel-

oping scientific fields. This is probably because it examines the two main ingredients of

the contemporary life; human and technology. The most important aspect of the field

is the use of computers towards human oriented applications, ranging from education

and amusement to rehabilitation and quality of life. This research refers to the technical

sight of the work that has been done in HCI applications by taking advantage a natural

human habit: the gesture.

2.1.1 Gestures

Gestures are a form of nonverbal communication where visible body actions are used to

communicate various messages, sometimes produced along with accompanying speech

while other times substituting it [17]. Gesturing is a robust phenomenon, remarked upon

for at least 2000 years, across a vast diversity of domains as philosophy, rhetoric, the-

atre, divinity, language and music, found across cultures, ages and tasks [16]. In daily

life, people move their hands whether they talk or not, they gesture; every moment,

anyone is using his hands constantly to interact with things: pick them up, move them

around, transform their shape or activate them somehow [18]. In the same way, un-

conscious gestures are communicating fundamental ideas and messages between human

interactions [18]. As it can be derived from the above facts, gestures are of high impor-

tance because they provide a natural and intuitive form of communication, weather this

communication is between humans or between human and objects.

3

Chapter 2. State of the Art 4

2.1.2 Gesture Tracking

Gesture tracking, gesture recognition and gesture following are some of the research

topics that belong to the scientific field of Human Computer Interaction (HCI) and

have been examined thoroughly within the past years. Their objective is to recognise

meaningful expressions of humans with any part of their body (hands, arms, head, upper

body) [19]. All of the above have been proven to be of utmost importance, due to their

wide spectrum of applications and their significant results. Motion capture techniques

have been used widely in computer science such as in computer vision and robotics, but

also in other multidisciplinary fields such as in military, sports, medical applications and

ultimately in entertainment for filmmaking, video games and performing arts.

While some applications deal with the tracking of the human body or specific parts of

it, others have to do with gestural interfaces for multimedia applications or games and

others are related to interfaces targeting people with special needs or disabilities. A lot of

research is also carried out in order to improve the human computer interaction through

natural movements, such as hand gestures [13]. Since all these concepts are different,

there is a variety of methods, techniques, interfaces and applications that are used for

each purpose. In every instance a different technique is applied, different equipment is

used, specific hardware and software are required to obtain and process the needed data

based on the strategy of the researcher and the needs of each project.

Finally, as [18] states, gesturing interaction can be discriminated in two modes: gestures

as a symbolic language and as a multi-dimensional control tool. This discrimination is

not always very clear in the literature since in many cases the two modes are mixed

towards a more natural manipulation, aiming to render the computer transparent in

using an application. These two different approaches will become more explicit with the

categorization of technologies and interfaces that follow in the next section.

2.1.3 Gestures in Music

Music and gesture are two concepts strictly related, since in musical domain there is

a strong evidence of gestural events. However, only in the past few decades the issue

was given attention [1] while “gesture” is still considered an ambiguous term between

composers and musicologists [3]. Based on Iazetta [1], under the musical context gesture

is taken in a broader sense; it is rather an expression than a simple movement and

therefore, it underlies a special meaning. It is an expressive movement that is happening

through simultaneous temporal and spatial changes, taking also music attributes into

account. This is also including actions of touching or manipulating physical objects

aiming to control various sonic, musical and structural parameters [1].

Chapter 2. State of the Art 5

The consideration of gesture in musical content has taken place mostly in musicology-

oriented studies of classical music [3]. However, there are methods to clearly identify

gestures in a musical context using models similar to those that are used to identify

physical gestures. Taking in mind the above considerations, Dobrian [3] proposes a gen-

eralised and clearly defined method for measuring the “gestural” existence of a musical

sound.

The successful capture, tracking and analysis of musical gestures are of main inter-

est both for the design of interactive computer music systems and the composition of

the computer music itself [2]. Following Dobrian’s [3] methodology, the analysis of a

“significant”-labeled musical gesture, can be applied to almost any aspect of sound and

music descriptor such as melodic contour, loudness, dissonance, note speed, note den-

sity, etc. These gestures can be described by the produced shapes when measuring the

changes of the above attributes over time and the derivation of data, within a specified

features’ set.

This research is important, mostly in the field of designing new interactive musical in-

struments and computer interfaces, because the design details depend on the successful

translation and interpretation of physical gestures into expressive sound control genera-

tors [3]. This relationship between a physical gesture and the sound is of vital significance

for a music performance.

2.1.4 Gesture Mapping to Sound

Another important parameter that defines the relationship between gesture and music

is the control of the parameters of the sound, in other words the mapping. Although

there are many definitions in bibliography for mapping, Doornbusch [20] summarises it

in the best way: Mapping concerns the connection between structures, or gestures and

audible results in a musical performance or composition. This control over the inputs

and the outputs of an interactive multimedia system, is of major importance and has

made both the scientific and artistic interest to rise during the last years. This is one of

the main reasons that so many conceptual and technological advances have emerged in

the field of designing musical and expressive interfaces [21].

Derived from the above, in gesture-controlled audio systems, the gestural mapping is the

process of controlling the sound processing parameters (outputs) by using the gestural

data (inputs). Since gestures are a natural way of expression, the gesture-sound mapping

is a crucial procedure that needs to embed this influential expressivity as well. This need

for controlling the various input-output parameters that such a system contains has given

birth to several gesture-sound mapping approaches [21].

Chapter 2. State of the Art 6

Mapping can be categorized using several criteria. As a first categorization approach, it

could be separated in two categories: low-level mapping and high-level mapping. The

first category refers to low-level parameters, which are not perceived by the user while

the second refers to high-level parameters that are perceptually comprehended [21].

Another categorization is the purpose of mapping; instrument design mapping versus

algorithmic composition mapping. There is a clear distinction between these two cate-

gories because composition is a process of planning, while instruments are designed for

real-time music [20]. As Doornbusch states, in algorithmic composition, which is a prac-

tice of composing a musical piece through compositional gestures, musical parameters

are extracted from the compositional process after a proper arrangement of gestures.

This procedure can be applied from the micro scale of sound design to the macro scale

of the structure of a musical peace. According to Doornbusch, mapping in algorithmic

composition is exactly this process; the extraction of these musical parameters and their

interrelationship.

A third categorization is the distinction between spatial and temporal mapping. In the

first case, mapping is considered from a geometric or topological point of view taking

into account spatial concepts like the relative distance of the parameters [22]. In the

second case, which is encountered more often, the relationship between the mapping

parameters is characterized as instantaneous [21]. That means that the input values are

straightly connected to and affect the output values. As it is noted in [21] temporal

mapping strategies are highly important, especially for systems that deal with real-

time audio processing controls, where the evolution of gestural data and its relation to

sound throughout the continuous time sequence is crucial. For these real-time systems,

gestures are assumed to be temporal processes, each one corresponding to a specific

temporal profile.

It is worth mentioning that up to nowadays, the research has focused mostly on the

theoretical aspect of the gesture to sound mapping and on the development of models

for manipulation of the multimodal interfaces between the performed gesture and the

sound synthesis parameters; empirical solutions to the mapping problem still need to be

addressed [23].

2.2 Sensors and Hardware Interfaces

Apart from the theoretical aspects of gestures, any practical implementation of gesture

tracking and recognition requires specific hardware in order to track the gestural in-

formation and convert them into meaningful data that can be processed later in any

Chapter 2. State of the Art 7

meaningful way. This hardware is consisted of various devices like gloves, body suits,

cameras and other optical tracking devices [19]. This section introduces the main cate-

gories of this hardware.

2.2.1 Interactive Gloves

One of the most widely used types of sensors for real-time gesture recognition is the

interactive glove. There is a rich collection of data glove projects, including commercially

available data gloves as well as one-off projects [24]. Watson [18] lists a well-aimed

retrospective overview of the first interactive gestural-controlled gloves that were used

during the past decades.

Among the first applications of interactive gloves was the Sayre Glove back in 1977,

which was based on an idea conceived by Rich Sayre. Actually it was the first instru-

mented glove that was invented and it used flexible tubes with a light source at one end

and a photocell at the other. Finger flexion was thus measured by the amount of light

incident on the photocell. [18]

The next worth mentioning patent belongs to Gary Grimes for his Digital Data Entry

Glove, in 1983. This glove was used to interpret a manual alphabet for data entry. It

had specifically positioned flex sensors capable of recognizing an 80-character set of the

hand manual for deaf people [18] [25] .

The most successful glove was the VPL DataGlove developed by Zimmerman. This

glove was developed using two optical fiber sensors along the back side of each finger.

Its mechanism was similar to the Sayre Glove, taking advantage of the attenuating

light that is transmitted while the fibers are being bend. The analog signal is sent

to a processor, which determines the joint angles that each user has calibrated. Its

accompanying gesture recognition software would let the users to map their personalized

configurations of joints to specific commands [8]. The exact position and orientation of

the hand was calculated using a Polhemus 3SPACE sensor which tracks the gesture

with 6 degrees of freedom using the principle of electromagnetic induction. The tracker

consists of a fixed transmitter and a lightweight cubic receiver, which is mounted on the

glove.

Although the DataGlove gave comfort along with a good precision, a system that was

developed later by Exos, the Dextrous HandMaster glove, was far more accurate but

less comfortable [25]. It was consisted of an aluminum skeleton that was fitted to the

backside of the hand. Its twenty hand joints had Hall-effect sensors to measure the

bending angle.

Chapter 2. State of the Art 8

Once again, the success of DataGlove, gave inspiration to the toy manufacturer company

Mattel that released the PowerGlove in 1989. It was a low-cost hand-wearing controller

for Nintendo game consoles [26]. The PowerGlove was using resistive ink sensors em-

bedded into flexible plastic on the back of the hand. Thus, the total flexion of each

finger was measured by one resistive ink sensor. This technique made the PowerGlove

the least accurate of the three competing gloves described above. However, many times

it was preferred both for research and multimedia purposes over its competitors due to

its enormously lower price.

Up to nowadays there is interest in gloves for musical applications. The last addition

to the gloves project came earlier this year and launched from the musician Imogen

Heap [27]. In this project which was initially started in 2011 by University of the West

of England, the glove is used as a controller for third party applications by tracking

the orientation and posture of the hand and the bending of the fingers. Furthermore,

with the usage of a gyroscope, accelerometer and magnetometer various movements

are recorded and being used as signals that correspond to different sounds and musical

effects [4].

2.2.2 Vision-Based Tracking

Computer vision methodologies have been also applied to the gesture recognition and

analysis research. An example of such a system is a camera-based LED system that

was used by researchers at the Salk Institute to analyze sign language [28]. This was

an off-line type of analysis that was avoiding computational problems that may occur.

Linguistically significant features of sign language were qualified using various analytical

techniques that have been proposed for that purpose.

Another attempt of vision-based tracking was used by Krueger who tracked participants

using a simple video camera [29]. In this system, image analysis was achieved by using a

simplified silhouette image of the body motion. Krueger’s image processing mechanism

is based on the simplification that in a silhouette of the human body the highest point

refers to the top of the head, while the rightmost (or leftmost) point refers to a fingertip

[30].

In the sequel, a passive pose tracking system was proposed by O’Neill [31]. The system

is based on tracking icons with a stereo camera system, while the application of various

computer vision techniques make feasible to track multiple objects.

