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Drum tracks of electronic dance music pieces are a central and style-defining element. Yet,
creating them can be a cumbersome task, mostly due to lack of appropriate tools and input
devices. In this work we use a UI prototype that aims at supporting musicians to compose the
rhythmic patterns for drum tracks, to compare different algorithms for drum pattern variation.
Starting with a basic pattern (seed pattern), which is provided by the user, a list of variations
with varying degrees of similarity to the seed pattern is generated. The variations are created
using one of the three algorithms compared: (i) a similarity-based lookup method using a
rhythm pattern database, (ii) a generative approach based on a stochastic neural network, and
(iii) a genetic algorithm using similarity measures as a target function. The interface visualizes
the patterns and provides an intuitive way to browse through them. User test sessions with
experts in electronic music production were conducted to evaluate aspects of the prototype and
algorithms. Additionally a web-based survey was performed to assess perceptual properties of
the variations in comparison to baseline patterns created by a human expert. The web survey
shows that the algorithms produce musical and interesting variations and that the different
algorithms have their strengths in different areas. These findings are further supported by the
results of the expert interviews.

0 INTRODUCTION

Nowadays, more than ever before, digital tools for music
production play an important role in the workflow of music
producers. Such tools cover applications like digital audio
workstations (DAW), integrated hardware/software solu-
tions like grooveboxes, and software tools and plugins like
synthesizers and audio effects. In the GiantSteps project,
we focus on simplifying the workflow of music producers
by developing intelligent agents for the usage in electronic
dance music (EDM) production and performance.1

Usually, drum tracks are built by arranging rhythm pat-
terns from a pattern library or by creating patterns manually.
Using predefined patterns bears the risk of sounding unorig-
inal, while creating them manually is a time-consuming task
and requires more musical knowledge. Entering rhythm pat-
terns in a DAW is typically done using a mouse or MIDI
controllers (keyboards and drum pads) to set notes in a pi-
ano roll or similar editor. Step-sequencer-like interfaces are

1 http://www.giantsteps-project.eu/

usually a feature of grooveboxes and drum machines and
are found in many setups for live performances.

The aim of this work is to build a tool that supports mu-
sicians in an intuitive way at creating variations or finding
inspiration for new drum rhythm patterns. Maintaining the
basic style, or rhythmical idea, while providing meaning-
ful and interesting—maybe even surprising—variations is
a main goal.

When it comes to samplers and synthesizers for drums
in EDM, a wide variety of commercial products as well as
a lively research community exist. However, there are few
works on automated drum rhythm variation and creation.

1 RELATED WORK

Some commercial products in the field of music produc-
tion include tools that attempt to automate the creation of
a drum track. In Apple’s Logic Pro software,2 the user can

2 http://www.apple.com/logic-pro/
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Fig. 1 Screenshot of the prototype. The 4-by-16 step sequencer array acts as visualization and input for the drum rhythm patterns.
Beneath the array are controls for playback, the pattern variation control, buttons for algorithm selection, and controls for tempo and
swing (all also controllable through a hardware interface).

create a Drummer track that contains basic drum patterns
that can be changed via an interactive GUI. After choos-
ing a genre-specific drummer (e.g., Rock) and drum kit,
the style of the drum track can be varied by moving in a
two-dimensional panel that represents the dimensions soft-
loud and simple-complex. Steinberg’s Groove Agent3 is a
drum plugin that comes with a big selection of drum kits
and loops that can be arranged to a full drum track in a
DAW project. It includes a mode for performance (Style
Player), in which the user can choose different styles of
patterns based on intensity and complexity. An interesting
feature is the automatic mode that varies the complexity of
patterns on the fly. EZ Drummer by Toontrack4 provides a
large library of drum patterns together with the option for
searching matching patterns based on a seed pattern that
the user can record. Since these products are mainly po-
sitioned for the production of rock and alternative music,
they are only to a certain degree applicable for EDM. Fur-
thermore, professional producers often refrain from using
out-of-the-box patterns for fear of sounding unoriginal.

