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Abstract. Previous research has shown that ensembles of variable length
Markov models (VLMMs), known as Multiple Viewpoint Models (MVMs),
can be used to predict the continuation of Western tonal melodies, and
outperform simpler, fixed-order Markov models. Here we show that this
technique can be effectively applied to predicting melodic continuation
in North Indian classical music, providing further evidence that MVMs
are an effective means for modeling temporal structure in a wide variety
of musical systems.
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1 Introduction and Motivation

Melody is an important component in almost all of the world’s musical tra-
ditions. In North Indian classical music (NICM), it is paramount, and is the
basis of a highly sophisticated system of melodic improvisation. Previous work
[25] has demonstrated that melodies can be effectively modeled using Multi-
ple Viewpoint Models (MVMs), which are ensembles of variable-length Markov
models (VLMMs). Moreover, these models have been shown to accurately reflect
listeners expectations about melodic continuation [27]. Chordia [8, 6] generalized
this work to tabla sequence prediction; MVMs were shown to be highly effective
at modeling the temporal structure of tabla compositions, a percussive tradi-
tion based on linear sequences of timbres, suggesting the generality of MVMs
for modeling discrete temporal sequences in music. The current work examines
whether such models applicable to melodic compositions of NICM. Specifically,
we attempt to predict the next note in a symbolically notated melody, given the
past context.

2 Background and Related Work

Many aspects of music, such as melodies and chord sequences, can be represented
as temporally-ordered sequences of discrete symbols. It is intuitive that how a
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sequence proceeds will depend most on recent events. For example, melodies are
more likely to proceed by small intervals, rather than large jumps [29], which
means that the current note constrains the next note. This idea of local depen-
dency can be formalized using Markov models, which are discussed further in
Section 5.

A defining characteristic of music is repetition [20]. Subsequences from early
in a piece, such as a brief melodic motive, are often repeated later in a piece,
sometimes many times. Such repetition also often occurs across pieces; for ex-
ample, many songs contain common chord sequences. These patterns, which can
be short or quite long, present a challenge for a fixed-order Markov models. Al-
though high-order Markov models can be constructed to capture such long-range
dependencies, for a length N pattern with K distinct states, there are KN possi-
ble patterns. This means that when learning on a finite set of training sequences,
most long patterns will be unseen, leading to extremely sparse transition matri-
ces. A common solution to this problem is to only store sequences that have been
seen, replacing a table of counts with a tree structure, called a Prediction Suffix
Tree (PST) [28], which is the basis of variable-length Markov models (VLMMs).
We describe VLMMs in further detail in Sec. 5. VLMMs form the basis for many
music prediction and generation systems [19, 16, 1–3, 22, 18, 17, 15, 24].

In music, there are often multiple ways of representing the musical surface.
For example, a melody can be thought of in terms of chromatic pitches, or
more abstractly in terms of contour, a sequence of ups and downs. In some
cases, patterns may be present when looking at one representation, but not in
another. By combining information from multiple viewpoints, it may be possible
to capture more of the temporal structure of the sequence. This is the essential
idea of MVMs. Each representation, or viewpoint, is modeled using a VLMM
and the predictions of each individual model are then combined to compute
an overall predictive distribution (Sec. 5). MVMs were introduced by Conklin
and Witten [13, 10, 14, 12, 11, 31], and developed by others such as Pearce and
Wiggins [26, 25].

3 Indian Classical Music

North Indian Classical Music (NICM) is a centuries-old tradition that is based
on melodic and rhythmic improvisation, typically featuring a main melodic in-
strument or voice and a percussionist. It is organized around raag, a melodic
abstraction that lies somewhere between a scale, and a fixed melody. A raag is
most easily explained as a collection of melodic motives, and a technique for de-
veloping them. The motives are sequences of notes that are often inflected with
various micro-pitch alterations and articulated with an expressive sense of tim-
ing. Longer phrases are built by joining these melodic atoms together. Because
of this generative process, the musical surface, contains many repeated melodic
patterns, making it a natural candidate for modeling with VLMMs.

NICM uses approximately one to two hundred raags, of which perhaps fifty
are quite common. Although the concept of a note is somewhat different from
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that in Western classical, often including subtle pitch motions that are essential
rather than ornamental, it is accurate to say that the notes in any given raag
conform to one of the twelve chromatic pitches of a standard just-intoned scale.
It is rare to hear sustained tone that intentionally deviates from one of the twelve
chromatic pitches. A given raag will use between five and twelve tones.