In another case, a combination of a gestural interface and a vision-based tracking was

used; a colored glove and web cameras were used for capturing and recognizing hand

Chapter 2. State of the Art 9

gestures of the user where the hand coordinates are obtained via 3D reconstruction from

stereo image [13]. The two main concerns of this real-time hand tracking system were

the spatio-temporal variability and the segmentation ambiguity. The first refers to the

possibility that the same gesture may differ in duration and shape from one time to

another, while the second refers to the identification of start and end points of each

gesture.

The famous Microsoft Kinect sensor has been also used in many circumstances to collect

gestural data in 3D space [32]. Song et al have proposed a novel 3D hand gesture

recognition algorithm that segment specific hand regions from depth images and convert

them to 3D points [32]. In that case, Microsoft Kinect sensor was used to validate the

effectiveness of the proposed algorithm.

2.2.3 Inertial Sensors

Inertial sensors have been also used in motion sensing setups when gesture and 3D posi-

tion are parameters to be acquired. More specifically, Maes et al [23] in their experiment

of transforming expressive gesture into sound used inertial sensors to track and measure

the movement of the upper body of users. Although the inertial sensors do not provide

an absolute 3D position of the relevant body joints, they are useful to determine a fair

enough relative 3D position.

2.3 Gesture-Based Applications

As it is already mentioned, the applications that gesture-tracking techniques can be

implemented belong to a vast variety of domains. In the following paragraphs, a grouping

of these applications is presented, containing some of the dominant examples.

2.3.1 Physically-Based Manipulation

One of the fields that gesture recognition has been applied successfully is 3D design.

When it comes to design, it is natural to express objects using fingertips or a pen.

Taking advantage of this, MIT developed a tool to design in 3D space, the so-called

3Draw system [9]. This interface uses an embedded Polhemus sensor to track the pen’s

position and orientation in 3D. Furthermore, another 3D sensor, embedded in a palette,

represented the plane where the main object remains. In this way, the designer can

rotate the object with his movements and thus he is able to view them from various

angles [18].

Chapter 2. State of the Art 10

The aforementioned VPL DataGlove has been also used for other design applications,

where the fingertips were used as control points in 3D curves, making the user able to

move them in a 3D space [33].

Gesture recognition research has proven to be useful in medical studies as well. Since

hand’s ability to perform physical tasks can be measured using an interactive glove,

various researches were based on the VPL DataGlove for rehabilitation tasks, such as

recovering from a stroke [8] or physically debilitating diseases like Parkinson’s disease

[18]. For this type of research, a mechanical goniometer is used to obtain the range of

motion of a patient. The gestural data are then analyzed based on data of non-patients’

gestures.

2.3.2 Linguistic Gestures

Detection and identification of linguistic gestures is among the fields that gesture recog-

nition techniques have been applied the most.

Liang [12] used the famous DataGlove for the detection of Taiwanese sign language

using real-time continuous gesture recognition. As described in the relevant paragraph,

DataGlove was taking the flexion of 10 finger joints for posture recognition, while a

Polhemus 3D tracker was used for orientation recognition to report azimuth, elevation,

and roll of palm.

Elmezain et al [14] proposed another linguistic-oriented gesture application. They pro-

posed a system able to recognize automatically in real time both isolated and continuous

gestures for Arabic numbers (0-9). Their method included the recognition of the num-

bers from color image sequences by tracking the motion trajectory of the hand. The

challenge of that system, which was the extraction of the isolated gestures from a contin-

uous stream, were solved by using their novel idea of a technique called zero-codeword

detection with static velocity as a threshold.

In such applications, the main problem is the successful end-point detection in a stream

of gesture input. Once this issue is resolved, the next step is the statistical analysis

and classification of recorded gestures. In [12], statistical analysis is done according to

4 parameters that a gesture is separated: posture, position, orientation, and motion. It

is worth mentioning that in order to make a successful classification of the gestures, the

motion trajectory of a gesture also plays an important role.

Chapter 2. State of the Art 11

2.3.3 Musical Interfaces

The expansion of MIDI technology, open electronics, sound-oriented protocols such as

OSC and musical programming languages such as Max/Msp and PureData over the

last years has given birth to a whole new tendency of designing new computer-based

instruments, musical applications and interfaces. Under this prism, a lot of attention

has ben given to the research and development of multimodal musical interfaces [23].

Due to this evolution, it was of vital importance to invest in solving or optimizing the

congruence of the different modalities (basically from movement and gesture to sound)

into a useful interface [23]; in other words, optimizing the mapping. As stated in the

relevant section, different researchers, artists and composers used different mapping

strategies and thus, a variety of musical applications and interfaces emerged.

One of the tools that were developed the last years by Maes [23] is a multimodal mu-

sical tool that takes advantage of the natural human body actions to communicate

expressiveness in the musical domain. This tool is based on Max/Msp platform whose

functionality can be separated into 4 parts: a) capturing the human movement in real-

time and transpose it into 3D coordinates, b) extracting low-level movement features

by taking into account as main variable the contraction/expansion of body movement

into space, c) recognizing the body movements as expressive gestures and d) creating

the relevant mapping between the expressive gestures and the sound synthesis process.

The main sound synthesis process that Maes is using is the addition of harmonic voices

in an original monophonic voice. The ultimate goal of this system was to create a user-

oriented mapping trajectory that could facilitate the connection between an artist and a

musical instrument. The extracted gestural trajectory can then be connected to various

parameters that control the sound synthesis, as the artist desires [23] [34]. From the

technical setup aspect, five commercial inertial sensors are used from Xsens (MTx XBus

Kit), attached to the upper human body using a belt. The data is being transmitted

wirelessly via Bluetooth to a standalone PC application that converts them into OSC

protocol. Finally, the data are being sent to Max/MSP program that calculates the

relative 3D position of the joints.

2.4 Methods for Gesture-Following in 3D

When talking about Human-Computer interaction (HCI) it comes natural to think of

normal human movements for interaction with a computer. Hand gesture however,

which is among the simplest human movements, comes difficult to track, especially with

Chapter 2. State of the Art 12

automatic techniques [32]. There have been various approaches to handle gesture recog-

nition with a range spanning from mathematical models to applied software tools [19].

What is important to be mentioned is that the dynamic gesture recognition problems

require time-compressing and statistical modelling techniques, in contrast to the static

recognition techniques which are base more on template matching techniques [19].

Most of the traditional techniques that have been used in the past, are using 2D appear-

ances of the points of interest (e.g. hands), a fact that does not describe the whole infor-

mation of the human hand which is located in its 3D shape [32]. For that reason, various

techniques for gesture tracking and following in 3D space emerged. Although these tech-

niques are basically different, some common principals and procedures are shared among

them. In general, both temporal and spatial data is needed for recognition of a gesture

(or an object). This is because the motion of a moving object is separated into frames

and then it is being analysed during multiple sequences [35]. However, when trying to

model the stochastic nature of human gestures, dynamic recognition techniques need

to be applied. These techniques include the Hidden Markov Models (HMM), Dynamic

Time Warping (DTW) and neural network implementations [19].

The main methods and technologies that are used in the field are presented below. It

is worth mentioning that in many cases, mixed models of these methods have been

used, since each one of them could work better for a specific stage of a more complex

algorithm.

2.4.1 Hidden Markov Models (HMM)

Based on [19] definition, a Hidden Markov Model is a double stochastic process that is

consisted an underlying Markov chain with a finite number of states and a set of random

functions, each associated with one state. Each transition between the states has a pair

of probabilities: a) transition probability, which provides the probability for undergoing

the transition and b) output probability, which defines the conditional probability of

emitting an output symbol from a finite alphabet when given a state. HMM is rich

in mathematical structures and has been used efficiently in spatio-temporal modeling

information. The term “hidden” refers to the sequence of observations, which is the only

thing that can be seen in the process.

In search of the methodologies that are used for gesture recognition and following, one

can say that Hidden Markov Models (HMM) is among the most famous and widely used,

especially for real-time applications. There is a variety of experiments that HMMs were

used with significant results.

Chapter 2. State of the Art 13

Liang [12] in his experiment for real-time gestures recognition of sentences based on

Taiwanese sign language vocabulary achieved an average recognition rate of 80.4% using

HMMs. Elmezain et al have used HMM as well in order to handle isolated gestures in

his system of automatic recognition of Arabic numbers [14]. More specifically, Ergodic,

Left-Right (LR) and Left-Right Banded (LRB) topologies were applied with different

number of states ranging from 3 to 10. The LRB topology, which has proven to be the

best, gave an average recognition rate of 98.94%.

Keskin [13] also used HMMs for real-time hand tracking and 3D dynamic gesture recog-

nition. After the capturing of the image, the procedure included the transformation

of the 3D coordinates into sequences of 3 velocity vectors. These sequences were then

interpreted by the HMM, transforming them into code words able to characterize the tra-

jectory of the motion. Each sequence had a likelihood; however, as “gesture” the system

was recognizing these sequences whose likelihood was higher than a specific threshold,

able to prevent the possible erroneous recognition of non-gestures. In the recognition

task of eight defined gestures, the system was able to attain 98.75% recognition rate.

Finally, one of the most successful applications of HMM is presented in [15] continuous

real-time gesture following system. The system outputs continuously parameters relative

to the gesture time progression and its likelihood. This system is simplified, compared

to the other known HMM systems, since its learning procedure is using prior knowledge

of gestures stored in a database.

2.4.2 Gaussian Mixture Models (GMM)

Gaussian mixture model is a technique that is mostly used in vision-based gesture track-

ing procedures for separation of specific components of an image. The first documented

tracking approaches were based on intensity data segmentation of the tracking motion

of appearance. Such an example is the segmentation of the human body from the

background in image-based techniques and the classification of the image using color

differences [35]. More specifically, segmenting the static from the dynamic part of an

image using Gaussian blobs, is a method that was used for the above purpose by Wren

et al [36]. Gaussian mixture has been also used by Yang and Ahuja for modeling the

distribution of the skin-color of pixels to separate the body from the background [34],

by [14] for skin color detection and by [37] for background removal.

The procedure that is followed for the Gaussian recognition, as described in [37] is

to model the values of a particular pixel as a mixture of Gaussians. Based on the

persistence and the variance of each of the Gaussians of the mixture, it is determined

which Gaussians may correspond to background colors. Pixel values that do not match

Chapter 2. State of the Art 14

with the background distributions are considered foreground until there is a Gaussian

that includes them with any supporting evidence. Furthermore, motion detection can be

performed by identifying changes in lighting, repetitive scene elements or slow-moving

objects whose color has larger variance than the background.

2.4.3 Particle Filtering and Condensation Algorithm

Particle filtering-based tracking and its applications in gesture recognition systems have

become popular very recently in comparison to the other methods [19]. Particle filters

have been very effective in estimating the state of dynamic systems from sensor infor-

mation. As Mitra [19] states, the key idea of the method is to represent probability

densities by a set of samples. As a result, it has the ability to represent a wide range of

probability densities, allowing real-time estimation of nonlinear, non-Gaussian dynamic

systems. This technique was originally developed to effectively track objects in clut-

ter [19]. In addition to the above facts, particle filtering models uncertainty, and thus

provides a robust gesture-tracking framework.

2.4.4 FSM Approach

In the FSM approach, a gesture can be modeled as an ordered sequence of states in a

spatio-temporal configuration space [19]. The process is described in [19] as follows. The

number of states in the FSM may vary depending on the application. Each gesture is

being recognized as a prototype trajectory from an unsegmented, continuous stream of

received data that constitute a group of trajectories. The trajectories of the gestures are

represented as a set of points (e.g. sampled positions of the head, hand, and eyes) in a

2D space. In most cases, the training of the model is done off-line, using many possible

examples of each gesture as training data of each state in the FSM. Afterwards, the

recognition of gestures can be performed online using the trained FSM. Finally, when

input data are supplied to the gesture recognizer, the latter decides whether to stay at

the current state of the FSM or move on to the next state based on the parameters of

the input data. If it reaches a final state, it is assumed that the gesture is recognized.

