GestureAgents: An Agent-Based Framework for
Concurrent Multi-Task Multi-User Interaction

Carles F. Julia, Nicolas Earnshaw, Sergi Jorda
Music Technology Group
Universitat Pompeu Fabra, Barcelona, Spain
carles.fernandez @upf.edu earnshaw.nico@gmail.com sergi.jorda@upf.edu

ABSTRACT

While the HCI community has been putting a lot of effort
on creating physical interfaces for collaboration, studying
multi-user interaction dynamics and creating specific appli-
cations to support (and test) this kind of phenomena, it has
not addressed the problems implied in having multiple appli-
cations sharing the same interactive space. Having an ecol-
ogy of rich interactive programs sharing the same interfaces
poses questions on how to deal with interaction ambiguity
in a cross-application way and still allow different program-
mers the freedom to program rich unconstrained interaction
experiences.

This paper describes GestureAgents, a framework demon-
strating several techniques that can be used to coordinate
different applications in order to have concurrent multi-user
multi-tasking interaction and still dealing with gesture am-
biguity across multiple applications.

Author Keywords
Concurrent interaction, multi-user,gesture framework, agent-
exclusivity

ACM Classification Keywords

H.5.2 User Interafaces: Input devices and strategies; H.5.3
Group and organization interfaces: Computer-suported co-
operative work; H.5.3 Group and organization interfaces:
Synchronous interaction

INTRODUCTION

Commercial interactive general computer systems designed
for multiple users have been launched before, but now, with
the recent success of products like the Reactable[6] and the
upcoming commercialization of Microsoft’s PixelSense!, we
may anticipate that these types of devices will increase their
ubiquity. The recent undeniable success of mobile comput-
ing devices with multitouch technology could boost this new

"http://www.pixelsense.com/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

TEI 2013, February 10 - 13, 2013, Barcelona, Spain.

Copyright 2013 ACM 978-1-4503-1898-3/13/02....$15.00.

wave of interaction revolution. The Mobile market can also
teach us several strategies in regards to empowering devel-
opers in order to convert multi-user devices into something
useful and convenient.

It has been claimed that this new type of device empow-
ers users in several aspects or abilities, for instance it is
commonly stressed that the use of tangible objects facili-
tates creativity and expression[1] as well as collaboration[4].
Since tables still constitute nowadays one of the more natu-
ral places for collaboration we expect these interfaces to un-
leash the programmer’s creativity and allow them to exploit
the software’s capabilities in order to adopt the necessary in-
teraction paradigms that allow users the most freedom. One
of the key new features allowed by this technology is the ca-
pability of multi-user local concurrent multitasking, mean-
ing that two different people could do two totally unrelated
tasks at the same time and space. This is a general condition
for having rich successful collaboration[7].

We must not artificially limit the capability of multi-user
interaction in these kinds of interfaces, on the contrary we
must support real multitasking, allowing several tasks to be
performed by (probably) multiple people on the same inter-
face. We want to avoid employing a simplistic solution like
having interaction-limiting spaces such as windows; for all
practical purposes this is no better than just having individ-
ual tablet devices, since it utterly limits most of the possi-
ble collaboration. We must then envisage systems that allow
the applications to share the device’s resources, including
the physical interface, in a way that is not limiting for other

apps.

An inspiration could be a table for group work. It is a shared
space where users use tools; some share them while others
do not. There can be several activities done at the same time,
with tools used across them. A post-it note can be used on
a shared map; but also on a private book. A map can be
used for multiple purposes at the same time. In spite of all
these potential concurrent activities, the designer or maker
of the table should probably not explicitly provide support
for any of them, not worrying, for example, whether a tea
cup is compatible with a sheet of paper.

Imagine a Tabletop system were tangible objects and touches
can be both used as input. On this Tabletop there is a mu-
sic generating application like the Reactable that works by
placing objects on the surface, manipulating virtual controls

http://www.pixelsense.com/

and drawing waveforms with fingers on the surface. On this
same Tabletop we also have a typical application for photo
sorting that can detect camera devices on the surface and
displays digital pictures on the table. Both applications po-
tentially use the whole tabletop surface. Imagine then two
people wanting to sort pictures and play music on this same
Tabletop. Our vision is that one user could be grouping pic-
tures using a lasso gesture while another could be changing
the loop of one cube and muting the output of an oscillator
by crossing out the waveform with a finger, without things
interfering with each other. On this concurrent multi-user
multitasking interface, everything can occur at the same time
in the same shared space.

Gesture recognition and disambiguation in a single ap-

plication
An interface or application that allows complex gesture in-

teraction must decide the meaning of every single input event.

When it finds that one same sequence of input events has
several gesture candidates it has to disambiguate them.