A typical performance will feature an unmetered elaboration of the raag
called the alap followed by several compositions set to a rhythmic cycle, during
which the tabla provides the rhythmic framework. During the rhythmic section
there is an alternation between singing the composition and its elaboration, and
free improvisations within the context of the raag.

Although NICM is largely an oral tradition, in the 20th century there was a
push to systematize and notate traditional compositions. The notation that was
adopted represented melodies as sequences of discrete notes, having a certain
pitch and duration. Additionally certain important ornaments, such as grace
notes (kan swara) and turns (khatka) were indicated as well. Figure 1 gives an
example of this notation. Just as with Western music, the notation was not
meant to be complete, but to be interpreted within a performance context. In

Fig. 1. An example composition of Raag Suha in Bhatkhande notation (Vol. II, Page
11 of [21])

this study, we decided to focus on notated compositions because of the difficulty
of manual or automatic transcription from audio, which remains for future work.

4 The Indian Classical Music Database

The database used for the study is a part of the NICM symbolic database
(bandishDB) being built using Hindustani Sangeet Paddhati by Pandit Vishnu
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Narayan Bhatkhande [4] and Abhinav Geetanjai by Pandit Ramashray Jha [21]
which are authoritative works of NICM. The database consists of bandishes, vo-
cal compositions with accompanying lyrics. Each bandish consists of up to four
sections, the sthayee, antara, sanchari and abhog. The latter two are relatively
rare and are present only in a few compositions. It is worth emphasizing that
NICM is largely improvised with the bandish providing an initial theme that is
heavily elaborated according to the raag, within which it is set, and the artist’s
creativity and virtuosity.

The compositions were first manually encoded into an intermediate text-
based representation. Each composition in the symbolic database was then en-
coded using Humdrum-based syntax called **kern, which was used to encode
pitch and duration information. Additionally the following meta-data was stored
for each composition: raag (melodic framework), taal (rhythmic cycle), tempo
category (slow, medium, fast). Details of encoding and representation can be
found in [5]. An example of the intermediate representation is shown in below.

id: jha2011

vol: 2

page: 11

sthayee: Tu hain mammadshah

raag: suha

taal: ektaal

tempo: madhyalaya

// n -/ P -/ g M/ R R/ S -/ R >Sn,/

// S -/ - R/ M R/ P -/ - nn/ PM P/

// S’ -/ - >Pn/ P P/ nP MP/ nP >Mg/ - M/

Although the artist is free to choose the actual pitch of the tonic in a rendition,
all the compositions here are notated with C4 as the middle tonic. The notes are
represented using MIDI note numbers assuming a single key for all the pieces.
The notes range from C3 to B5 but are folded into one octave from C4-B4. The
true octave number is stored as an additional parameter. For this study, grace
notes and other ornaments such as meends(glissandos) were ignored. These or-
naments are essential for a complete experience of Indian classical music and
the MIDI representation is an approximation, and it does not capture the nu-
ances of singing in its entirety. However, for the present study, a MIDI based
representation is sufficient for the analysis of symbolic music scores.

Currently the database consists of 128 compositions in raags Bageshri, Bihag,
Khamaj, Yaman, Yaman Kalyan, totaling 12,816 notes. When completed, it is
expected to be the largest machine readable symbolic NICM database. The data
can be freely downloaded at http://paragchordia.com/data.html. Table 1
summarizes the dataset used for the experiments in this paper. For this study,
compositions from raags Yaman and Yaman Kalyan, two nearly identical raags,
are pooled together.
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Table 1. Dataset

Raag Bandishes Notes

Yaman 44 4422
Bageshri 36 3720
Khamaj 30 2965
Bihag 18 1709

Total 128 12816

5 Predictive Modeling

The basic prediction problem can be stated as follows: given a sequence of dis-
cretely valued observations, {x1, . . . , xt−1}, compute the next-symbol distribu-
tion P (xt|x1, . . . , xt−1). In the present case of melody prediction, given the set
of symbols (note labels) S, each xi ∈ S. Given what has occurred so far till time
step t− 1, we wish to predict the next event at time t.