2.4.5 Problems of Methods

This paragraph summarizes the main problems and concerns that derive both from the

nature of gestural communication and of the methods that were presented above:

Chapter 2. State of the Art 15

1. Gestures are ambiguous and incompletely specified (lingual and cultural specifica-

tions) [19]

2. Gestures vary between individuals [19]

3. End-point detection in a stream of gesture input [12]

4. Classification of recorded gestures [12]

5. Spatio-temporal variability. The possibility that the same gesture may differ in

duration and shape from one time to another [13]

6. Gestural ambiguity. The identification of start and end points of each gesture [13]

7. Segmentation. The ability to extract isolated gestures from continuous gestures

[14]

Chapter 3

Methodology

3.1 Experimental Design

For the purposes of the project, both hardware as well as software applications and

implementations have been used. The following diagram shows the architecture and the

flow of the proposed approach.

Gesture Data
Pre-processingGesture

Performance

Capture
System

Data
Processing

Explicit
Mapping

(Direct Connection)

Sound
Engine

Sensor
Interface

Feature
extraction

HMM Analysis

Mapping

Modular
Synthesizer

Interface

Audio
Output

Figure 3.1: High-level view of the proposed system’s architecture.

In brief, as depicted in Figure 3.1, the performed gesture is firstly being captured by the

sensor interface. The gestural data is being processed and analysed in order to extract

special features that are going to form the descriptors for the further HMM analysis. All

these extracted features are mapped through an explicit mapping strategy to sound and

control parameters of the modular synthesizer’s interface and finally, the audio output

is produced.

The process that is followed to accomplish the aforementioned system architecture is

presented in Figure 3.2.

16

Chapter 3. Methodology 17

(Gesture Recording)

Data Analysis,
Feature Extraction .dll file

Communication
Externals

Mapping /
Sound Engine

Working
System

Analysis & Training
System

Figure 3.2: System Process.

The main system can be decided into two subsystems: the analysis and training system

and the working system. Looking into the analysis and training system, after the cap-

turing of the gesture from the Polhemus [38] sensor, gestural data are being processed

by using specific scripts written for this purpose in Matlab [39]. The output of these

scripts are compiled into a Dynamic Linked Library (.dll) file. In the working system,

after the gesture capturing from the sensor, data are being recorded through an external

Max object, written in a combination of C/C++. This external has the role of passing

the gestural data into the Max [40] sound interface where the mapping takes place and

the final audible output is produced. For coding purposes other than Matlab and Max,

Microsoft Visual Studio 2013 [41] was used. The next section describes in detail the

specific parts of the proposed system design.

3.2 Technical Framework

In this section, we describe in more detail the specifications, the hardware and the

software that was used to define the proposed system.

3.2.1 Hardware

The sensoring device that has been used for the purposes of this work is the Polhemus

Liberty tracker [38]. The specific device, which can be seen in Figure 3.3, is chosen in

Chapter 3. Methodology 18

many applications in the field of electromagnetics due to it’s possibility of continuous

tracking and it’s distortion detection system.

Figure 3.3: Polhemus Liberty tracker.

In terms of system architecture, the tracking device is consisted of two main parts: the

source part (transmitter) and the sensor part (receiver). There are different models of

sources and sensors based on the size of the tracking area and the transmission range.

In addition, system comes standard with four sensor channels that allows sensory fusion

and thus a data transmission of multiple channels simultaneously. The general Polhemus

Liberty system delivers a sampling rate of up to 240 Hz per sensor using simultaneous

samples, while its latency is 3.5 milliseconds. These facts make it a capable real-time

3D tracking system for up to 6 Degree-of-Freedom needs.

In the specific project a 4” source has been used as a transmitter with dimensions 10.3

cm (d) x 10.3 cm (w) x 10.2 cm (h), weight of 0.72 kg and an ideal operating range

of 1.52 m. As a receiver, an 8” stylus sensor has been used with dimensions of 17.7

cm (d) x 1.2 cm (w) x 1.9 cm (h). The stylus receiver, expands the capability of the

specific censoring system into a free form digitiser, ideal for creating custom applications

[http://www.polhemus.com]. With the stylus, both single and continuous output may

be obtained since there is a stylus onset/offset button. This fact is a first approach to

overpass the gestural ambiguity, on if the gesture recognition issues that was mentioned

in the relevant chapter. Using the on/off flag data values of the stylus sensor button,

the performed gesture can be retrieved and analysed easier. Finally, the data acquisition

frequency that was used was the maximum that the device permits, 240 Hz as stated

above. The source and the sensor that have been used are shown in Figure 3.4 (A) and

(B) respectively.

Chapter 3. Methodology 19

(a) Source (Transmitter). (b) Stylus sensor (Receiver).

Figure 3.4: Polhemus Liberty setup.

A limitation that the specific device implies is the predefined range of motion. The user

has to be careful when using it, since a movement out of the above range can result to

noisy or corrupted gestural data.

3.2.2 Software

For the recording of the gestures as well as for the real-time communication between the

sensor and the Max engine, an external has been written in C in combination with C++

for the calling of the relevant Polhemus SDK functions. The coding and the debugging

has been done using Microsoft Visual Studio 2013 [41] and has been developed taking

into account the new API v.6.1.4 of Max environment.

Regarding the analysis of the recorded gestural data specific scripts were written in

Matlab. The code is analysed in more detail in a next chapter, but a first reference

can be done here. The main scripts that were developed were as many as the group of

gestures with which we would like to train our system and thus recognise; in our case

three. We mostly made use of functions that are embedded in Matlab Statistic Toolbox.

In addition, for the implementation of the Hidden Markov Models, we made use of Kevin

Murphy’s HMM Toolbox for Matlab [42].

Finally, for the sound interface Max 6 environment has been used. Due to the require-

ments of the analysis and of the other parts of the project, only some primitive patches

for experimental purposes have been used. A complete Max patch is among the first

tasks for the future work as referred to the relevant chapter.

Chapter 3. Methodology 20

3.2.3 External Object

The Max external object file is consisted of three main parts: a) the declaration of

necessary header files for Polhemus SDK and Max API, b) the definition of data types

that are needed for the Polhemus tracker calibration and state monitoring c) the classes

that actually perform the communication between the tracker and the Max engine.

The header files that have been used is a combination of trivial header files needed for

the compilation of the code as well as specific Polhemus SDK and Max header files

needed for the development of our architecture. The most important header files that

were used are presented below.

#include "ext.h" // Required for all Max external objects

#include "ext obex.h" // Required for new style Max object

#include "z dsp.h" // The main header file for all DSP objects

#include "LibertyTracker.hxx" // Header file needed for data collection of the

// Polhemus sensors

#include "TrackerCalibration.hxx" // Header file needed for the sensor calibration

Thereinafter, the second discrete part of the external object’s code is the definition of

data types that are needed for the Polhemus tracker calibration and state monitoring,

as follows.

enum TrackerCalibrationState

{
TRACKER NOT CALIBRATED, // Tracker not calibrated (initial state)

TRACKER CALIBRATED // Calibration completed or loaded

};

enum TrackerState

{
TRACKER DISCONNECTED, // Tracker disconnected state (initial state)

TRACKER PENDING CONNECT, // Tracker in the process of doing an asynchronous

// connect state (audio thread waits until TRACKER CONNECTED)

TRACKER CONNECTED, // Tracker connected state

TRACKER FAILED, // Tracker connecting failed (Disconnected)

TRACKER PENDING DISCONNECT // Tracker in the process of doing an

// asynchronous disconnect

};

The prototypes for the main methods that perform the communication between the

tracker and the Max are presented and then explained below. Apart from the main(void)

method, a method is used for each incoming message.

Chapter 3. Methodology 21

void *polhemusTest new(void); // Object creation method

void polhemusTest bang(t polhemusTest *polhemusTest); // Method for bang message

void polhemusTest task(t polhemusTest *polhemusTest); // Method for scheduled task

When it comes to the construction of the methods, firstly object creation method is

defined as follows.

void *polhemusTest new(void)

{
t polhemusTest *polhemusTest;

polhemusTest = (t polhemusTest *)newobject sprintf(this class);

// Create the new instance

polhemusTest->pos out = floatout(polhemusTest); // Create a bang outlet

polhemusTest->m clock = clock new((t object *)polhemusTest,

... (method)polhemusTest task); // Create the clock

return(polhemusTest); // Return a pointer to the new instance

}

Afterwards, a method that sends a “bang” message is constructed as follows.

void polhemusTest bang(t polhemusTest *polhemusTest)

{
post("Connecting tracker..."); // Checking the tracker connection

tracker .connect();

if (!tracker .isOk())

{
//trackerState = TRACKER FAILED;

post("ERROR: Failed to connect.");

return;

}
post("Configuring tracker..."); // Configuring the tracker

tracker .configure();

if (!tracker .isOk())

{
tracker .disconnect();

//trackerState = TRACKER FAILED;

post("ERROR: Failed to configure.");

return;

}
if (tracker .getNumEnabledSensors() != 1)

// Checking the number of connected sensors

{

Chapter 3. Methodology 22

tracker .disconnect();

//trackerState = TRACKER FAILED;

post("ERROR: Invalid number of active sensors.");

return;

}
post("Connection Ok!");

//trackerState = TRACKER CONNECTED;

tracker .startReceivingEvents();

if (!tracker .isOk())

{
tracker .disconnect();

post("ERROR: Failed starting tracker stream (disconnecting)!");

}
trackerCalibrationState = TRACKER CALIBRATED;

hasTrackerCalibrationBeenModified = false;

// There is also an option for reading the calibration settings from a file

std::string filename="calib10Oct.csv";

const char* filename="calib10Oct.csv";

bool ok = trackerCalibration .loadFromFile(filename);

if (ok)

{
post("Calibration file loaded correctly");

trackerCalibrationState = TRACKER CALIBRATED;

hasTrackerCalibrationBeenModified = false;

}
else

{
post("WARNING: Calibration file failed to load.");

trackerCalibrationState = TRACKER NOT CALIBRATED;

(hasCalibrationBeenModified remains true if was true)

}

[...]

clock fdelay(polhemusTest->m clock, 1000.);

// Configuring the clock to send the bang message

Finally, the function that performs the data recording when the clock is executed and

the sensors are connected to the Max environment is constructed as follows.

void polhemusTest task(t polhemusTest *polhemusTest)

{
[...]

const int numTrackerItems = tracker .queryFrames(beginBuffer);

Chapter 3. Methodology 23

// Define the umber of sensors per frame

const int numTrackerSensors = tracker .getNumEnabledSensors();

// Define the number of frames

const int numTrackerFrames = numTrackerItems/numTrackerSensors;

post("numtrackerFrames %d", numTrackerFrames);

// Compute some performance descriptors

PerformanceDescriptors descriptors;

for (int i = 0; i < numTrackerFrames; ++i)

{
// Compute descriptors for current frame:

RawSensorData rawSensorData = computeDescriptors .trackerDataToRawSensorData

(beginBuffer);

[...]