This process can be eluded by avoiding ambiguous situa-
tions altogether, for instance by designing the application
to have orthogonal gestures and inputs, which would im-
ply that different gestures don’t share interaction spaces or
sources. TurTan[3] is an example of a tangible tabletop that
uses pucks and touches for its interaction, separating object-
related gestures and touch-related gestures into two totally
unrelated sets of gestures.

Another factor used to limit the possible gesture ambiguities
is context. For instance a given application can accept one
type of gesture at one state and another in another state. The
same can happen amongst areas of interaction: if a button
is only tappable and a canvas is only drawable the applica-
tion can use spatial information to rule out gestures. In this
case we can think of multiplexing the interaction by time or
space[2].

Finally more complex multi-gesture (multi-modal) interac-
tions can be considered that don’t use the limiting strategies
defined above. There are many ways to handle the disam-
biguation process. Typical approaches are machine learning
techniques[14, 17] or custom analytic disambiguation code,
coded ad-hoc or generated by a static analysis of the pos-
sible gestures[11]. Note here that to be able to use these
techniques the programmers must know at coding time all
of the possible gestures that can happen at run-time.

The problem of simultaneous apps in disambiguation
As we envisage a system that allows for applications de-
signed by third party developers, we must assume that ap-
plications developed by different people can be run and used
at the same time. This poses a problem to the traditional
methods of disambiguation as there may be ambiguity be-
tween gestures from different applications, which cannot be
known at coding time.

The simultaneous use of unrelated applications also affects
the context-based mechanisms to reduce ambiguity: multi-

ple contexts from multiple applications have to be taken into
account. Even if each application uses an orthogonal ges-
tures approach, the combination of the two gesture spaces
from two applications can result into ambiguity.

The sharing of space and the freedom of application develop-
ers to define gestures leads to an incompatibility which can
only be corrected by limiting certain aspects of the current
situation:

e We can limit concurrency by avoiding multi-tasking so
only one application can be active at a time. This is mostly
the current situation happening in tablets, and it invali-
dates our aim to allow collaboration via multi-tasking and
multi-user interaction.

e We can limit the freedom of gesture definition by defin-
ing a global set of gestures and target types that apps can
register to and that are recognized by the OS. This elimi-
nates the capacity to create custom gestures, resulting in a
stifling of creativity and lack of complex gestures.

e We can limit the context by forcing all of the gestures to
be defined using a special restricting language created for
the description of user input patterns [11, 15, 10]. This
has the problem of not only restricting the influence of the
application context, but also the potential complexity of
the gestures, as the programmer is unable to describe a
gesture beyond the limitation of this special language.

e We can limit the interaction space used by the applications
by defining areas or windows where the different applica-
tions are confined, but that is exactly the situation that we
want to avoid.

e As a last approach, we can limit the recognizer infrastruc-
ture, imposing some degree of collaboration. This means
forcing programmers to add mechanisms for collabora-
tion across applications in their recognizer’s code. This is
the approach we use, as it is the less limiting for allowing
gesture complexity.

Some existing systems already use this last kind of limita-
tion. There are special cases in mobile device systems where
two applications can share the same interaction space (if we
consider the operating system to be an application). For in-
stance, in the Apple’s iPad?® there are some system gestures
that can be recognized even when running applications. In
these cases the disambiguation technique used could be de-
scribed as disambiguation by cascade: first the system tries
to recognize its gestures, and then the application recog-
nizes its own. This approach, however, is only valid between
apps when we can set priorities between applications (Fo-
cus), something that is justifiable for global system gestures,
but not between different applications as the notion of multi-
user multi-task denies interaction Focus.

In contrast, our approach simply requires developers to code
their recognizers in a way that allows the system to have
information about the context and the input events involved
in the gestures being recognized. The system decides during
the interaction whether a recognizer can or cannot identify

https://www.apple.com/ipad/

https://www.apple.com/ipad/

each input event as part of a gesture. It basically defines a
set of sensible rules that all recognizers must meet, but it
doesn’t force a particular coding style or technique.

In particular we created a framework that:

e Is device-agnostic: e.g. it doesn’t matter if we are using
multi-touch interfaces or depth-perceptive cameras.

e Doesn’t enforce a specific programming technique or li-
brary for gesture recognizing.

o Allows concurrent gestures.
o Allows both discrete and continuous gestures.

e Allows multiple applications to share sensors and inter-
faces without the need of sub-surfaces or windows.

e Frees the developer from knowing the details of any other
gesture that can occur at the same time and device.

e Tries to take into account real time interaction needs.

RELATED WORK

There are other frameworks for gesture recognition in multi-
modal interfaces such as multitouch screens that address the
problem of disambiguation. For a comparison overview we
suggest reading the paper from Kammer [9].