Markov models can be effectively used to model these sequences of symbols,
which are often referred to as strings. An nth order Markov model assumes that
the next state (associated with a symbol from the alphabet S) depends only on
the past n states, i.e. P (xt|xt−1, . . . , x1) = P (xt|xt−1 . . . xt−n). This conditional
probability can be calculated by counting how often the symbol xt follows the
context et−1

t−n = (xt−n, . . . , xt−1). Strings of length n are often referred to as
n-grams.

Increasing order n, we can model longer strings. However, the number of
possible strings (|S|n) increases exponentially. So, even in large databases, most
of these n-grams will never be seen, leading to the zero-frequency problem [30,
9]. Variable-length Markov models (VLMMs) address this problem by using an
ensemble of fixed-order models, up to order n, to smooth probability estimates.
Rather than naively storing counts for all n-grams in a table, to avoid space
complexity that increases exponentially with model order, and to make it easy
to search for a sequence, n-grams and counts are stored in a partial k-ary tree
called a prediction suffix tree (PST) [28]. In the PST, branches represent the
succession of certain symbols after others, and a node at a certain level of the
PST holds a symbol from the sequence, along with information about the symbol
such as the number of times it was seen in the sequence following the symbols
above it, and the corresponding probability of occurrence. With this efficient
representation of the VLMMs, and with a suitable smoothing method for unseen
sequences, we can effectively model melodic sequences.

There are two basic approaches to smoothing: backoff and interpolated. In
backoff smoothing, the probability of an unseen sequence is computed by re-
cursively backing off to scaled versions of lower orders. The scale factor applied
during each backoff serves as a penalty factor. A backoff smoothing method
which adjusts the counts of unseen sequences by adding one, termed as Backoff-
A (Method-A in [25]) is explored in this paper. We also explored a simple backoff
approach Backoff-B, where there is no penalty for backing off. This allows the
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model to back off to lower orders without penalty; the model always chooses a
context length for which there is a seen example sequence in the training data.

Interpolation methods compute the probability of a symbol given a context
by a weighted interpolation of predicted probabilities at all the orders. A 1/N
weighting scheme, as described in [8] is used. For computing probabilities at
each order, each node of the PST has some probability mass reserved for unseen
sequences, called the escape probability which is added through an extra escape
character with a finite escape count. When an unseen sequence is seen in the test
sequence at a particular order, the escape probability at that order is returned.
We explored interpolated smoothing using an escape count of one at each node
(termed as Interp-A) and a very low escape count of 10−6 at each node (termed
as method Interp-B). Interp-A provides higher escape probabilities while Interp-
B method assigns negligible probability mass on unseen sequences. Interp-B is
very similar to backing off to lower orders without a penalty, or the Backoff-
B method, because of the low escape counts. The smoothing methods and the
escape counts define the performance of models, especially at higher orders and
with limited training sequence data.

MVMs generalize the idea of combining an ensemble of predictive models. A
multiple viewpoints system maintains an ensemble of predictive models based on
various viewpoints with varying degrees of specificity. The viewpoints could be
basic, derived, or linked viewpoints. Basic viewpoints often refer to the variable
being predicted, and are usually observed. Derived viewpoints are obtained from
basic viewpoints. Linked viewpoints are cross-type viewpoints which are the
Cartesian products of simple and/or derived viewpoints. MVMs finally merge
the predictions of these models according to each model’s uncertainty at a given
time step, using a weighted average as described in [26]. Each viewpoint model is
assigned a weight depending on its cross-entropy at each time step. The weight
for each model m at time-step t is given by wm(t) = H(pmax)/H(pm(t)), where
H(pm(t)) is the entropy of the probability distribution and Hmax(pm) is the
maximum entropy for a prediction in the distribution. The distributions are

then combined by a convex combination, p(t) =
∑

m wmpm(t)∑
m wm

. Higher entropy

values result in lower weights. In this way, models that are uncertain (i.e., have
higher entropy) make a smaller contribution to the final predictive distribution.

There are two fundamental types of VLMMs which we refer to as long term
models (LTMs) and short term models (STMs). LTMs are built on a corpus
of songs, while STMs by reading in the symbols, one at a time, from a single
composition. The goal of LTMs is to capture patterns that are common across
all compositions, while STMs model song-specific patterns. Because songs often
contain internal repetition, STMs are often highly predictive. On the other hand,
if there is little or no repetition in a song, or the song contains few symbols, LTMs
will be more predictive since these have seen much more data. It is also possible
to combine the predictions of of the LTM and STM, in a manner analogous to
merging viewpoint predictions.