Derived3dData derived3dData = computeDescriptors .computeDerived3dData

(rawSensorData, trackerCalibration , isAutoEnabled , anglesCalibration ,

isCalibratingForce, NULL);

}

// Receive rawSensorData;

(*polhemusTest->position)=beginBuffer.item().position[0];

polhemusTest->position=descriptors.bowDisplacement;

// Send a bang message as outlet to polhemusTest

outlet bang(polhemusTest->b out);

outlet float(polhemusTest->pos out, polhemusTest->position);

}

Among the non-trivial tasks of the procedure was coping with the new Max 6 API.

The core engine has been totally changed in comparison to the previous versions and

functions that were once used as default were deprecated. A careful investigation of

the new alternatives as well as their usage in combination with the Polhemus SDK was

necessary.

3.3 Proposed Method

As already mentioned, the gesture recognition task has been performed using Hidden

Markov Models in combination with Gausian Mixture Models and was based in a pre-

defined gestural “vocabulary”. The following paragraphs describe the proposed method

for this in detail.

Chapter 3. Methodology 24

3.3.1 Gestural Vocabulary

The gestures that were selected to compose the system’s vocabulary for this phase of

the project are three different geometrical shapes, as depicted in Figure 3.5: triangle,

rectangle and circle. The selection has been done in terms of movement’s simplicity and

low-difficulty level to be performed from an average user. In addition, the closeness of

these shapes would make the description and later the recognition task easier in order to

make a proper working initial model that can be extended to more sophisticated gestures

later. These gestures, via a mapping procedure that will be explained in next chapter,

will trigger a different sound or function of the sound engine.

Figure 3.5: Gestural Vocabulary.

3.3.2 Hidden Markov Models (HMM)

Due to their rich mathematical structure HMMs can form both the theoretical and the

practical base of a wide range of applications [43]. The stochastic nature of gesture or

pattern recognition problems, makes statistical processes such as Markov Models really

famous and efficient when applied properly. We are not going to delve deep into the

theory and definition of Hidden Markov Models, but we will refer to its key points and

how they correspond to our system for the purposes of this project. The details of the

model along with the implementation will be presented in the next chapter.

Following [43] definition, which is considered among the classic resources, we can char-

acterise an HMM by the following:

1. N is the number of states in the model. The states are denoted as S = {S1 ,S2 , ...,SN },
and the state at time t as qt . Although the states are considered “hidden”, for

many applications, there is some physical significance attached to the states of the

model. Our case comes under this category as well.

2. M is the number of distinct observation symbols per state and correspond to

the physical output of the system. The observation symbols are denoted as

Chapter 3. Methodology 25

V = {V1 ,V2 , ...,VM }. Regarding the observation symbols, in our case the ob-

servation symbols are the features that are being extracted to describe each shape

and will be analysed in the next chapter.

3. A = {aij } is the state transition probability distribution where

{aij } = P [qt + 1 = Sj |qt = Si], 1 ≤ i , j ≤ N . (3.1)

For other types of HMMs, we would have {aij = 0} for one or more (i, j) pairs.

Such a case is presented right after this definition.

4. B = {bj (k)} is the observation symbol probability distribution in state j where

{bj (k)} = P [Vkatt |qt = Sj], 1 ≤ j ≤ N , 1 ≤ k ≤ M . (3.2)

5. π = {πi} is the initial state distribution where

πi = P [q1 = Sj], 1 ≤ i ≤ N . (3.3)

Derived from the above, an HMM is defined as

λ = (A,B , π) (3.4)

In order to conclude the short theoretical part given for the HMMs, we conclude with

the key issues in the application of an HMM, given an observation sequence [19]:

1. Evaluation: determining the probability that the observed sequence was generated

by the model (Forward - Backward algorithm)

2. Training or estimation: adjusting the model to maximize the probabilities (Baum

- Welch algorithm)

3. Decoding : recovering the state sequence (Viterbi algorithm).

In the specific work, we define the states of the model as the sides of the performed

gestures. Different states are chosen for each shape, based on its geometrical attributes.

Generally, the states are interconnected in such a way that any state can be reached

from any other state (ergodic model). However, other types of HMMs have been found

to be more efficient for other applications. One of these, which happens to be the one

that we are using in our case, is the left-right model and can be shown graphically in

Figure 3.6. That actually means that as time increases, the states proceed from left to

Chapter 3. Methodology 26

s1 s2 s3
a0,1 a1,2 a2,3 a3,4

a0,2 a1,3 a2,4

a1,1 a2,2 a3,3

Figure 3.6: A left-right Hidden Markov Model.

right [43]. Practically, while performing any of the aforementioned gestures, the motion

continues gradually to evolve and does not return back.

Furthermore, the transition coefficients and the initial probability of such a model have

the following properties respectively:

aij = 0 , j < i (3.5)

πi =

{
0, i ̸= 0

1, i = 1
(3.6)

A fact that means that transitions are allowed only to states whose indices are greater

than the current state. This in turn means that in case we would have e.g. N = 5 states,

the transition matrix would be of the form:

A =



a11 a12 0 0 0

0 a22 a23 0 0

0 0 a33 a34 0

0 0 0 a44 a45

0 0 0 0 a55


(3.7)

The transition matrices of our training data follow exactly the same principle and are

going to be presented in the next chapter.

3.3.3 Gaussian Mixture Models (GMM)

The above definition of HMM can be considered only in case that the observations are

characterized as desecrate symbols. In case that the observations are continuous signals

or vectors, a fact that exists in many applications, this model would be inefficient.

Hence, the usage of HMMs with continuous observation densities or a probability density

Chapter 3. Methodology 27

function (pdf) is applied [44]. One of the most common of such functions is the Gaussian

(or Normal) distribution. A Gaussian is described by two parameters [44]:

µ =
1

n

n∑
i=1

x i (sample mean) (3.8)

σ2 =
1

n

n∑
i=1

(x i − µ2) (sample variance) (3.9)

In addition, when using a multidimensional Gausian distribution, two more parameters

are important and defined as follows [44]:

µ = E [x] (mean vector) (3.10)

where the mean vector µ is the expectation of x, and

Σ = E [(x − µ)(x − µ)T] (covariance matrix) (3.11)

where the covariance matrix Σ is the expectation of the deviation of x from the mean.

However, there is still a problem when using a Gaussian. The output distribution

assumes that the data assigned to that state must fit a Gaussian, or in other words

it assumes that is unimodal [44]. A solution to that is to use a combination or mixture

of Gaussians for the output function. A Gaussian mixture model is defined as:

p(x |q) =
∑
i=1

(aiN (x ;µi , σi) (GMM) (3.12)

One of the most powerful aspects of the all the above is that we can use the forward-

backward algorithm to train the means and variances of all the Gaussians, the Gaussian

mixture coefficients and the HMM transition probabilities simultaneously.

In our work, we also apply the combination of the HMM training and the Gaussian

mixture output function in order not to estimate only the probability that a particular

state generated a particular feature vector at a particular time, but to further estimate

the probability that a Gaussian mixture was responsible for generating the feature vector.

All of the theoretical background that described above is applied in the data analysis

part and presented in the next chapter.

Chapter 4

Gesture Recognition

4.1 Data Acquisition & Preprocessing

Following the gestural “vocabulary” that has been presented in the previous section,

three types of gestures were recorded for this phase of the project: triangles, rectangles

and circles. Various instances of each shape group were recorded in various speed,

gestural direction and sizes in the 3D space. After the recording of the gestures, a

complete offline analysis has been performed to extract specific descriptors of each shape

and will be presented in the next sections.

As stated in the relevant paragraph, the raw gestural data were recorded in Max envi-

ronment via the external Max object that was developed for the communication between

the sensors and the Max engine. Before each recording trial, calibration of the sensor

was performed according to the device’s specifications. As indicated in Table 4.1, the

data that were selected to be capture and extracted where the x, y and z coordinates of

the tracker, as well as the on/off stylus flag value for easier gesture separation. For ab-

breviation purposes only a part of a random chosen triangle’s data are shown. However,

all shapes’ data follow the same motif.

For the preprocessing stage, a number of continuous gestures of the same shape were

recorded in a data stream and saved to a file. After the recording of each shape, the

bigger file was separated in smaller files in order for each one to contain the coordinates

data of only one shape. Afterwards, the separated gesture files were fed into Matlab

for preprocessing and further analysis. Some instances of the initial 3D depiction of the

performed gestures can bee seen in Figure 4.1.

For each gesture, a variety of trials have been performed; in turn, for each trial a variety

of different motion characteristics have been tested. Our training database includes

28

Chapter 4. Gesture Recognition 29

x y z flag

-18.576 33.002 -23.264 1
-18.685 33.019 -23.092 1
-18.797 33.034 -22.920 1
-18.909 33.051 -22.746 1
-19.021 33.069 -22.570 1
-19.135 33.085 -22.395 1
-19.253 33.105 -22.214 1
-19.368 33.124 -22.035 1
-19.486 33.142 -21.855 1
-19.605 33.162 -21.672 1
-19.724 33.179 -21.492 1

Table 4.1: Raw gestural data example of a recorded triangle.

gestures of the same vocabulary symbol (triangle, rectangle, circle) that differentiate

among each other in speed, size of shape (total trajectory length), direction (different

starting point of gesture, clockwise/counterclockwise movement) and position in the 3D

space that the source of the sensor defines.

(a) Triangle. (b) Rectangle.

(c) Circle.

Figure 4.1: Initial depiction of performed gestures in 3D.

When designing a gestural interface such as this one presented in this work, the actions

Chapter 4. Gesture Recognition 30

are taken place in 3D space but for mapping and computational purposes, it is easier

to reduce the dimensions. The next step deals with the dimensionality reduction of the

recorded gestures. There are many algorithms that deal with the specific task. Among

the most famous is Principal Component Analysis (PCA), which is a technique widely

used for pattern recognition and computer vision purposes [45]. PCA is a method that

projects a given dataset (recorded gestures) to a new coordinate system by determining

the direction of maximum variation of the data [46]. PCA has been used in a variety of

applications but most successfully in training of off-line systems (not in real time) [47].

However, in our case this is not a limitation at the specific point of the project since

we use the two dimensions as a proof of concept, and by enhancing the same models,

scaling to 3D should be straight-forward.

Following the above statements, Matlab’s Statistic Toolbox embedded PCA function

(princomp) has been used in order to reduce the 3rd dimension for the recorded gestures.

The new 2D projection of the three instances of the gestural vocabulary that presented

above, are presented in Figure 4.2

Following this preprocessing step, the data analysis and feature extraction procedure is

described in the next section.

4.2 Data Analysis & Feature Extraction

The scope of the offline data analysis was to extract features that would describe and

classify efficiently each performed gesture. Our analysis is based in five basic features of

the movement that will ultimately be the descriptors to recognise the performed gesture

as a part of a specific symbol of our gestural “vocabulary”: speed, velocity, trajectory

length, acceleration and slope. The goal of the descriptors is to help us find similarities

and/or differences between the gestures, define the states that will be used in the HMMs

and finally classify them.

4.2.1 Descriptors

Mathematically, these descriptors are defined as follows:

1. Speed is the scalar quantity that measures the distance d covered from a moving

object (the sensor in our case) per unit of time t. In equation form, this is given

by

u =
d

t
, (Speed) (4.1)

Chapter 4. Gesture Recognition 31

(a) 2D Triangle. (b) 2D Rectangle.

(c) 2D Circle.

Figure 4.2: 2D depiction of the performed gestures.

In this generic mathematic definition distance is expressed in meters and time in

seconds. Regarding the distance, there are various definitions. We are considering

the Euclidean distance which is the “ordinary” distance between two given points.