When faced with ambiguous gestures we can find that dif-
ferent frameworks differ on how they handle them. Some
choose which gesture will “win” based on a probabilistic ap-
proach where each possible gesture is assigned a probability
in a given situation, here the system will favor the most likely
one. This probability could be computed using positional in-
formation of the input related to possible targets as well as
completeness of the gesture[16]. Other frameworks rely on a
list of priorities that the developer can define, gestures of low
priority are “blocked” till gestures considered more impor-
tant have already failed, this logic is present in Midas[15],
mt4j[12], Grafiti[13] and in Proton[11] frameworks. Some
frameworks will attempt to take a decision as soon as possi-
ble to reduce lag, others will prioritize certainty and will not
resolve the conflict until there is merely one possible alter-
native left [15].

Proton[11], Midas[15] and GeForMT [10] allow the pro-
grammer to describe gestures in specially crafted languages
that simplify the programming of recognizers. In Proton
a static analysis of possible ambiguities is also performed.
However, none of them have any multi-user support.

Dynamo[5] addresses a related but more specific issue: us-
ing shared surfaces (communal) to share digital data between
several users. It does not, however, deal with gesture disam-
biguation nor third party applications in the shared space.

TDesktop[8] constituted an unpublished first attempt at cre-
ating an operating system based on a tangible tabletop plat-
form. It did address the problem of different applications
in shared interactive spaces by partially restricting the ges-
ture vocabulary and defining virtual sensitive objects called
widgets. Its approach didn’t address ambiguity nor complex
gestures.

BASIC CONCEPTS

Before explaining the mechanisms and inner workings of our
framework, we should introduce and define some basic con-
cepts we will be using: Agent, Gesture and Recognizer.

Agent

An agent is an entity capable of emitting events related to
user input. An example of an Agent could be a sensor in
an input device. The mouse position, for instance, emits up-
dates of its relative movement. We can think of an Agent as
a concept, it is not necessarily a computational object: we
can define Agents at various abstraction levels. It can be
a real user who emits all of the input events, it can be one
single finger of her, or it can be a concrete action done by
one of these fingers (like a Tap event). An Agent creates a
stream of input events and has a beginning (creation/appear-
ance) when it stats the stream, and an ending when it stops
sending events forever.

Gesture

Given an Agent (or various Agents), that is (are) the origin
of a stream of input events, a gesture can be defined by the
coupling of meaning (or function) to a series of input events.
For instance, the events generated by two fingers on a surface
can be interpreted as a Swipe Gesture.

Recognizer

A Gesture Recognizer is a block of software that identifies
gestures from a series of input events. We will often assume
that for every Gesture there is a Gesture Recognizer class
whose instances are dedicated to identifying different pos-
sible gestures in interaction streams coming from Agents.
Take a Tap recognizer as an example, it listens to events from
one Agent finger and tries to recognize the pattern related to
a Tap.

Recognizer-Agent relation

In our framework, Recognizers are related to Agents in two
ways. Firstly, as discussed, recognizers listen into interac-
tion streams generated by agents. In order to explain the
second way, consider this: since a complex gesture can be
defined by a combination of several lower level gestures, its
Recognizer could be simply listening to the events created
by these lower level gestures instead of the original agents.
We can consider that Gestures are also Agents, as they can
create a stream of events over time; so in our framework the
Recognizers have Agents associated to the gestures they
are recognizing. Following our previous example, a double-
Tap Recognizer simply listens to events from Tap Agents
issued by the Tap Recognizer. It tries to recognize the pat-
tern of a double-Tap from Tap events. The double-Tap Rec-
ognizer later creates and manages a double-Tap Agent that
sends double-Tap events to other Recognizers or the Appli-
cation.

ASSUMPTIONS AND RESTRICTIONS

As we explained in the introduction, in order to successfully
disambiguate possible conflicting gestures in a shared inter-
active space, we have to limit some aspects of the system,

either the interaction or the programming techniques. We
will explain our assumptions and limitations below. These
are not simply limitations of the current implementation, but
limitations by design that constitute the bedrock for our whole
system.

Agent exclusivity

The first assumption in this framework for gestures is a very
central one. In fact most of the disambiguation comes from
this Axiom : One input event can only be part of one Ges-
ture. This means that one Agent, at one given time, can only
be assigned (or related) to one Gesture.

One concrete example would be this: one mouse button press
(one input event) can only carry (or be part of) one meaning
(Gesture = Agent—meaning). It may not mean both a click
and a double-click. Things have been this way most of the
time in existing systems like the WIMP, where the concept
of Focus forces every input event to have an obvious target
that identifies its meaning/gesture. For instance, Agents that
have no spatial context, like keystrokes, have a target widget
defined by a Focus point so a single keystroke always goes to
a single target. This restriction seems also reasonable, as it is
difficult to imagine attaching more than one gesture/meaning
to one atomic operation in a given system .