The scientific community mainly focuses on methods
and algorithms providing the underlying functionality. Of
special interest is the question how the human perception of
rhythm, especially the notion of similarity, can be modeled.
Toussaint [20] introduces and compares several measures
for the similarity of two rhythmic patterns. Among them are
the Hamming distance, edit distance, Euclidean distance of
inter-onset-interval vectors, and the interval-ratio-distance.
To gain insight into similarity of the patterns, phylogenetic
trees are built based on the computed distance matrices—a
bioinformatics technique that is originally used to visu-
alize the relationship of DNA sequences. In the work of
Kaliakatsos-Papakostas et al. [9] an automatic drum rhythm
generation tool based on genetic algorithms is described. It

3 http://www.steinberg.net/en/products/vst/groove agent/
4 https://www.toontrack.com/product/ezdrummer-2/

generates variations of a base rhythm and allows the user
to set parameters of the generation process such as diver-
gence between the base rhythm and the generated ones. Ó
Nuanáin et al. [12] use a similar approach for rhythm pat-
tern variation using genetic algorithms. Sioros and Guedes
[15] introduce a system that recombines MIDI drum loops
in realtime based on a measure for complexity of rhythmic
patterns. The complexity is measured by means of synco-
pation and density. A more detailed discussion of different
approaches for measuring syncopation in the same con-
text is presented in [16]. Apart from approaches that com-
pute similarity between rhythmic patterns on a symbolic
representation, there exist methods that consider other as-
pects of rhythmic similarity. Holzapfel and Stylianou [7]
use the scale transform to develop a tempo invariant rhyth-
mic similarity measure for music. Jensen et al. [8] as well
as Gruhne and Dittmar [5] use logarithmic autocorrelation
functions calculated on different forms of onset density
functions to obtain tempo invariant rhythmic features. Other
works investigate properties of swing and try to quantify the
swing-ratios of rhythmic patterns in audio recordings, e.g.,
[3, 11].

Given training data, machine learning methods can
be used to train generative models for rhythm patterns.
Paiement et al. [13] introduce a probabilistic model for rel-
ative distances between rhythms, which is applied to sub-
sequences of patterns. This is in turn used to predict the
continuation of a rhythmic pattern given its past, utilizing
a hidden Markov model (HMM). Another group of widely
used generative models are restricted Boltzmann machines
(RBM) [6]. Boulanger-Lewandowski et al. [2] use an ex-
tension of RBMs with recurrent connections to model and
generate polyphonic music. Battenberg and Wessel [1] use
another variant, the conditional RBM, to analyze drum pat-
terns for their meter. They mention the capability of the
learned model to generate drum patterns similar to the
training data given a seed pattern. This idea was further
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developed in the work by Vogl and Knees [21] to build a
drum rhythm variation tool based on an RBM and a step
sequencer interface. In this work, this prototype is further
extended by incorporating and extensively comparing two
more variation algorithms.

2 PATTERN VARIATION USER INTERFACE

To be able to compare and evaluate different algorithms,
we extended the interface prototype presented in [21] to
accommodate three variation methods that can be selected
via the UI. Fig. 1 shows the UI of the prototype.

It resembles a standard drum step sequencer, provid-
ing four instruments (bass-drum, snare, open, and closed
hi-hat) programmed within one 4/4 measure bar of 16th
notes. This type of interface was chosen since it represents
one of the prevalent interfaces for drum track creation in
EDM. In this context, we focus solely on the variation of
the plain symbolic rhythm patterns. Hence, we deliberately
decouple the pattern from aspects of accentuation, micro
timing, and swing, which are considered independent di-
mensions and should remain under the control of the artist.
For controlling tempo and swing, the presented UI exhibits
respective knobs. The latter allows the user to set an ad-
ditional swing ratio that shifts either 8th or 16th notes to
create a “swing feel.” These parameters enable the users
to recreate a rhythmic style they usually work with, while
keeping the UI complexity at the necessary minimum.

A central UI element is the variation browsing knob and
the controls to set and reset the pattern for which the varia-
tions should be created. After pressing the “variation” but-
ton, the selected algorithm generates variations. These vari-
ations are ordered ascending regarding the number of active
notes. By turning the variation knob to the left, the varia-
tions will become more sparse; when turning the knob to
the right the variations will become more dense. By press-
ing the reset button, the variation knob jumps back to the
seed pattern. Above the variation knob are buttons to select
one of the three variation algorithms. The assignment is
randomized after every start of the prototype to avoid any
bias introduced by the order. The output of the interface is
sent via MIDI. All UI elements can be controlled via MIDI,
making it possible to use an external hardware controller,
or integrating the prototype into a DAW software.