However, in terms of digital signal processing, some more parameters need to be

taken into account. Lets consider two adjacent samples p and q of our signal. In

Cartesian coordinates, if p = (px, py) and q = (qx, qy) are two points in Euclidean

2D space that our signal is depicted, where x and y represent the X and Y axis

respectively, then the distance d from p to q or vise versa is given by:

d(p, q) =
√

(q1 − p1)2 + (q2 − p2)2 , (Euclidian distance) (4.2)

In addition, since we are dealing with discrete signals, when we talk about time

we have to take into consideration the sampling as well. Sampling can be done

for functions in any dimension; in our case in time. For functions that vary in

Chapter 4. Gesture Recognition 32

time, sampling is performed by measuring the value of the continuous signal every

T seconds (sampling interval), which is called the sampling interval [48]. Thus,

the sampling frequency or sampling rate fs, is defined as the number of samples

obtained per second) as

fs = 1/T , (Sampling rate) (4.3)

Since our sensors’ sampling frequency is 240Hz as stated in previous chapter, taking

into consideration equations (4.1), (4.2) and (4.3), the final speed is computed as

u =
√
(q1 − p1)2 + (q2 − p2)2 ∗ 240 , (Speed) (4.4)

2. Axis Velocity is a vector quantity and is the rate of change of the position of an

object per time value and it is relevant to the specification of its speed plus the

direction of motion. Its mathematical definition is similar to the initial definition

of speed (4.1), having the difference that we take into consideration the sign of the

equation’s result

v =
ds

dt
, (V elocity) (4.5)

where ds = s2−s1 is the change of position (considering two points s1 and s2) and

dt = t2 − t1 the change in time. In our case, we want to extract information for

the performed gesture regarding how our object (sensor) is moving independently

in the two axis X and Y of the 2D space. Considering the above as well as the

equations (4.5) and (4.3), we make use of the velocity descriptor between two

sample points s1(x1, y1), s2(x2, y2) as follows:

vX = (x2 − x1) ∗ fs , (X − axis velocity) (4.6)

vY = (y2 − y1) ∗ fs , (Y − axis velocity) (4.7)

3. Trajectory Length or traveled distance is a scalar quantity that refers to the

path that a moving object (sensor) follows through space in a given time period

(in our case the whole movement). Since we have computed the speed above, the

trajectory length will be given by the the cumulative sum of the speed u of all n

recorded samples.

trL =
n∑

i=1

ui , (Trajectory length) (4.8)

4. Acceleration is the rate at which the velocity of an object changes over time. It

is a vector quantity since it contains the concept of direction as well. It is actually

Chapter 4. Gesture Recognition 33

the derivative of the velocity u⃗ and given by

a =
du

dt
, (Acceleration) (4.9)

where du = u2 − u1 is the change in the velocity vector between two different

sample points and dt = t2 − t1 the time difference of the performed change.

5. Slope is a value that gives the inclination of a curve or line with respect to another

curve or line. For a line in the xy-plane making an angle θ with the x -axis, the

slope µ is a constant given by

µ =
∆y

∆x
= tan θ, (Slope) (4.10)

where ∆x = x2 − x1 and ∆y = y2 − y1 are the coordinate changes in the two axis

for two sample points s1(x1, y1), s2(x2, y2). More specifically, for the needs of our

gestures’ graphic representation we used the arctangent of the slope expressed in

gradients as well as its derivative. In this way, we have a better representation of

the inclination changes of the trajectories that we draw during the gesture.

The next paragraphs present the aforementioned descriptors that have been implemented

in Matlab for every gesture of the defined vocabulary.

4.2.2 Triangle Analysis

Figure 4.3 shows the descriptors of a triangle. The four horizontal diagrams show the

trajectory length, the speed, the acceleration and the slope derivative respectively. The

x axis show the time of the gesture in samples and the y axis shows the metrical values

of each descriptor. Regarding these descriptors we can comment on the following:

• Trajectory length is a continuously increasing line which actually shows the in-

creasing length of the performed shape in time.

• Speed is a curve that increases and decreases smoothly during time and is char-

acterized mainly by the existence of three local maxima and three local minima.

Since a triangle is a shape that has some fixed points (its vertices), the gesture is

somehow consisted of three discrete sub-gestures, by stopping instantaneously in

this vertices. No matter how slow or fast the gesture is performed, the movement

cannot be perfectly smooth, as for example in a circle. As a result, we can deduct

that these three local minima in the speed curve where the speed becomes almost

zero, are the possible triangle vertices.

Chapter 4. Gesture Recognition 34

Figure 4.3: Plot of a triangle’s descriptors.

• Acceleration is also a curve that decreases less smoothly than the speed, and

increases suddenly in some parts. As it can be also seen, it has three main groups

of minima (by applying a smooth function this can be more obvious), followed by

the immediate increase of the acceleration to local maxima. The points that we

observe these maxima, coincide to be the same with those that the speed appears to

have the minima. This could enforce our outcome that this is a possible triangle

vertices appear, since the greater acceleration happens in the beginning of this

physical movement.

• Slope derivative which actually depicts the change in the fraction between the x

and the y axis of the movement, appears to be mostly a straight line with only

three spikes positive or negative, depending on the direction of the movement.

Once again, these spikes appear in the same points that speed’s minima and ac-

celeration’s maxima appear, as described above.

All of the above observations appear more or less in all the performed trials of triangles

and, as human, we can deduct that the aforementioned outcomes are logically based.

Some figures of all the plotted features of each shape will follow in a relevant appendix

chapter. This is going to be the work of evaluation of the HMMs in the next section by

using the training of those data.

Chapter 4. Gesture Recognition 35

Combining these three descriptors we have a basis that at these common points are the

triangle’s vertices. The next step is to separate the gestures in states based on the above

observations in order to construct the HMM as discussed in the previous chapter.

4.2.3 Rectangle Analysis

Figure 4.4 shows the descriptors of a rectangle. As in the case of the triangle, the four

horizontal diagrams show the trajectory length, the speed, the acceleration and the slope

derivative respectively. Regarding the rectangle’s descriptors we have comments very

similar to those of the triangle:

Figure 4.4: Plot of a rectangle’s descriptors.

• Trajectory length is a continuously increasing line in time.

• Speed is a curve that increases and decreases smoothly during time and is char-

acterized mainly by the existence of four local maxima and four local minima.

Following exactly the same explanation as in triangle, we can deduct that these

four observed local minima in the speed curve are the possible rectangle’s vertices.

• Acceleration is also a curve similar to this of the above triangle; it decreases less

smoothly than the speed, and increases suddenly in some parts. The points that

we observe the local maxima, coincide as well to be the same with those that the

speed appears to have the minima.

Chapter 4. Gesture Recognition 36

• Slope derivative once again follows the same pattern as in the triangle’s case. It

appears to be mostly a straight line with four spikes whose position coincides with

the same points where the speed’s minima and acceleration’s maxima appear.

Combining these three facts we have a basis that at these common points are the trian-

gle’s vertices. Similarly, these points that appear to be the rectangle’s vertices, will be

our criterion of describing the discrete sides of a rectangle and separating in the relevant

states for the rectangle HMM.

4.2.4 Circle Analysis

Circle’s descriptors appear to be a different case than the above described cases of

triangles and rectangles. Figure 4.5 shows the descriptors of a circle. The four horizontal

diagrams also show the trajectory length, the speed, the acceleration and the slope

derivative respectively. Below are the comments regarding these descriptors:

Figure 4.5: Plot of a circle’s descriptors.

• Trajectory length is a continuously increasing line in time. This is a fact that will

not change no matter what gesture is going to be analyzed.

• Speed is a curve that increases smoothly in the beginning, remains over a specific

value for most of the gesture’s performance and then decreases smoothly. It is a

validation of the case in which we were referred previously; that a circle’s gesture

Chapter 4. Gesture Recognition 37

would be smoother since we have no stopping points like in the cases of triangle

and rectangle vertices.

• Acceleration is a curve with continuously changing values around a small range of

values, but we cannot deduct any outcome due to its aperiodicity.

• Slope is a continuously decreasing line and shows once again the smoothness of the

gesture, unlike the slope derivative graphs of the triangle and the rectangle. Just

to mention here that in circle’s case we used the slope instead of slope derivative

as a descriptor, since the graphical output seemed to be more meaningful for the

gesture description.

4.3 HMM Probability Distribution & Classification

Now that each gesture is separated to states, we have to construct the HMM as discussed

in the previous chapter. As stated in the relevant presentation of the software, we made

use of Kevin Murphy’s HMM toolbox for Matlab. Based on the theoretical framework

and on this toolbox, what we want to compute is the maximum likelihood estimation

by training our three HMM models with mixture of Gaussians outputs. Apart from the

number of Gaussians which is only one in our case, for this computation we need four

matrices for each model: the initial probability matrix, the transition matrix, the mean

matrix and the covariance matrix of our observations. The HMM models of each gesture

are presented below.

4.3.1 Triangle Model

Separating the triangle in three states would be an obvious approach, by describing

each side with a state. However this would not take into consideration the changes in

speed, acceleration and slope that take place right before and right after each vertex.

For that reason we decided to separate the triangle in 9 different states, keeping in mind

that the part of the acceleration and the deceleration of each side, as well as the slope

changes could give as a meaningful outcome for modelling the triangle. Figure 4.6 shows

the representation of these states in different colours in a performed triangle. The blue

parts are the “main” parts of a side, while the other colours depict the start and the

end of each side where the most prominent descriptors changes are observed.

To achieve the separation, we used the findpeaks function in Matlab. The function has

been applied in slope derivative signal where the peaks are prominent in the corners

Chapter 4. Gesture Recognition 38

Figure 4.6: Coloured states of a triangle.

s1 s2 s3 ... s7 s8 s9
a1,2 a2,3 a3,4 a6,7 a7,8 a8,9

a1,1 a2,2 a3,3 a4,...
a7,7 a8,8 a9,9

Figure 4.7: Triangle model states graph.

and the rest of the signal contains only slight changes. The approach was to separate

manually each state of the performed gestures by using the following strategy.

Each “main” part of the sides where the slope derivative remains close to zero will be a

state. Another state will be consisted of the part of the signal where the slope derivative

increase/decrease, up to its local maximum/minimum point. Another state will also be

consisted of the part of the signal that starts from a local maximum/minimum up to

the point where it decreases/increases to zero. Based on this strategy, since we have

three peaks for a triangle, we distinct 9 triangle states that are going to construct the

triangle’s HMM model in next section.

Additionally, a directed graph with the states of the triangle model is presented in

Figure 4.7.

A graphical representation of the descriptors for each of the triangle’s states would be

useful to understand further the procedure and help us improve the modelling of the

HMM. Figure 4.8 shows a scatter plot of the distribution of the descriptors for the

Chapter 4. Gesture Recognition 39

performed triangles. The graph depicts the speed, acceleration and slope derivative in

axis X, Z, Y respectively for 25 performed triangles, while each colour represent one of

the 9 different aforementioned states.

Figure 4.8: Scatter plot of the triangles’ descriptors by state. Each colour represents
a different state.