This is, however, a limitation. Systems that are not deter-
ministic or that for artistic purposes want to mix incompat-
ible gesture sets without defining the priorities or policies
required by this restriction, must be built in a different way
and cannot benefit from this framework.

Real Time Restriction

We would like to distinguish two different types of gestures
that exist when we consider the the Real-Time dimension of
interaction: Discrete (or Symbolic) Gestures and Continu-
ous Gestures (also known as Online and Offline gestures[9,
15]) . Discrete gestures are gestures that don’t trigger any re-
action until they are finished[9]. A typical example could be
a hand writing recognition system where the user must finish
the stroke before it is recognized. On the other hand Contin-
uous gestures may trigger reactions while the gesture is still
performed. For instance a pinch gesture can be applied con-
stantly to a map while it is performed. This distinction is
important not only at its implementation level, but also in
a conceptual one: Discrete Gestures don’t acquire meaning
(and don’t change the system state or trigger any kind of
reaction) until they are completed. For instance, in a CLI
(where only discrete Gestures exist) nothing happens until
the Enter key is pressed.

On the other hand, continuous gestures do already convey
meaning before they are completed. This means that at some
point, part of their meaning is defined (typically the Type of
the Gesture) while other parameters can still change, ideally
in real time. In such a case we can call these parameters Con-
trols. Our system must try to support Real Time interaction.
That means:

e Supporting continuous gestures.

Acquire Agent

Acquire Agent
Initial State Evaluation)
Confirm Agents Recognition

do’ Feed own Agent

Fail

Finish

Finished/Failed

Figure 1. Main states of a Recognizer

e Avoiding unnecessary delay due to disambiguation before
control is unblocked on a continuous gesture. This often
implies setting a maximum waiting time on recognizers.
From this we can derive the following rule: Gesture Rec-
ognizers must try to decide whether a stream of input
events can be assigned to a Gesture as soon as possible.

e Sticking to a decision. When a continuous gesture is al-
ready identified and begins its control, switching to identi-
fying this same agent as performing another gesture in the
middle of its action could cause confusion (explicit ex-
ceptions can be defined though using policies). Imagine a
user starting to move a virtual element and suddenly paint-
ing over it with the same gesture because in the middle of
performing the gesture the system decided that painting
was more appropriate than moving.

DESCRIPTION OF THE SYSTEM

The main idea behind our framework is to use an Agent Ex-
clusivity logic to manage a combination of gesture sets that
may be provided by different applications. These gestures
are recognized by Gesture Recognizers implemented by the
application developers and by independent libraries that fol-
low a common set of rules and programming interfaces.

Life cycle of a Recognizer
Each Recognizer instance can transition through 4 main states:

Initial state the Recognizer is waiting for new Agents.

Evaluation state the Recognizer is evaluating a possible ges-
ture which may or may not be recognized.

Recognition state the Recognizer is confident that the events
match its gesture pattern, from now it simply evaluates
them to recognize control parameters.

Failed/finished state the recognizer is no longer active due
to a missrecognition or ending of the gesture.

The key point to understand is that Recognizers can be in a
hypothetical state where they are not sure about the validity
of their recognized gesture. In this state it is safe to abort
the recognition as no information has been sent to its own
Agent. When the gesture is confirmed and it starts sending
information to it it is not possible to abort, the changes are
final. By doing this it ensures the Real Time restriction of
sticking to a decision.

A recognizer starts in the initial state, and it subscribes to
the Agent types it is “interested” in. At this moment the
Recognizer does not have any information about the gesture

it will be recognizing. When a new Agent appears, the rec-
ognizer can declare its interest in it by acquiring it. When a
Recognizer acquires an Agent, the Agent simply adds it to
a list of recognizers that are processing its events. This in-
formation is later used to enforce the Agent Exclusivity rule.
When the Recognizer acquires an Agent, it creates its own
Agent (which represents the gesture being recognized) and
it transitions to the evaluation state. In it, the recognizer pro-
cesses the input Agent events and evaluates whether they fit
into its gesture pattern. As early as the Recognizer notices
that these events don’t match the expected gesture pattern,
it fails. Also, as early as the Recognizer notices that the
events definitively do match the expected gesture pattern,
it confirms the Agents already acquired. When confirming
the Agents, these take a decision about whether the Recog-
nizer can have their exclusivity. This decision will depend on
the presence of other Recognizers acquiring and confirming
those Agents (the actual logic behind this is explained in the
Policies section). If any of the Agents confirmed considers
that the Recognizer can’t have its exclusivity , it will make
the Recognizer fail. Otherwise the Recognizer will move on
to the Recognition state. In Recognition state the Recognizer
receives the events from the confirmed input Agents and
feeds events into its own agent. Whenever the Recognizer
detects that the gesture is completed, it can finish. When a
Recognizer fails or finishes, it is erased from their acquired
Agents lists allowing other Recognizers to use them.