3 PATTERN VARIATION ALGORITHMS

The aim of the presented algorithms is to support the user
in creating interesting drum tracks based on an initial seed
pattern. Hence, the variation algorithm receives a one-bar
pattern of kick, snare, closed hi-hat, and open hi-hat notes
as input. Based on this, a set of 32 new patterns is computed
and returned to the UI as suggested variations of the seed
pattern. This set is sorted according to density of note events
per bar. The seed pattern is placed in the list according to its
own density as a starting point for exploring the patterns.
Two of the following algorithms are data-driven as they
require model training or a database lookup. Therefore,
we first describe the collection of rhythm patterns that has

Fig. 2. Rhythm patterns as binary vectors of size four. Depicted
are examples for two equal vectors, vectors with missing notes
(or additional notes if the right vector is used as reference), and
vectors with both missing and additional notes. The columns to the
right show the corresponding Hamming and modified Hamming
distance.

been used throughout the experiments as database and for
model training.

3.1 Data Set
Maschine5 is an integrated hardware/software groove

box application that is focused on the production of ur-
ban and electronic music. The application and its extension
packs contain a large library of drum sound samples and
examples for drum patterns.

This collection of drum patterns was used to compile a
data set for the development of rhythm pattern variation
algorithms. Using the MIDI export function of the appli-
cation, the example drum patterns have been exported to
MIDI files and cut into patterns of one bar length. From the
exported samples, only the instruments kick, snare, closed
hi-hat, and open hi-hat were used. The resulting patterns
were checked for exact repetitions and some were removed
based on musical constraints. For example, only patterns
containing between two and six bass drum notes per bar,
between one and five snare drum notes, as well as at least
two hi-hat notes were kept. This was done to exempt breaks
and very sparse patterns from the database. The final set
consists of 2,752 unique patterns.

3.2 Modified Hamming Distance
Both the database-driven approach (Sec. 3.3) as well as

the neural-network-based method (Sec. 3.4) use a rhythm
pattern similarity function. To calculate the similarity, the
rhythm patterns are represented as 64-bit (16 notes, 4 instru-
ments = 64 notes) binary vectors. Then the number of bits
with different values between the two vectors is counted
(= Hamming distance). An additional offset (64) is added
if one vector compared to the other has additional as well
as missing notes. See Fig. 2 for examples. This choice was
made based on the findings in [20] and [12] as well as the
goal to favor patterns that have as much overlap as possible
with the seed pattern. It is supposed to create the sensa-
tion of a steady evolution when browsing the resulting list
of variation patterns, which was sorted using this distance
function.

3.3 Database-Driven Approach
The database-driven algorithm (referred to as DB in the

following) is based on retrieving patterns similar to the seed

5 http://www.native-instruments.com/products/maschine
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pattern from a database and suggesting these as variations.
For the rhythm pattern database, the patterns extracted from
Maschine (cf., Sec. 3.1) were used. The modified Hamming
distance is used to compute the similarity of the seed pat-
tern (query) to every pattern in the database (targets). In
case the target pattern contains more notes, but also misses
notes from the query, the pattern is modified by adding the
missing notes from the query pattern. As a result, gener-
ated patterns with more notes than the query always contain
all notes from the query pattern. The resulting patterns are
sorted according to the computed distance and a list of the
32 most similar patterns is returned.

3.4 Neural Network Based Method
To generate meaningful, yet creative patterns, a process

that combines obedience to musical rules with elements
of unpredictability is needed. To achieve this, Restricted
Boltzmann machines (RBMs, introduced in [17]), which
are generative stochastic neural networks, are used. From
training, they learn a probability distribution defined by the
training data. From this distribution samples can be drawn,
which can be used for pattern generation.

RBMs consist of two layers of artificial neurons: the
visible layer, which is used as both in- and output and a
hidden layer that represents latent variables. The neurons
are fully linked only between the two layers (hence the name
“restricted”). Fig. 4 depicts an example of a small RBM
with four visible nodes and three hidden nodes. The RBM
used in this work consists of 64 nodes in the visible layer,
which correspond to the notes (16x4) in the step sequencer
grid (see Fig. 1). The hidden layer consists of 500 nodes.
The training was done using the Lrn2 framework of the
Lrn2Cre8 project.6

The RBM is trained using the Maschine rhythm pat-
tern data set by means of persistent contrastive divergence
(PCD) [19] training. Additionally, latent selectivity and
sparsity, as described in [4], as well as drop-out [18] for
training are used.