As mentioned in the relevant chapter, we need some matrices in order to build a Hidden

Markov Model. Those are the initial state probability matrix, transition matrix, mean

matrix and covariance matrix. For the triangle case, where 9 states have been defined,

the matrices are of the following form (we made use of a triangle’s sample data):

IPtriangle =
[
1 0 0 0 0 0 0 0 0

]
(Initial Probability Matrix) (4.11)

Chapter 4. Gesture Recognition 40

Ttriangle =



0.937 0.062 0 0 0 0 0 0 0

0 0.989 0.010 0 0 0 0 0 0

0 0 0.941 0.058 0 0 0 0 0

0 0 0 0.941 0.058 0 0 0 0

0 0 0 0 0.989 0.010 0 0 0

0 0 0 0 0 0.941 0.058 0 0

0 0 0 0 0 0 0.950 0.050 0

0 0 0 0 0 0 0 0.991 0.008

0 0 0 0 0 0 0 0 0.950



(Transition Mat)

(4.12)

Thereinafter, the mean and covariance matrix need to be constructed. There is an

intermediate step for this where we construct the data matrix, meaning a matrix that

includes all the values of the selected descriptors, from the first to the last sample (n).

This matrix has the following form:

Dtriangle =


speed1 acceleration1 slope1

...

speedn accelerationn slopen

 (Data Matrix) (4.13)

After constructing the data matrix, we normalise the recorded data in order to have

better manipulation and appearance. The next step is to organise these normalised

data by state and thus, computing the mean values of each descriptor for each of the 9

states of the recorded triangles as following:

Meantriangle =


mean(speed1) mean(acc1) mean(slope1)

...

mean(speed9) mean(acc9) mean(slope9)

 (Mean Matrix)

(4.14)

Finally, the covariance matrix is a 3 dimensional matrix and based on the number of

our descriptors its dimensions are 3 x 3 x 9 states.

Chapter 4. Gesture Recognition 41

4.3.2 Rectangle Model

Rectangle states separation follows exactly the same methodology that was followed for

the triangles and described in the previous paragraph. Using again Matlab’s findpeaks

function in slope derivative signal, we distinct the sides from the corners. In this way,

we have 12 rectangle states, as shown in Figure 4.9. Once again, the blue parts are

the “main” parts of a side, while the other colours depict the start and the end of each

side where the most prominent acceleration and slope changes are observed.

Figure 4.9: Coloured states of a rectangle.

As in the triangle’s case, Figure 4.10 shows the relevant scatter plot of the distribution

of the descriptors for the rectangles. The graph depicts the speed, acceleration and slope

derivative in axis X, Z, Y respectively for 25 performed rectangles, while each colour

represent one of the 12 different states.

Additionally, a directed graph with the states of the rectangle model is presented in

Figure 4.11.

Following the triangle model, the relevant matrices for the construction of the rectangle

HMM model are presented below.

IPrectangle =
[
1 0 0 0 0 0 0 0 0 0

]
(Initial Probability Matrix) (4.15)

Chapter 4. Gesture Recognition 42

Figure 4.10: Scatter plot of the rectangles’ descriptors by state. Each colour repre-
sents a different state

s1 s2 s3 ... s10 s11 s12
a1,2 a2,3 a3,4 a9,10 a10,11 a11,12

a1,1 a2,2 a3,3 a4,...

a10,10 a11,11 a12,12

Figure 4.11: Rectangle model states graph.

The transition matrix of the rectangle is omitted due to space limitation. However it is

following the same motif as triangle’s transition matrix and its dimension, based on the

12 rectangle states is 12x12.

Rectangle’s data, mean and covariance matrices description follows. Data matrix in-

cludes all the values of the selected descriptors, from the first to the last sample (n).

Drectangle =


speed1 acceleration1 slope1

...

speedn accelerationn slopen

 (Data Matrix) (4.16)

Chapter 4. Gesture Recognition 43

Meanrectangle =


mean(speed1) mean(acc1) mean(slope1)

...

mean(speed12) mean(acc12) mean(slope12)

 (Mean Matrix)

(4.17)

Finally, the covariance matrix is a 3 dimensional matrix and based on the number of

our descriptors its dimensions are 3 x 3 x 12 states.

4.3.3 Circle Model

For the case of circle separation into states, the situation was different. Since we have

smooth speed curve and a periodical acceleration curve, we need to make the separation

based on other criteria than the peak picking that we performed for the triangle and

the rectangle. For this reason we used the mean of the speed as a threshold to sepa-

rate the possible states. As Figure 4.5 depicts, based on the mean of speed (the blue

straight line in speed diagram) we can observe three different states where basically the

speed increases, remains stable over the mean and then decreases. Figure 4.12 shows

graphically the separation into these 3 circle states. Blue colour represents the “main”

state where the speed remain stable over the mean, while the other colours represent its

increase and decrease.

Figure 4.12: Coloured states of a circle.

Chapter 4. Gesture Recognition 44

The relevant scatter plot of the distribution of the descriptors for the circles is shown

in Figure 4.13. The graph depicts the speed, acceleration and slope derivative in axis

X, Z, Y respectively for 25 performed circles, while each colour represent one of the 12

different states.

Figure 4.13: Scatter plot of the circles’ descriptors by state. Each colour represents
a different state.

Additionally, a directed graph with the states of the rectangle model is presented in

Figure 4.14.

As in previous models, the relevant matrices for the construction of the circle HMM

model are presented below, using a circle’s sample data:

IPcircle =
[
1 0 0

]
(Initial Probability Matrix) (4.18)

s1 s2 s3
a1,2 a2,3

a1,1 a2,2 a3,3

Figure 4.14: Circle model states graph.

Chapter 4. Gesture Recognition 45

Tcircle =


0.990 0.009 0

0 0.997 0.002 0

0 0 0.985

 (Transition Matrix) (4.19)

Circle’s data, mean and covariance matrices description follows. Data matrix includes

all the values of the selected descriptors, from the first to the last sample (n).

Dcircle =


speed1 acceleration1 slope1

...

speedn accelerationn slopen

 (Data Matrix) (4.20)

Meancircle =


mean(speed1) mean(acc1) mean(slope1)

mean(speed2) mean(acc2) mean(slope2)

mean(speed3) mean(acc3) mean(slope3)

 (Mean Matrix)

(4.21)

Finally, the covariance matrix is a 3 dimensional matrix and based on the number of

our descriptors its dimensions are 3 x 3 x 3 states.

4.3.4 HMM Models’ Matlab Code

The relevant Matlab code for the construction of the HMM models is quoted below.

Although there is a different code file for each gestural model, the core of the code

remains the same.

%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Sample Matrix %%%

%%%%%%%%%%%%%%%%%%%%%%%%%

% Sample matrix: number of samples per state

for indx = 1:filecount

SampleMat buffer = [];

for sindx = 1:num of states

SampleLen = eval(['length(Q' num2str(sindx) '{indx});']);
SampleMat buffer = [SampleMat buffer; SampleLen];

SampleMatrix{indx} = SampleMat buffer;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%

Chapter 4. Gesture Recognition 46

%%% Prior Matrix %%%

%%%%%%%%%%%%%%%%%%%%%%%%

% Initial state probability (Prior) matrix (Q1 = 1, other states = 0)

for indx = 1:num of states

if indx == 1;

PriorMatrix(indx) = 1;

else

PriorMatrix(indx) = 0;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Transition Matrix %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for indx = 1:filecount

TransMat buffer = [];

for sindx = 1:num of states

for kindx = 1:num of states

if kindx == sindx;

Transition(sindx, kindx) = eval(['(length(Q' num2str(sindx) ...

'{indx}) - 1) / length(Q' num2str(sindx) '{indx});']);
elseif kindx == sindx+1;

Transition(sindx, kindx) = eval(['1 / length(Q' num2str(sindx) ...

'{indx});']);
else

Transition(sindx, kindx) = 0;

end

end

TransMat buffer = Transition;

end

TransMatrix{indx} = TransMat buffer;

end

% Sum all transition Matrices

SumTransMatrix(num of states,num of states) = 0;

FinalTransMatrix(num of states,num of states) = 0;

for indx = 1:filecount

SumTransMatrix = SumTransMatrix + TransMatrix{indx};
end

% Final transition matrix

FinalTransMatrix = SumTransMatrix ./ filecount;

%%%%%%%%%%%%%%%%%%%%%%%

%%% Data Matrix %%%

%%%%%%%%%%%%%%%%%%%%%%%

% Data matrix (speed, acceleration and slope values)

DataMatrix = [];

for indx = 1:filecount

DataMatrixByShape{indx} = [speed{indx}(1:end-1), acc{indx}, d slope{indx}];
DataMatrix = [DataMatrix ; DataMatrixByShape{indx}];

Chapter 4. Gesture Recognition 47

end

% Normalize data

NormDataValues = [mean(DataMatrix); std(DataMatrix)];

for indx = 1:filecount

% Normalize shapes' input data

NormDataByShape{indx} = (DataMatrixByShape{indx} - repmat(NormDataValues(1,:), ...

size(DataMatrixByShape{indx},1),1)) ./ repmat(NormDataValues(2,:), ...

size(DataMatrixByShape{indx},1),1);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Mean & Covariance Matrices %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Mean & covariance matrices of features per state

% Initialize mean matrix

MU = zeros(num of states,3);

NormMU = zeros(num of states,3);

% Initialize covariance matrix

SIGMA = zeros(3,3,num of states);

NormSIGMA = zeros(3,3,num of states);

for iState = 1:num of states

speedByState = [];

accByState = [];

slopeByState = [];

for indx = 1:filecount

speedByState = [speedByState ; speed Q{indx,iState}];
NormSpeedByState = (speedByState - repmat(NormDataValues(1,1), ...

size(speedByState,1),1)) ./ repmat(NormDataValues(2,1),size(speedByState,1),1);

accByState = [accByState ; acc Q{indx,iState}];
NormAccByState = (accByState - repmat(NormDataValues(1,2), ...

size(accByState,1),1)) ./ repmat(NormDataValues(2,2),size(accByState,1),1);

slopeByState = [slopeByState ; d slope Q{indx,iState}];
NormSlopeByState = (slopeByState - repmat(NormDataValues(1,3), ...

size(slopeByState,1),1)) ./ repmat(NormDataValues(2,3),size(slopeByState,1),1);

end

% Mean & Covariance matrices of Non-Normalized data

MU(iState,1) = mean(speedByState);

MU(iState,2) = mean(accByState);

MU(iState,3) = mean(slopeByState);

SIGMA(:, :, iState) = cov([speedByState, accByState, slopeByState]);

% Mean & Covariance matrices of Normalized data

NormMU(iState,1) = mean(NormSpeedByState);

NormMU(iState,2) = mean(NormAccByState);

Chapter 4. Gesture Recognition 48

NormMU(iState,3) = mean(NormSlopeByState);

NormSIGMA(:, :, iState) = cov([NormSpeedByState, NormAccByState, ...

NormSlopeByState]);

end

4.4 Evaluation Results

4.4.1 Likelihood Estimation

For the training of each of the three HMM models (triangle, rectangle, circle) a dataset

of 25 recorded shapes was used. Each of the aforementioned training datasets was used

to test each model’s maximum likelihood estimation. As a consequence, the testing

dataset of each model is consisted of 50 gestures.

Although the overall success rate of each model scored above 68%, the results that we got

vary. Rectangle model seems to be the most successful with 100% successful recognition

in both cases, when using triangles and circles as testing data. Triangle model, although

recognizes successful the circle data, it reaches only a 68% of successful recognition when

provided with rectangle data. Finally, circle model provides the same success rate of

76% when provided with triangle or rectangle data. This means that it cannot recognises

the difference between the two other models. The above observations are shown in the

table below.

