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1 OUTLINE OF THE TUTORIAL CONTENT

Even though there is a rapidly growing corpus of available
music recordings, there is still a lack of audio content-
based retrieval systems allowing to explore large music
collections without manually generated annotations. In
this context, the query-by-example paradigm is common-
place: given an audio recording or a fragment of it (used as
queryor example), the task is to automatically retrieve all
documents from a given music collection containing parts
or aspects that are similar to it. Here, the notion of simi-
larity used to compare different audio recordings (or frag-
ments) is of crucial importance, and largely depends on
the application in mind as well as the user requirements.

In this tutorial, we present and discuss various content-
based retrieval tasks based on the query-by-example
paradigm. More specifically, we consider audio identi-
fication, audio matching, version (or cover song) identi-
fication and category-based retrieval. A first goal of this
tutorial is to give an overview of the state-of-the-art tech-
niques used for the various tasks. However, a further goal
is to introduce a taxonomy that allows for a better un-
derstanding of the similarities, and the sometimes sub-
tle differences, between such different retrieval scenar-
ios. In particular, we elaborate on the differences between
fragment-level and document-level retrieval, as well as
on various match specificity levels found in the music
search/match process.

1. Audio identification. In content-based retrieval, var-
ious levels of specificity can be considered. At the
highest specificity level, the retrieval task consists
in identifying a particular audio recording within a
given music collection using a relatively small au-
dio fragment as query [1, 4, 5, 18, 13, 36]. This task,
which also aims at temporally locating the query
fragments within the identified recording, is often
referred to asaudio identificationor audio finger-
printing. In the last years, a number of applications
for audio identification have become of commercial
interest, including broadcast monitoring, automatic
organization of music collections, filtering of copy-
righted material or tune identification. Even though
recent algorithms show a significant degree of ro-

bustness towards noise, MP3 compression artifacts
and uniform temporal distortions, the notion of sim-
ilarity used in the scenario of audio identification is
rather close to the identity. This way, audio identi-
fication can be seen as anexact-duplicate detection
task.

In this part of the tutorial, we explain the most
important requirements of audio identification sys-
tems, including robustness, reliability, granularity,
scalability, and efficiency. We then explain the main
ideas behind classical audio fingerprinting tech-
niques. In particular, we look at the audio de-
scriptors of two widely used fingerprinting tech-
niques. Firstly, we explain the fingerprints proposed
by Wang [36], which are based on “constellations”
of spectral peaks. Secondly, we discuss the fin-
gerprints introduced by Haitsma and Kalker [13],
which are referred to as fingerprint blocks, and con-
sist of short sequences of frame-based bit vectors.
Finally, we also overview the indexing and hashing
techniques used in these two fingerprinting systems.

2. Audio matching. While the problem of audio iden-
tification can be regarded as largely solved even
for large scale music collections, semantically more
advanced retrieval tasks are still mostly unsolved.
Indeed, existing algorithms for audio identification
cannot deal with strong non-linear temporal distor-
tions or with other musically motivated variations
that concern, for example, the articulation or the in-
strumentation. The task ofaudio matchingcan be
seen as an extension of audio identification. Here,
given a short query (i.e. an audio fragment), the
goal is to automatically retrieve all fragments that
musically correspond to the query from all docu-
ments within a given collection (e.g. audio record-
ings, video clips), see [17, 22]. For related prob-
lems, which also concern matching across different
music representations, see also [10, 14, 24, 32]. In
the audio matching scenario, and opposed to the au-
dio identification scenario, one particularly admits
semantically motivated variations as they typically
occur in different performances and arrangements



of a musical piece. For example, two performances
may exhibit significant global and (non-linear) lo-
cal differences in tempo, articulation and phras-
ing. Such local tempo differences are, for exam-
ple, the result of variations in executing ritardandi,
accelerandi, fermatas, or ornamentations. Addition-
ally, one has to deal with considerable deviations in
dynamics and timbre, which are the results of dif-
ferences in instrumentation, loudness, tone color,
accentuation and so on.

In the second part of the tutorial, we highlight the
difference between the audio identification and au-
dio matching task by presenting a number of suit-
able audio examples from the classical and popu-
lar music domain. To cope with the abovemen-
tioned variations in timbre and instrumentation,
most matching procedures rely on chroma-based
audio features [2, 11, 20]. We explain various vari-
ants of these features, while emphasizing the im-
portance of the feature design step. Furthermore,
to account for global and local tempo distortions,
one typically resorts to alignment procedures. In
particular, we discuss a subsequence variant of dy-
namic time warping, which allows for deriving a
matching curve [20]. Such a curve not only indi-
cates the desired matches, but also turns out to be a
powerful tool for expressing the matching capabil-
ity of various feature representations [21]. Finally,
we indicate how the matching procedure may be ex-
tended using indexing methods to scale to medium
size datasets [17].