Explaining this through a simple example, a Tap Recognizer
subscribes to the Touch Agent type to receive events about
new Touch Agents. When a new Touch Agent is instanced,
it acquires it, and subscribes to its events. The recognizer
is now in the evaluation state. If the touch moves too far
away from its starting position or time exceeds a limit then
the agent does not match the gesture pattern of a Tap, so the
Recognizer fails. When the touch finishes, our Recognizer
confirms the touch Agent, as it is sure that the sequence of
events is representing a tap. Then it enters the recognition
state. Now it sends the touch event through its own Agent.
As the tap has already been finalized, the recognizer shall
finish.

Effects on Recognizer composition

Recognizers have associated Agents that represent the ges-
tures being recognized. These can be used by higher-level
Recognizers as input Agents, as we have seen with tap and
double-tap Recognizers. When an Agent related to a Sensor
(and not to a Recognizer) appears, the registered Recogniz-
ers acquire them and create their own Agents. The Recog-
nizers subscribed to this second group of agents will then ac-
quire them and create their own Agents in turn. This pattern
can be repeated indefinitely to create a whole tree of Recog-
nizers. As the original Agent keeps sending events, Recog-
nizers start to match these to their gesture patterns and some
will start to fail. Eventually only one branch of the origi-
nal tree will remain active, only then can we consider this
gesture successfully disambiguated.

Competition for Agent Exclusivity

When more than one Recognizer is interested in an Agent
at a given time, they will both all acquire it. While they
are in an evaluation state it is perfectly sensible for all of
them to exist: they represent the several possible gestures
that may be interpreted out of what this particular Agent has
done so far. At some point a recognizer may try to confirm
this Agent. It will then wait for the Agent to give it its Ex-
clusivity. Typically, once all other Recognizers that acquired
this Agent fail, the one that confirmed it gets its exclusivity,
as it is left without any competitors. If while this first Rec-
ognizer is waiting for the Agent’s exclusivity, another Rec-
ognizer confirms the Agent as well, the Agent is responsible
of deciding if this new Recognizer replaces the previous as
a candidate to be completed. The losing one in this competi-
tion is forced to fail. At the end all the Recognizers shall be
failed by gesture mismatch or replaced in the candidacy for
the exclusivity, and only one can be left. Then it is this one
that obtains the exclusivity of the Agent.

Recognizer instances as Hypothesis

The previous mechanism is useful not only to disambiguate
between different types of gestures (swipe gesture vs tap
gestures), but also to disambiguate between different possi-
ble gestures of the same type (double tap gesture 1 vs double
tap gesture 2).

Allowing concurrent multi-gesture interaction allows for hav-
ing the same gesture performed in two places at the same
time, which can bring difficulties. A hypothetical Recog-
nizer that takes into account more than one of these gestures
as input Agents must face the decision of whether a new
Agent is part of the tracked gesture or not and acquire it in
consequence. This can be problematic as the type of the
new Agent may not be know it a priori. Imagine a double-
tap Recognizer that has already recognized the first of its
taps and is waiting for a second one, consider that before the
second tap is performed another user performs a single tap
somewhere else on the table as part of a completely unre-
lated action. In this case our double-tap Recognizer would
fail after realizing this new tap is too far away to match its
gesture pattern and that would be the end of it, even though
the first user might have been just about to perform a second
tap.

We can use the technique of competition for Agent Exclu-
sivity to solve this type of problems. This can be done by
creating a duplicate of the Recognizer instance before taking
the decision of considering the new agent as part of the ges-
ture or not. Both decisions are then evaluated, one on each
instance. Eventually these two instances must compete for
the exclusivity of Agents as any other pair of Recognizers.
At some point the instance that took the wrong decision will
fail and let the good instance win. We consider every Rec-
ognizer instance as a gesture hypothesis; every irreversible
decision made generates a new hypothesis.

On our double-tap Recognizer example, when the new tap
is detected a duplicate of the Recognizer will be created and
only one of them will take this new agent into consideration
while the other will wait for other taps. When the position of

the new tap is evaluated and identified as being too far away
from the first, only one of the Recognizers shall fail.

As in this case the competition is not between two unrelated
recognizers programmed by potentially different people, but
between two instances of the same Recognizer the program-
mer can preview the obvious conflicts between the multiple
instances generated by this method. For this reason an in-
stance can ask the acquired Agent to force-fail all of the
competing instances of its same type when it is sure that they
are wrong.

This technique can also allow for a simple factory-like strat-
egy for the use of Recognizers. At the beginning one in-
stance of every Recognizer is created, this instance is in its
initial state. As any time a new Agent is introduced we cre-
ate a new hypothesis-instance, there will always be one (and
only one) Recognizer instance in the initial state, ready for
new Agents to be tracked while all other instances are cou-
pled with existing Agents. It is important to mention that
none of the Agents associated to Recognizers are duplicated
when the presence of a new input creates a new hypothesis:
An agent is not fed with events until the Recognizer con-
firmed its source Agents, and this does not happen until only
one instance is left.