Triangle Rectangle Circle

Triangle - 68% 100%

Rectangle 100% - 100%

Circle 76% 76% -

The Matlab code that was used for the likelihood estimation of each model is quoted

below:

%------------------------%

%--- HMM Probability ----%

%------------------------%

O hmm = 3; % Number of observations (features)

Q hmm = num of states; % Number of states

M hmm = 1; % Number of Gaussians

priormat = normalise(PriorMatrix); % Prior probability matrix

Chapter 4. Gesture Recognition 49

transmat = mk stochastic(FinalTransMatrix); % Transition matrix

mixmat = ones(Q hmm,1); % We consider only one Gaussian

% Test with other models

% load ('triangles model.mat')

% NO normalization

for indx = 1:filecount

loglik{indx} = mhmm logprob(DataMatrixByShape{indx}', priormat', transmat, MU', SIGMA, mixmat);

end

% Normalization

for indx = 1:filecount

loglikNorm{indx} = mhmm logprob(NormDataByShape{indx}', priormat', transmat, NormMU', NormSIGMA, mixmat);

end

Chapter 5

Mapping Gesture to Sound

As discussed in the first chapter, the issue of mapping is essential for any new instrument

design and furthermore for the musical expression of a performance. Although, the rapid

growth of technology has given birth to different sensoring devices and applications, most

mapping approaches are fixed only to few parameters, leading to limited control and

freedom over musical events [49]. That’s how the need for new and intelligent mapping

algorithms and controllers emerged.

On the other hand, every mapping approach in its basis aims to develop a digital musical

interment by modelling a traditional acoustic instrument [50]. Both type of instruments

typically consist of three main components as shown in Figures 5.1, 5.2: a) a controller,

b) a sound generator and c) a link that connects the aforementioned parts. The main

difference is that in the case of an acoustic instrument (e.g. a violin), the relation between

these main components is integral; the controller resonates the sound generator via the

link connection. As a consequence the relation is more sophisticated as for example

there is no single volume control, but a combination of volume input parameters [?].

In the case of an electronic instrument, controllers, sound generators, and links are

independent units providing more functional and expressive potential due to the plethora

of available controllers, produced sounds and computer-wise linking techniques between

them [50]. Such expressive and flexible instruments are synthesizers. Their almost

unlimited sonic potential is based on the variety of parameters that are involved, making

at the same time the sound editing difficult [51]. Their synthesis parameters are usually

accessed at design time through a one-to-one mapping requiring a level of knowledge

from the user, while in performance a small number of their parameters are mapped to

real-time sound manipulation.

50

Chapter 5. Mapping Gesture to Sound 51

(Link)

Bow
(Controller)

Sound Box
(Sound generator)

Strings
(Controller)

Figure 5.1: Mapping components in an acoustic instrument: Violin

Controler Sound
GeneratorLink

Gesture
Outputs

Synthesis
InputsMapping

Figure 5.2: Mapping components in a digital instrument

Chapter 5. Mapping Gesture to Sound 52

There can be many control variables in a system that could affect mapping in various

ways. However, the fact is that the more the number of variables in a system, the

weaker is each variable and the more sensitive is the system because its parameters can

be change in many different ways [50]. Although it can be more creative and expressive

to have a sensitive instrument, a good balance need to be kept in order for the performer

to be able to track and control manually the control parameters at the same time.

Furthermore, as discussed in the second chapter, many different categorizations of map-

ping exist. Here we are going to refer only explicit mapping, which is the one that we

are using in our case, and refers to the direct relation between the input and output pa-

rameters, set by the user. Explicit mapping is a strategy that has been largely discussed

and commonly used [21].

Based on the above facts as well as the goal of the gestural modular synthesizer to

which this project is aiming, we decided to use an explicit and straightforward one-to-

one mapping strategy as starting-point. The parameters of the synth can be configured

both in design as well as in performance level. Figures 3.1 and 5.2 can work as a

reference for the mapping procedure that has been followed.

5.1 Mapping Strategy

Modular synthesizers, as Figure 5.3 shows, are consisted of a variety of knobs, buttons

and/or cables that control various parameters of the final audible output. When someone

manipulates such an instrument, either in its physical or in its virtual form, he cannot

change more than two parameters at a time, using both of his hands (or even one

because in many cases there is also a keyboard which is being played). In addition,

the instrument has “memory”, meaning that a change that the player makes to one

parameter remains until he changes it again. In this way, a lot of single parameters can

be changed serially by adding more variables to the synthesis and thus “sculpting” the

desired sound.

Having this in mind, we tried to simulate a simple one-to-one mapping approach that

could map straightforward the performed gestures to the control or sound parameters of

the gestural modular synth engine. Of course, for an amateur player, the specific strategy

would not be as easy and intuitive and even not so meaningful as for an advanced player.

At this point though, it is considered that the user is having a basic experience with the

logic of modular synths functions and parameters. Mapping components are described

below.

Chapter 5. Mapping Gesture to Sound 53

Figure 5.3: A screenshot of the ”Modular Synthesizer” application for iPad by Pulse
Code Inc.

• Timbre/Oscillator is defined by the recognized shape of the gesture as following:

Rectangle = Square-wave Oscillator

Triangle = Sawtooth Oscillator

Circle = Sinewave Oscillator

• Pitch/Frequency is defined by the average speed of the performed gesture after

configuring a customizable threshold and a frequency range between 20Hz - 20KHz:

Average Speed < Threshold (Slow) = Low Frequency *

Average Speed ≥ Threshold (Fast) = High Frequency *

• Volume/Loudness is defined by the length of the performed gesture. Input

values are normalised to the range of 0-10 and the volume levels are configured

Chapter 5. Mapping Gesture to Sound 54

respectively:

Large Shape = High Volume *

Small Shape = Low Volume *

• Panning of the output sound is defined by the slope changes:

Positive Slope = Right Output Channel

Negative Slope = Left Output Channel

• Oscillation/Pulse Width is defined by the average acceleration of the gesture:

Greater Acceleration Value = Smaller Pulse Width

Smaller Acceleration Value = Longer Pulse Width

As it can be seen in Figure 5.3, and by having a basic knowledge about synthesizers,

the above features are depicted and consist some primitive synthesis features, necessary

for any sound design. The presented parameters are really basic, but when combined

together to complete some “gestural phrases”, the outcome can be interesting. Some

possible examples of a more interesting sound result could be achieved by following

similar techniques that are presented below.

• Polyphony can be achieved by combining two or more oscillator patterns:

Rectangle + Triangle = Square-wave + Sawtooth Oscillation (2 Voices Polyphony)

• Ring Modulation effect can be achieved by performing two gestures of the same

model in different speed and thus, in different frequencies:

Triangle (in speed A) + Triangle (in speed B) = Ring Modulation Effect,

where speed A and speed B are slightly different

Although the one-to-one mapping strategies are user-friendly in terms of training and

performing, expression-wise as well as in terms of sound design are limited. However,

as can be deducted from the above mapping description, the strategy that has been

followed in this project cannot be characterized strictly as a one-to-one. This is because

a shape’s length, speed, orientation by its own does not mean something for our system.

A gesture firstly need to be recognized (and thus obtain a specific timbre) and in addition

to that a specific pitch and volume is applied. So to speak, there is a kind of many-to-one

mapping strategy. However, even more potential can be unleashed from such a system

by enhancing the mapping procedure, an issue that is also discussed in the last chapter.

Chapter 6

Conclusion & Future Work

6.1 Conclusion

The work described above refers to a study that was made in order to set the basis for the

development of a virtual modular synthesizer whose parameters are configured through

recorded gestures. The aim was to combine the highly active research topic of gesture

recognition along with the expressivity that such a system infers with ultimate goal the

use in an enhanced artistic musical performance. Using a Polhemus Liberty sensoring

device, we built up a gestural vocabulary that was consisted of three gestures that

could represent different parameters of the synthesizer. Using Hidden Markov Models

as the core of our methodology, after analysing the recorded data, we built up models

for recognizing the performed gestures in any point of 3D space that the sensor allows.

These models were trained offline using specific motion-based descriptors and consist

the basis of the further recognition task in real-time. Using a simple mapping strategy

as a starting point the recognised gestures can be connected to a sound interface built

in Max/Msp environment that will represent the final sound engine.

6.2 Future Work

Throughout the previous chapters we carried out a preview on state of the art, an

overview of the architecture of the system used, the methodology that has been followed

along with the models that have been developed for the purposes of the project, some

preliminary results of the recognition task for the aforementioned models and finally

some theoretical framework on which the mapping process will be based on. The con-

ducted research and work is based mostly on gesture recognition and less in gesture

mapping and the development of the sound engine. As a result, tasks of the latter part

55

Chapter 6. Conclusion & Future Work 56

will be prioritized in future work. However, there is space for overall improvement and

development in order to provide a robust application framework that could be used for

augmented artistic performances.

6.2.1 Max/Msp Sound Interface

As referred in the relevant chapter, the sound engine interface has started to be developed

in Max 6 environment. Due to the demanding tasks of the whole project, only the

external Max object and some primitive experimental test patches have been used. The

first step of the future work is definitely the development of a robust sound engine that

will simulate the idea of the gestural synthesizer, by using the vocabulary that was

developed as well as enriched synthesized sounds.

6.2.2 Additional Descriptors

After having built the gestural models based on the basic descriptors that were presented

in the relevant chapter, the next goal is to extend them by adding more specific features.

These features could be the computation of the angles of the performed shape (if it

contain corners), the angular velocity (for circle movements), amount and angle of tilt,

azimuth angle, queer or diagonal movement and of course the consideration of the third

axis in all of the above after the expansion in 3D space.

6.2.3 Real-time Probability & Projection of Gesture

After the computation of additional features, each gesture would be defined more in

detail by having some unique characteristics among others. In this way, it could be

recognized during its performance and not after its completion. A live probability would

show to the user exactly ”where we are” within the gesture and thus, the recognition

would be closer to real-time performance. In addition, the projection of the ongoing

gesture could help the user performed more well-defined and accurate gestures.

6.2.4 Vocabulary Expansion

Expanding the vocabulary to more than the three basic gestures that have been presented

in this project is of crucial importance. More gestures need to be defined and described

from the selected descriptors in order to expand the expressivity potential of the user

and not to feel restricted. Furthermore, as described above, gestured can be combined

Chapter 6. Conclusion & Future Work 57

to form “phrases” that could lead to a more interesting audible outcome. In this way,

more gestures mean more possible combinations and thus, more interesting sound result.

6.2.5 Enhanced Mapping

Enhancing the mapping procedure of the system is of crucial importance too for a future

artistic application. While up to now we have dealt with one-to-one mapping strategy,

the next step is to include many-to-one and one-to-many mappings. In this way, we

can add more realistic character to the resulting sound by adding sound effects (reverb,

delay, phaser), sound spatialization techniques, filters (Low-Pass, High-Pass) as well as

envelope parameters (affecting attack and/or release times of a sound).

Additionally, by expanding in 3D space and analysing the gestures by three-axis signals,

we will get more pragmatic approximations of the descriptors and mapping will give

even more interesting musical gestural controls over the synthesizer.

Finally, an advanced mapping mechanism could be developed, using indirect temporal

mapping techniques [21], adaptive neural networks [49], [52] or a combination of all the

aforementioned mapping techniques. Temporal mapping consists a synchronization pro-

cedure between two or more temporal profiles (input gesture parameters) and the sound

process parameters. On the other hand, networks could accept parameters describing

physical gesture as input and generate the desired synthesizer control parameters as

output in real-time performance. The procedure would be learned automatically from

the network by using a training phase that various users could be involved.