3. Version identification. Audio identification and audio
matching are instances offragment-levelretrieval
scenarios, where the goal is to retrieve all musically
related fragments contained in the documents of a
given music collection. In contrast, indocument-
levelretrieval, a single similarity measure is consid-
ered to globally compare entire documents. One re-
cently studied instance of document-level retrieval
is referred to as cover song or, more properly,ver-
sion identification, where the goal is to identify the
different versions of the same musical piece that
are present in a collection [6, 8, 28, 29]. There-
fore, in the version identification scenario, we are
dealing with anear-duplicate detectiontask. As in
the audio matching scenario, a version may differ
from the original recording in many ways, possi-
bly including changes in timbre, instrumentation,
tempo, main tonality, harmony, melody and lyrics.
However, in the version identification scenario, the
differences can be extreme: a version may repre-
sent a different genre, it may be performed live and
adapted to a particular singer, or it may be a remix
or cover song with a different musical structure.

In the third part of our tutorial, we give a detailed
overview of the version identification problem. In
particular, we critically discuss different aspects of

the methods for identifying versions of the same
piece [3, 8, 19, 28, 29, 33]. These methods usually
combine the extraction of the temporal evolution of
the tonal information, together with blocks that deal
with changes in the tempo, the key or the structure
of the recording [28]. After this basic overview, we
drive our attention towards an example of an ac-
curate version identification algorithm [30] and to-
wards different pre- and post-processing techniques
that are suitable for the task of version identification
[9, 26, 31].

4. Category-based music retrieval.Finally, consider-
ing even less specific matches between entire mu-
sic documents, there are a number of document-
level retrieval tasks which we group under the term
category-based retrieval. This term encompasses
retrieval of documents whose relationship can be
described by cultural or musicological categories
[7]. Some categories which have been the subject
of substantial research efforts are genre [27, 35],
rhythm styles [12] or mood or emotions [15, 16,
34]. Music recommendation or general music sim-
ilarity assessments [23, 25] can be seen as further
document-level retrieval tasks with even less speci-
ficity.

In the final part of this tutorial, we give a
brief overview of these general document-level re-
trieval scenarios, where the notion of similarity
is weaker and sometimes fuzzy. We discuss the
general pipelines used in category-based retrieval,
which consist of extracting several audio content-
based descriptions and in applying a classification
scheme. Such descriptions are usually global rep-
resentations of the musical piece reflecting one or
several music characteristics that are, on average,
present through the whole recording. The classi-
fication scheme usually starts by automatically se-
lecting the descriptions that are best suited to the
task at hand and then training a classifier to identify
such categories.

It is the goal of our tutorial to give an overview of the
various audio retrieval tasks, to explain the commonalities
of and differences between these tasks and to explain the
main techniques used in state-of-the-art approaches. We
want to emphasize that in the abovementioned problems
one has to deal with a trade-off between efficiency and
specificity. The more specific the search task is, the more
efficient it can be solved using indexing techniques. In the
presence of significant spectral and temporal variations,
the feature extraction as well as the matching steps be-
come more delicate and cost-intensive (e.g. local warping
and alignment procedures). Here, the scalability to very
large data collections consisting of millions of documents
still poses many yet unsolved problems.



2 INTENDED AND EXPECTED AUDIENCE

In this tutorial, we cover basic principles as well as state-
of-the-art techniques for audio content-based music re-
trieval in a non-technical way. Our main goal is to give
a comprehensive overview of the different music retrieval
tasks while introducing some taxonomy that allows for a
better understanding of the commonalities and differences
between these tasks. By providing many illustrative au-
dio examples and by working with pictures (rather than
with formulas), we will make an effort to convey the main
ideas, in particular to non-experts and to researchers who
are new to the field. By doing so, the tutorial appeals to
a wide and interdisciplinary audience working in different
fields ranging from musicology and music perception to
information retrieval and signal processing. Furthermore,
we will provide handouts of our slides that will also con-
tain pointers to the most relevant literature for the various
retrieval tasks.
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4 SPECIAL REQUIREMENTS

No special requirements are needed besides the usual
equipment (beamer, internet connection and loudspeakers
connectable to a standard laptop). However, we need to
havestereo, where the volume of the two channels is ad-
justable separately.
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