Life cycle of Agent

We already described the two main events in the life-cycle of
an Agent: its beginning and its end. Let’s take the example
of a finger touch: the beginning of this Agent would be when
the finger contacts the surface and is detected by the sensors
and its end would be when the finger is removed from the
surface and is no longer detected by the sensors.

But there are other milestones in the life-cycle of an Agent,
mainly related to its relation to Recognizers. Recognizers
can acquire, confirm and finally dismiss (upon failing) Agents.
Those actions are handled internally in the Agent:

Acquiring an Agent The Agent has a list of Recognizers
that have acquired it. When a Recognizer acquires the
Agent, the Agent simply adds it to this list.

Confirming an Agent When this happens the Agent simply
removes the Recognizer from the Acquired list and puts it
to a special slot for its candidate for exclusivity. If the
slot is not empty, the agent decides (via Policies) whether
or not the new candidate can replace the old one, and the
loser is forced to fail. At any time as from then, if the
Agent (via Policies) decides that the candidate can have
its exclusivity it may grant it to the recognizer.

Dismissing an Agent This happens when a Recognizer that
acquired an Agent fails or finishes. If the Recognizer was
in the acquired lists or in the candidate slot then it is re-
moved from them. If it was given the Agent’s exclusivity,
it means that the gesture is finished. In some cases the
Agent may still exist after this and other recognizers may
be interested in it. Suppose for instance that a finger has
drawn a circle, completing one of the existing gestures,
but that it has not yet been lifted off the table. It is then

treated as a new Agent but, to distinguish it from a fresh
one, it is flagged as recycled. This way gestures may in-
quire if a new Agent is new or recycled, and discriminate.
Most Recognizers will only be interested in fresh Agents.

Policies

Although the decision of accepting one Recognizer in fa-
vor of another when competing for exclusivity candidacy is
taken inside the Agent, the actual policies are not there. In
our system the Agent polls an ordered list of policy functions
that either take an informed decision or delegate it to the next
policy. Those policies can be defined anywhere in the code,
at library level, gesture library level, custom gesture level or
application level.

A simple example of this kind of policy could be “_accept_if_none”

that states a preference for the new Recognizer in the candi-
dacy if the slot is empty:

def _accept_if_none(current_recognizer ,
new_recognizer):
if current_recognizer == None:
return True #Accept the change

More advanced policies can include complex metrics related
to the recognizers (like “Recognizers with more acquired
Agents win”) or simple comparisons between Recognizer
types (as “Recognizer zoom always beats Recognizer move”).

The sorting in the list of policies is done with a precedence
index provided when registering the policy.

Decisions requiring policies
Decisions to be taken by Agents can be defined by using two
sets of policies: completion_policy and compatibility policy.

Completion_policy is consulted when confirming an Agent.
It decides whether the new candidate Recognizer to exclu-
sivity can replace the old one in the special slot. We have
already seen examples of that kind of policy.

The other set of policies, compatibility_policy, is used to de-
cide whether a Recognizer can be given the exclusivity of
one Agent while another one is still acquiring it. It may
sound strange as it seems that here we are breaking our ex-
clusivity rule, but in fact we are only affecting the disam-
biguation mechanism as we still only allow one Recognizer
to use the events from this gesture. What we are in fact al-
lowing is latent Recognizers taking over other Recognizers
still in the recognizing state, as when the latent Recognizer
which has acquired the Agent confirms it, it may replace the
original one, forcing it to fail.

As an example we can take the translate gesture and the
zoom-rotate gesture in a map browsing application: every
zoom-rotate gesture may start with exactly the same sequence
as the translate one. We know that it is OK that when a
zoom-rotate recognizer is sure about the gesture, the trans-
late one must fail. In this case we can create a policy stating
that a zoom-rotate recognizer may be latently acquiring an
Agent that is exclusively owned by the translate one:

def zoom_over_move(rl ,r2):
if type(rl) == RecognizerMove and
type(r2) == RecognizerZoomRotate:
return True

This kind of decentralization of this sort of decisions gives
us a very large space for customization and flexibility of the
system at any level: we can think of adding policies that
favor Recognizers from one application over another based
on the distance to an application token or any other arbitrary
metric or we can add support to user identification and try
to take precedence to recognizers with agents from the same
user, all of that without actually changing the system’s code.

Context polling

We mentioned before that context could be used for disam-
biguation. Instead of forcing the application to declare inter-
action areas or to manually activate and deactivate gestures
at certain moments, we use a simple technique that can be
called context polling.