6.2.6 Sensory Fusion

Finally, it is needed to be mentioned that all the above study was made based on one

sensor. Combining two or more sensors (up to 4 with the specific hardware equipment)

that could work cooperatively or interact with each other, would be more than welcome

from any artist aiming to an enhanced musical performance. Additionally, after com-

pleting this step, the study could move towards other, less restricted sensor devices. A

perfect example could be the case study of using accelerometers of any type of mobile

devices that could work independently and interact through OSC protocol messages with

the sound interface.

Bibliography

[1] Fernando Iazzetta. Meaning in musical gesture, 2000.

[2] Marcelo MWanderley. Gestural control of music. In International Workshop Human

Supervision and Control in Engineering and Music, pages 632–644, 2001.

[3] Christopher Dobrian. A Method for Computer Characterization of Gesture in Mu-

sical Improvisation. Ann Arbor, MI: MPublishing, University of Michigan Library,

2012.

[4] Thomas J Mitchell, Sebastian Madgwick, and Imogen Heap. Musical interaction

with hand posture and orientation: A toolbox of gestural control mechanisms. 2012.

[5] James J Clark. Advanced programming techniques for modular synthesizers. In-

ternet,[Besökt Maj 2005], URL: http://www. cim. mcgill. ca/ clark/nordmodular-

book/nm book toc. html, 2003.

[6] Frédéric Bevilacqua, Nicolas Rasamimanana, Emmanuel Fléty, Serge Lemouton,

and Florence Baschet. The augmented violin project: research, composition and

performance report. In Proceedings of the 2006 conference on New interfaces for

musical expression, pages 402–406. IRCAMCentre Pompidou, 2006.

[7] Richard A Bolt. Put-that-there: Voice and gesture at the graphics interface, vol-

ume 14. ACM, 1980.

[8] Thomas G Zimmerman, Jaron Lanier, Chuck Blanchard, Steve Bryson, and Young

Harvill. A hand gesture interface device. In ACM SIGCHI Bulletin, volume 18,

pages 189–192. ACM, 1987.

[9] Emmanuel Sachs. Coming soon to a cad lab near you, 1990.

[10] Axel GE Mulder. Design of virtual three-dimensional instruments for sound control.

PhD thesis, Citeseer, 1998.

[11] Ernie Lin and Patrick Wu. Jam master, a music composing interface. 2004.

58

Bibliography 59

[12] Rung-Huei Liang and Ming Ouhyoung. A real-time continuous gesture recogni-

tion system for sign language. In Automatic Face and Gesture Recognition, 1998.

Proceedings. Third IEEE International Conference on, pages 558–567. IEEE, 1998.

[13] C Keskin, A Erkan, and L Akarun. Real time hand tracking and 3d gesture recog-

nition for interactive interfaces using hmm. ICANN/ICONIPP, 2003:26–29, 2003.

[14] Mahmoud Elmezain, Ayoub Al-Hamadi, Jörg Appenrodt, and Bernd Michaelis. A

hidden markov model-based continuous gesture recognition system for hand motion

trajectory. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference

on, pages 1–4. IEEE, 2008.

[15] Frédéric Bevilacqua, Bruno Zamborlin, Anthony Sypniewski, Norbert Schnell, Fab-

rice Guédy, and Nicolas Rasamimanana. Continuous realtime gesture following and

recognition. In Gesture in embodied communication and human-computer interac-

tion, pages 73–84. Springer, 2010.

[16] Susan Goldin-Meadow. The role of gesture in communication and thinking. Trends

in cognitive sciences, 3(11):419–429, 1999.

[17] Adam Kendon. Gesture: Visible action as utterance. Cambridge University Press,

2004.

[18] Richard Watson. A survey of gesture recognition techniques. 1993.

[19] Sushmita Mitra and Tinku Acharya. Gesture recognition: A survey. Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 37(3):

311–324, 2007.

[20] Paul Doornbusch. A brief survey of mapping in algorithmic composition. In Pro-

ceedings of the International Computer Music Conference, 2002.

[21] Frédéric Bevilacqua, Norbert Schnell, Nicolas Rasamimanana, Bruno Zamborlin,

and Fabrice Guédy. Online gesture analysis and control of audio processing. In

Musical Robots and Interactive Multimodal Systems, pages 127–142. Springer, 2011.

[22] Douglas Van Nort. Modular and adaptive control of sound processing. 2009.

[23] Pieter-Jan Maes, Marc Leman, Micheline Lesaffre, Michiel Demey, and Dirk Moe-

lants. From expressive gesture to sound. Journal on Multimodal User Interfaces, 3

(1-2):67–78, 2010.

[24] The gloves project, gloves for music. http://theglovesproject.com/

data-gloves-overview/ [Online].

http://theglovesproject.com/data-gloves-overview/
http://theglovesproject.com/data-gloves-overview/

Bibliography 60

[25] BETHA MARCUS, PHILIPJ CHURCHILL, and ARTHURD LITTLE. Sensing

human hand motions for controlling dexterous robots. In NASA. Lyndon B. John-

son Space Center, 2 nd Annual Workshop on Space Operations Automation and

Robotics(SOAR 1988) p 481-485(SEE N 89-19817 12-59), 1988.

[26] Howard Eglowstein. Reach out and touch your data. Byte, 15(7):283–286, 1990.

[27] The gloves project, gloves for music. http://mimu.org.uk/ [Online].

[28] Peggy J Jennings and Howard Poizner. Computergraphic modeling and analysis ii:

Three-dimensional reconstruction and interactive analysis. Journal of Neuroscience

Methods, 24(1):45–55, 1988.

[29] Myron W Krueger. Artificial reality II, volume 10. Addison-Wesley Reading (Ma),

1991.

[30] Howard Rheingold. Virtual Reality: Exploring the Brave New Technologies. Simon

& Schuster Adult Publishing Group, 1991.

[31] Paul O’Neill. Hand pose from iconic markings. Technical report, GLAD-IN-ART

deliverable 3.1. 3., Trinity College, Dublin, 1993.

[32] Lin Song, Rui Min Hu, Yu Lian Xiao, and Li Yu Gong. Real-time 3d hand tracking

from depth images. Advanced Materials Research, 765:2822–2825, 2013.

[33] David Weimer and SK Ganapathy. Interaction techniques using hand tracking and

speech recognition. In Multimedia interface design, pages 109–126. ACM, 1992.

[34] Ming-Hsuan Yang and Narendra Ahuja. Recognizing hand gestures using motion

trajectories. In Face Detection and Gesture Recognition for Human-Computer In-

teraction, pages 53–81. Springer, 2001.

[35] Leonid V Tsap. Gesture-tracking in real time with dynamic regional range compu-

tation. Real-Time Imaging, 8(2):115–126, 2002.

[36] Christopher Richard Wren, Ali Azarbayejani, Trevor Darrell, and Alex Paul Pent-

land. Pfinder: Real-time tracking of the human body. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 19(7):780–785, 1997.

[37] Aisha Meethian and BM Imran. Real time gesture recognition using gaussian mix-

ture model. 2013.

[38] Polhemus, innovation in motion. http://www.polhemus.com [Online].

[39] Mathworks, accelerating the pace of engineering and science. http://www.

mathworks.com/products/matlab/ [Online].

http://mimu.org.uk/
http://www.polhemus.com
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

Bibliography 61

[40] Cycling74. http://cycling74.com/ [Online].

[41] Microsoft visual studio. http://www.visualstudio.com/ [Online].

[42] Kevin Murphy. Hidden markov model (hmm) toolbox for matlab, 1998. http:

//www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html [Online].

[43] Lawrence Rabiner. A tutorial on hidden markov models and selected applications

in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[44] Steve Renals and Thomas Hain. Speech recognition. Handbook of Computational

Linguistics and Natural Language Processing. Wiley Blackwell, 2, 2010.

[45] Sasan Karamizadeh, Shahidan M Abdullah, Azizah A Manaf, Mazdak Zamani, and

Alireza Hooman. An overview of principal component analysis. Journal of Signal

and Information Processing, 4:173, 2013.

[46] Jonathon Shlens. A tutorial on principal component analysis (2005). Institute for

Nonlinear Science, UCSD, 2010.

[47] Henrik Birk, Thomas B Moeslund, and Claus B Madsen. Real-time recognition

of hand alphabet gestures using principal component analysis. In Proceedings of

the Scandinavian Conference on Image Analysis, volume 1, pages 261–268. PRO-

CEEDINGS PUBLISHED BY VARIOUS PUBLISHERS, 1997.

[48] M. Weik. Communications Standard Dictionary. Springer US, 1995. ISBN

9780412083914. URL http://books.google.ca/books?id=jxXDQgAACAAJ.

[49] Arshia Cont, Thierry Coduys, and Cyrille Henry. Real-time gesture mapping in pd

environment using neural networks. In Proceedings of the 2004 conference on New

interfaces for musical expression, pages 39–42. National University of Singapore,

2004.

[50] Joel Chadabe. The limitations of mapping as a structural descriptive in electronic

instruments. In Proceedings of the 2002 conference on New interfaces for musical

expression, pages 1–5. National University of Singapore, 2002.

[51] Palle Dahlstedt. Dynamic mapping strategies for expressive synthesis performance

and improvisation. In Computer Music Modeling and Retrieval. Genesis of Meaning

in Sound and Music, pages 227–242. Springer, 2009.

[52] Chris Kiefer. Musical instrument mapping design with echo state networks. 2014.

http://cycling74.com/
http://www.visualstudio.com/
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
http://books.google.ca/books?id=jxXDQgAACAAJ

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 State of the Art
	2.1 Overview
	2.1.1 Gestures
	2.1.2 Gesture Tracking
	2.1.3 Gestures in Music
	2.1.4 Gesture Mapping to Sound

	2.2 Sensors and Hardware Interfaces
	2.2.1 Interactive Gloves
	2.2.2 Vision-Based Tracking
	2.2.3 Inertial Sensors

	2.3 Gesture-Based Applications
	2.3.1 Physically-Based Manipulation
	2.3.2 Linguistic Gestures
	2.3.3 Musical Interfaces

	2.4 Methods for Gesture-Following in 3D
	2.4.1 Hidden Markov Models (HMM)
	2.4.2 Gaussian Mixture Models (GMM)
	2.4.3 Particle Filtering and Condensation Algorithm
	2.4.4 FSM Approach
	2.4.5 Problems of Methods

	3 Methodology
	3.1 Experimental Design
	3.2 Technical Framework
	3.2.1 Hardware
	3.2.2 Software
	3.2.3 External Object

	3.3 Proposed Method
	3.3.1 Gestural Vocabulary
	3.3.2 Hidden Markov Models (HMM)
	3.3.3 Gaussian Mixture Models (GMM)

	4 Gesture Recognition
	4.1 Data Acquisition & Preprocessing
	4.2 Data Analysis & Feature Extraction
	4.2.1 Descriptors
	4.2.2 Triangle Analysis
	4.2.3 Rectangle Analysis
	4.2.4 Circle Analysis

	4.3 HMM Probability Distribution & Classification
	4.3.1 Triangle Model
	4.3.2 Rectangle Model
	4.3.3 Circle Model
	4.3.4 HMM Models' Matlab Code

	4.4 Evaluation Results
	4.4.1 Likelihood Estimation

	5 Mapping Gesture to Sound
	5.1 Mapping Strategy

	6 Conclusion & Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Max/Msp Sound Interface
	6.2.2 Additional Descriptors
	6.2.3 Real-time Probability & Projection of Gesture
	6.2.4 Vocabulary Expansion
	6.2.5 Enhanced Mapping
	6.2.6 Sensory Fusion