To generate variations of the seed pattern, first, the seed
pattern is entered into the visible layer of the RBM. Then,
variations for every instrument are generated individually
by clamping (nodes fixed to their original input values) all
other instruments and performing several Gibbs sampling
steps. A Gibbs sampling step consists of (i) calculating the
values for the hidden layer by using the input values in the
visible layer and the learned network weights, (ii) binarizing
the values of the hidden layer by applying the sigmoid
function and a random threshold, and (iii) calculating new
values for the visible layer by using the values in the hidden
layer and the network weights. Fig. 3 shows the evolution
of the visible layer of the RBM performing Gibbs sampling
steps. It can be observed how the snare pattern (nodes 16–
31) evolves while the other instruments (nodes 0–15 and
32–63) are clamped to their original values. For more details
on Gibbs sampling, clamping, and RBM training, the reader

6 https://github.com/OFAI/lrn2

Fig. 3. The evolution of the visible nodes of the RBM while
creating pattern variations for the snare drum. The x-axis represent
the index of the visible node of the RBM. The y-axis represents
the index of the Gibbs sampling step, starting at the top with the
original input pattern and progressing downwards. Active nodes
are represented by black, inactive nodes by white pixels.

Fig. 4. Structure of a Restricted Boltzmann Machine. White cir-
cles represent the visible and gray circle the hidden nodes. Be-
tween the two layers, the nodes are fully connected, while nodes
within the same layers are not connected.

is referred to the work by Hinton et al. [6] and the other
references provided.

The generated single-instrument patterns are sorted us-
ing our modified Hamming distance. The sorted single-
instrument pattern lists are then combined to full rhythm
patterns by using bass drum, snare drum, open, and closed
hi-hat patterns at the same indices. This approach will sub-
sequently be referred to as RBM.

3.5 Genetic Algorithm
Genetic algorithms are frequently used in algorithmic

composition and other creative applications in what is of-
ten called “generative art.” In essence, a genetic algorithm
involves successive splicing, pairing, and mutating of data
structures in a simulated program of natural selection. At
the core of a genetic algorithm lies the fitness function
that determines whether individuals fulfill some solution
criteria.
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Table 1. Mnemonics used in the article.

Algorithms DB database based method
RBM neural network based method
GEN genetic algorithm based method
EXP patterns created by an expert

Variations sp1 sparse variation close to seed (–3)
den1 dense variation close to seed (+3)
den2 dense variation far from seed (+6)

In [12], a genetic algorithm that generates rhythmic pat-
terns using an automatic fitness function by determining
similarity of new patterns to a seed pattern, was presented.
In this work an adapted version of this method is used to
meet the constraints and requirements of the UI prototype.

The initial population pool is initialized with a uniformly
random distributed set of 16x4 binary pattern genomes, con-
forming to the kick, snare, and hi-hat representation used in
this work. The algorithm commences and iterates through
successive stages of evolution. During a single stage of evo-
lution, patterns from the population pool are selected and
paired for mating. New patterns are generated by selecting
two parent patterns for crossover (bits from each are copied
to the child) and mutation (a very small portion of the child
is randomly modified). The fitness of these new patterns is
determined by measuring their rhythmic similarity to the
input target pattern using a distance function. The evalua-
tion in [12] revealed that the Hamming distance correlates
best with human judgments when dealing with polyphonic
patterns. For this reason, as well as to remain consistent
with the distance measures used in the other algorithmic
approaches, in this work the Hamming distance is used.

Achieving a balance between pattern diversity and rea-
sonable convergence time is one of the main challenges.
To this end, two adjustments to the method presented in
[12] are made. First, a more conventional roulette selection
scheme [14] is adapted: candidates from the population are
chosen for pairing and splicing from the fittest 100 members
only. Second, a stage of elitism in the selection procedure
is introduced: a small fraction of the fittest individuals are
simply copied to the next generation. This fraction can be
tweaked for drastic decreases in the algorithm’s conver-
gence time.