A common domain-independent approach for evaluating the quality of model
predictions is cross-entropy [23]. If the true distribution is unknown, the cross en-
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tropy of a test sequence of length T can be approximated by Hc = − 1
T

∑T
i=1 log2(pi),

which is the mean of the probabilities of true symbols evaluated from predictive
distribution at each time step, measured in bits. A closely related concept, of-
ten used in natural language modeling is perplexity per symbol [23], defined to
be P = 2Hc , where Hc is the cross-entropy as described above. Perplexity has
a simple interpretation, it is the number of choices that the model is confused
between and would be equivalent to the model choosing uniformly between P
choices.

6 Experiments

An LTM was built for each raag. This was done because the patterns utilized
in a bandish are highly dependent on the raag. In future work, it would be
straightforward to automatically classify the raag of each bandish, eliminating
the need for manually dividing the compositions into raags [7].

The viewpoints used in the experiments are listed in Table 2. The viewpoints
are obtained from the **kern scores. The note numbers are folded back to lie
within the range of a single octave as the absolute notes range over three octaves.
The note durations are quantized to the set of Dur={0.125, 0.25, 0.5, 1, 4/3, 2,
8/3, 3, 4, 6, 8}, (where Dur = 1 represents the quarter note) in order to limit
the total number of duration classes. The melodic interval refers to the interval
in semitone between two consecutive notes. This viewpoint, together with the
Note viewpoint prevents any loss of information due to the octave folding of
notes. The Note⊗Duration viewpoint is a cross-type viewpoint which models
the inter-play between pitch and duration.

Table 2. Viewpoints used in the experiments

Viewpoint Description Range

Note (N) The MIDI number of the Note 60, 61,. . ., 71

Contour (C) A derived viewpoint indicating if
the current note is increasing(+1)
up, decreasing down(-1) the scale
or unchanged(0) from the previous
note

-1,0,+1

Interval Change (I) A derived viewpoint indicating the
number of semitones change from
the previous note

-11, -10,. . ., 0,. . ., 10, 11

Note⊗Duration(N×D) A cross-type viewpoint which is 2-
tuple of Note and Quantized Dura-
tion

{(x, y) |x ∈ Note, y ∈ Dur}

For each Raag, a leave-one-out cross validation is performed using the com-
positions from that Raag. In each experiment, one composition is chosen as the
test composition. The STM is built on the test composition for each viewpoint.
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The LTM is trained on the rest of the compositions for each viewpoint. The pre-
dictive distribution at each time-step for each viewpoint of LTMs and STMs is
computed. The predictions from each viewpoint are merged to obtain combina-
tions such as NI(Note and Interval Change), NC(Note and Contour), NCI(Note,
Contour and Interval Change), and NCI+N×D(Note, Contour, Interval Change,
and the cross-type N×D). The LTM and STM are also combined into a single
predictive distribution as discussed in Sec. 5 and for each case, the perplexity
is computed from cross entropy of model predictions. The experiment is also
repeated for various different maximum orders of VLMM which correspond to
the maximum lengths of symbols modeled at each order.

7 Results and Discussion

Fig. 2. (a) A single Yaman composition with 109 notes showing distinct repetitive
note patterns. (b) The probability p and (c) the log probability, − log2(p), of the true
symbol as predicted by an STM for different VLMM orders 0 (priors), 1 and 7.

Figure 2 shows a single composition in Raag Yaman that contains some re-
peated motives. We build an STM on the composition and show the probability
the model assigned to the true symbol at each timestep for different order STMs.
Initially, the probability values are low, but as the composition progresses, the
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Fig. 3. A comparison of smoothing methods for LTM with the combined viewpoints
NCI+N×D

STM is quick to learn the patterns and predicts the true symbol with a high prob-
ability. The negative log probability is also shown (in panel (c)), as it is more
related to the information in musical events. The peaks in the curve indicate
events which are unpredictable. Initially, we see that the negative log probabil-
ity is higher, and as the piece progresses, the value decreases indicating higher
predictability. But there are peaks in the later parts of the piece, which corre-
spond to unexpected changes in note progression. We can also see that there
are long term patterns in the piece, which leads to better performance when
using higher order models. This demonstrates the effectiveness of STMs in mod-
eling local repetitions. However, these kind of patterns were uncommon in the
database – in general, the notated bandishes contained little internal repetition.