Every time a gesture to which an application is subscribed
issues a new Agent, the application is asked whether it is in-
terested in it. At this moment the agent only has some initial
information, but nothing forbids the Recognizer from asking
again at any time when it has more complete data. When
asked, the application can dismiss the Agent, and then the
Recognizer shall fail. As this is done recursively, all the
intermediate recognizers over which this final gesture was
edified fail as well, there must always be an application in-
terested in the final product.

An example of the benefits of this technique can be explained
with a Tap and a double Tap: in contexts (areas, states...)
where only a Tap is possible, the system does not have to
wait until the double Tap fails in order to report the Tap; in
this way the Tap is recognized faster.

An advantage of using context in this way, instead of directly
coding it into the system, is that it makes the system much
more flexible and independent, allowing multiple possible
application management schemes: we allow using areas to
delimit apps or widgets, but don’t enforce doing it, as the
system is agnostic. It also places the code for context eval-
uation where the context actually is: in the application code
and not into an intermediate layer, were we should foresee
all the possible aspects to take into consideration.

Link with the application

The application cannot directly subscribe to events from Agents.

In order to enter into the competition for agent exclusivity it
would need to acquire and confirm gestures, which it can-
not do because it is not a Recognizer. The application needs
a way to indirectly subscribe to the related Agents, which
is done via a Fake Agent created by a special Recognizer
named AppRecognizer that simply accepts any kind of in-
put. It provides the missing piece in order for an application
to enter the Recognizer competition. It also offers a special
Agent type that mimics the original Agent but does not need
to be acquired nor confirmed.

If we observe the full development of the Agent-Recognizer
tree from the sensors to the application, we will always find
an AppRecognizer just before reaching the application. Then
the application only has to comply with the context polling
mechanism, but not with the specific mechanics of the Rec-
ognizer/Agent relationship.

IMPLEMENTATION

A reference implementation has been done in order to evalu-
ate the approach and to find all possible problems and corner
cases. It has been programmed in Python for its ease for pro-
totyping. The implementation comes with two examples to
show how to use the framework: a painting application and
a map browsing.

Three modules are provided: core system, 2D TUIO gesture
basic library and tangible tabletop pygame based application
environment. Only the first module is described in this pa-
per, as the other two are just accessory to test the potentiality
of the framework.

The code can be fount in the following repository: https:
//bitbucket.org/chaosct/gesture—-agents

TESTS AND VALIDATION

In order to test the implementation of the framework we pro-
gramed an application over it to run on a Reactable Experi-
ence tabletop® and put it to the stress of multi-user condi-
tions. Validating the framework under the stress of multiple
simultaneous applications is still a pending item. In this sim-
ple application a point is awarded whenever a gesture is per-
formed and recognized, users need to collect as many points
as possible within a constrained time period. The gestures
used include a Tap, Double Tap, Tap Tempo (4 taps) and a
variety of waveforms with different shapes and orientations.
The score system is an incentive for users to perform the
gestures and the time constraint is an incentive for these ges-
tures to be performed fast and in an overlapping fashion. As
aresult we expect to have concurrent gestures occurring. We
performed experiments on it doing repeated measures over
a single group of subjects, users worked both alone and in
pairs. We have analyzed application’s event logs measuring
the rate of concurrent interaction (C'I) defined as:

gestures

CIl = Z duration(i)/InteractionTime

3

where InteractionTime is the total time on where there is
at least one gesture being performed.

We have found that the multi-user condition had a 11% higher
concurrency ratio than the single user condition with a sig-
nificance of .037, this implies that there was a meaningful
difference in CI between conditions. We then conducted a
questionnaire about the user’s perception of how well the
gestures were being identified but found no significant dif-
ference in answers between condiditons, implying that the

Shttp://www.reactable.com/products/
reactable_experience/

https://bitbucket.org/chaosct/gesture-agents
https://bitbucket.org/chaosct/gesture-agents
http://www.reactable.com/products/reactable_experience/
http://www.reactable.com/products/reactable_experience/

framework performed just as well on the high CI condition
as on the low CI one.

DISCUSSION

This framework must not be understood as a final solution
to the problems that it addresses, but as a starting point for
the development of a truly complete and standardized solu-
tion of the problem of concurrent multi-user multi-tasking
interaction in shared spaces with third-party tools and ap-
plications. In that sense, the framework is intentionally left
open in many ways, as the question of gesture priority and
compatibility can be defined and tested easily in order to find
the best solution in different situations.