In the following discussion, we report results that were found to be statisti-
cally significant using a Tukey-Kramer multiple comparison test with confidence
bounds at 99%. Figure 3 shows a comparison of smoothing methods for the
LTM using the combined viewpoint NCI+N×D. The predictive performance is
reported as the mean perplexity of the cross validation experiments, averaged
across all the Raag models. The priors correspond to probability of true symbols
computed through a zeroth order prior distribution of notes through a symbol
count. When Interp-A method is used for smoothing, high escape counts lead
to flatter predictive distributions with high entropy and hence the perplexity of
LTM increases at higher model orders. For reporting further results, we choose
the Backoff-A smoothing method which provides a good balance between the
probabilities of seen sequences and those of unseen sequences.
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Fig. 4. A comparison of viewpoints with the smoothing method Backoff-A. Panel (a)
shows the LTM performance and (b) shows the STM performance

Table 3. The mean perplexity at maximum order of 3 for different raags and different
viewpoints with LTM and STM. The perplexity of LTM and STM combined using the
combination NCI+N×D is also shown. The smoothing method used is Backoff-A.

Raag
LTM STM Combined

Prior N NC NI N×D NCI+N×D N NC NI N×D NCI+N×D NCI+N×D
Yaman 6.89 4.58 4.39 4.54 4.14 3.99 8.70 6.80 7.23 6.50 6.05 4.21
Bageshri 6.76 4.15 4.04 4.05 3.72 3.54 7.43 6.11 6.57 5.74 5.54 4.00
Khamaj 7.33 4.48 4.15 4.27 4.17 3.79 7.42 6.16 6.45 5.63 5.55 3.73
Bihag 6.12 3.83 3.67 3.72 3.36 3.18 7.72 6.31 6.98 5.92 5.79 3.47

Figure 4 shows the mean perplexity obtained in the cross validation experi-
ment with different viewpoint combinations, averaged across the Raags for both
LTM and the STM. Using just the Note viewpoint, the LTM has a lowest perplex-
ity (4.06) when the maximum VLMM order is 2, while we see that combining
viewpoints as in NCI+N×D provides the lowest perplexity (3.70) at order 3.
Combining viewpoints for both LTM and STM is useful, as the perplexity for
the combined decisions are lower than individual viewpoints. This is especially
true in LTMs, where the use the multiple viewpoints brings down the perplex-
ity significantly at higher orders. In the case of STMs, the minimum perplexity
is consistently achieved at a maximum order of 2. Using the combination of
viewpoints NCI+N×D, the perplexity at order-2 drops to 5.54 from the Note
viewpoint perplexity of 6.45. The optimal order for LTMs is seen to be 3 while
the optimal order for STMs is 1. The low optimal order for STMs show that
the training compositions had unpredictable note progressions, even within the
same raag and hence higher orders are not particularly useful in STMs.

Table 3 consolidates the LTM and STM performance with each Raag for
different viewpoint combinations. It also tabulates the combined performance of
LTM and STM. We see that the model performance is similar across different
Raags, which indicates that the technique is generalizable to different Raags.
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The combined performance of LTM and STM is intermediate between LTMs
and STMs.

The bandishes used in the experiments only provide a basic framework for
the actual rendition and lack the repetitions which we normally see in the actual
renditions. Further, the bandishes are short with about 100 notes per compo-
sition. These qualities are reflected in the relatively poor performance of the
STMs. Figure 4 shows that the best case perplexity of STM was 1.84 higher
than that of the LTM. This is quite different than what was reported in [8],
where STMs significantly outperformed LTMs. However the tabla compositions
contained, on average 1000 symbols, an order of magnitude more data than the
average bandish.

The cross entropy of the STM predictions is computed over the entire com-
position. However, when the STM performance was evaluated only in the second
half of the compositions, after the STM has evolved, there was a considerable
decrease in perplexity. The smoothing method used contributes to the increas-
ing trend at higher orders. Multiple viewpoints help to reduce the perplexity of
melodic prediction and the combination NCI+N×D gives the lowest perplexity.

8 Conclusions and Future Work

MVMs have been shown to effective at predicting melodies in NICM, outper-
forming fixed and low-order Markov models. This work provides further evidence
that MVMs are general tools that can be used to model temporal sequences in
a variety of musical genres.

We plan to extend the experiment to include more raags once the database
is complete. We also plan to extend the work to synthesized audio and develop
intermediate-term models based on unsupervised clustering of bandishes.
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