The performed tests show that our framework can be a vi-
able solution to the concurrent multi-user gesture recogni-
tion problem. Still, some issues require further work:

e Accessory agents: sometimes an agent can be related to a
gesture, but only as a reference. For instance while doing
a circle around a puck, the figure can be accessory but
not core to the gesture, therefore it will not be governed
by the rule of gesture exclusivity and can be shared by
several gestures at the same time: imagine that a gesture
that links two objects is performed at the same time as the
object-circling gesture referenced above. Both gestures
can have a single object as a reference point and yet not be
exclusive to each other. How to solve this kind of gesture
conflicts is an open question.

e As the framework has no standard set of gestures and
the applications don’t receive events until the disambigua-
tion is complete, it is unclear how to implement tempo-
rary feedback to the user while a gesture is still not de-
fined. Several approaches are possible, but we must find
the most flexible one. As the application is responsible
for the feedback yet the information about the hypothet-
ical gesture is only in the recognizer (and potentially du-
plicated across hypotheses in several recognizers) we can
envisage an additional entity that encapsulates this infor-
mation and bridges it to the application until a single ges-
ture can be clearly identified and executed.

CONCLUSION

In the coming years we will see a proliferation of technolo-
gies that can empower people to collaborate in rich shared
interactive experiences. If we want to fully develop this po-
tentiality we must allow developers to create tools that can
be used in combination with other third-party software, so
we can allow concurrent multitasking.

We believe that an Agent-exclusivity approach is a possible
solution to this problem and can be the core of a more com-
plete standard framework for the next generation of shared
interfaces.

REFERENCES
1. A. Catala, J. Jaen, B. van Dijk, and S. Jorda. Exploring
tabletops as an effective tool to foster creativity traits.
In TEI ’12, page 143, New York, New York, USA, Feb.
2012. ACM Press.

11.

12.

13.

14.

16.

17.

G. Fitzmaurice, H. Ishii, and W. A. S. Buxton. Bricks:
laying the foundations for graspable user interfaces. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 442-449. ACM
Press/Addison-Wesley Publishing Co., 1995.

. D. Gallardo, C. F. Julia, and S. Jorda. TurTan: A

tangible programming language for creative
exploration. In TABLETOP 2008, pages 89-92, 2008.

. E. Hornecker. Getting a grip on tangible interaction: a

framework on physical space and social interaction.
Proceedings of the SIGCHI conference on Human,
2006.

. S. Izadi, H. Brignull, and T. Rodden. Dynamo: a public

interactive surface supporting the cooperative sharing
and exchange of media. In UIST 03, pages 159-168,
2003.

. S. Jorda, G. Geiger, M. Alonso, and M. Kaltenbrunner.

The reacTable: exploring the synergy between live
music performance and tabletop tangible interfaces. In
TEI’07, pages 139-146. ACM, 2007.

. S.Jorda, C. F. Julia, and D. Gallardo. Interactive

surfaces and tangibles. XRDS, 16(4):21-28, 2010.

. C.F Julia and D. Gallardo. TDesktop : Disseny i

implementacidé d’un sistema grafic tangible, 2007.

. D. Kammer, M. Keck, G. Freitag, and M. Wacker.

Taxonomy and Overview of Multi-touch Frameworks:
Architecture, Scope and Features. Patterns for
Multi-Touch, 2010.

. D. Kammer, J. Wojdziak, M. Keck, R. Groh, and

S. Taranko. Towards a formalization of multi-touch
gestures. ITS 10, page 49, 2010.

K. Kin, B. Hartmann, T. DeRose, and M. Agrawala.
Proton: Multitouch Gestures as Regular Expressions. In
CHI 2012, 2012.

U. Laufs, C. Ruff, and J. Zibuschka. MT4;j - Multitouch
For Java.

A. D. Nardi. Grafiti-Gesture Recognition mAnagement
Framework for Interactive Tabletop Interfaces, 2008.

T. Schlomer, B. Poppinga, N. Henze, and S. Boll.
Gesture recognition with a Wii controller. TEI "08,
page 11, 2008.

. C. Scholliers and L. Hoste. Midas: a declarative

multi-touch interaction framework. In TEI "11, 2011.

J. Schwarz and S. Hudson. A framework for robust and
flexible handling of inputs with uncertainty. UIST 10,
2010.

J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures
without libraries, toolkits or training: a $1 recognizer
for user interface prototypes. In UIST ’07, page 159,
New York, New York, USA, Oct. 2007. ACM Press.

	Introduction
	Gesture recognition and disambiguation in a single application
	The problem of simultaneous apps in disambiguation

	Related work
	Basic concepts
	Agent
	Gesture
	Recognizer
	Recognizer-Agent relation

	Assumptions and Restrictions
	Agent exclusivity
	Real Time Restriction

	Description of the system
	Life cycle of a Recognizer
	Effects on Recognizer composition
	Competition for Agent Exclusivity
	Recognizer instances as Hypothesis

	Life cycle of Agent
	Policies
	Decisions requiring policies

	Context polling
	Link with the application

	Implementation
	Tests and validation
	Discussion
	Conclusion
	REFERENCES