We run the algorithm and store the best member from
each generation in a list to get a diverse spread of rhythmic
patterns in terms of target similarity. From this list 32 pat-
terns are chosen from equidistantly distributed indexes, to
be returned to the UI. The genetic algorithm approach will
subsequently be referred to as GEN.

Table 1 summarizes the mnemonics of the different al-
gorithms for better comprehension.

4 EVALUATION—EXPERT INTERVIEWS

To evaluate all three algorithms as well as the UI proto-
type, two separate studies have been carried out. The first
study consists of interviews conducted with experts in EDM
production and performance. The study’s aim was to gather

feedback on the quality of the variations produced by the
single algorithms as well as on the usability of the UI. Sec.
5 covers the second study. It is a web-based survey in which
variations of selected seed patterns were to be rated. The
goal of this survey was to obtain quantitative data on various
properties of the variation algorithms.

4.1 Method
We conducted interviews with musicians experienced in

working with DAWs and producing EDM and/or perform-
ing EDM live. The interviews were conducted in a guided
and informal way inspired by the “thinking aloud” method
[10]. The participants were introduced to the prototype by
briefly explaining aim and functionality. Then they were
asked to explore the functions and algorithms of the proto-
type while talking about their experience and thoughts. For
every interview, the algorithm button assignment was ran-
domized to avoid experimenter bias. The interviews were
recorded and transcribed for later analysis.

The aim was to get answers to five core aspects we
deemed crucial for the success of a rhythm pattern vari-
ation tool:

1. Is the basic rhythm of the seed pattern preserved in
the variations?

2. Are variations musically meaningful?
3. Is the interaction with the prototype intuitive?
4. Would the prototype be useful in a live environment?
5. Would the prototype be useful in a studio/production

environment?

Additional comments on feature requests, use-case sce-
narios, and UI interaction were collected.

4.2 Interview Results
In total, 11 interviews were conducted with musicians in

their private studios, at the HAMR’15 hackday in Málaga,
and at the Red Bull Music Academy in Paris. After being
introduced to the prototype, the participants spent on av-
erage 23 minutes (min.: 17, max.: 30 minutes) exploring
the behavior of the three pattern variation algorithms (i.e.,
about 8 minutes per algorithm on average). Five participants
used multiple seed patterns (up to three patterns), while the
others just used one seed pattern to generate variations.
Participants were encouraged to browse through the whole
list of variations to get an overall image of how the sin-
gle algorithms behave. Table 2 summarizes the comments
of the interviewees regarding the five aspects of interest
identified earlier.

Comments were considered to be positive whenever the
interviewees explicitly expressed a positive impression re-
garding the aspects. For example:

• Rhythm and musicality:
“That [generating variations] actually worked: It
adds stuff on the right, it removes on the left.” JKU-
15-09
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Table 2. Number of participants giving positive responses wrt.
the topics of interest of the user study.

Aspect Algo. Positive comments

rhythm is preserved DB 10 91.0%
RBM 8 72.7%
GEN 5 45.5%

patterns are musical DB 11 100%
RBM 10 91.0%
GEN 7 63.6%

prototype interaction 9 81.8%

would use live 6 54.5%

would use in studio 10 91.0%

Note: The total number of participants (N) was eleven.

• Prototype interaction:
“It works like it should, so I think it is quite user
friendly. [. . .] I also think the scrolling [through the
variations] is cool because it is fast and practical.”
JKU-15-05

• Studio and live usage:
“I would say it would be interesting, in this form, for
a studio [. . .]. But it would be very inefficient in a
live setting.” RBMA-15-04

Most feature requests were uttered in the context of
live environments. The most demanded features requested
were, among other things: (i) a preview function, visually
or audible—mentioned six times, (ii) a way to store or
bookmark patterns—mentioned four times, and (iii) an op-
tion to make patterns switch only on the downbeat during
playback—mentioned twice.

5 EVALUATION—WEB SURVEY

To substantiate the findings from the expert interviews
and evaluate properties of the generated rhythm patterns
quantitatively, we additionally conducted a web-based sur-
vey. Based on the feedback gathered so far, we were specif-
ically interested in the algorithms’ generated variations in
terms of rhythm preservation, difference in detail, inter-
estingness, suitability as substitution, and suitability as fill
(see below). We define four research questions (RQ) cov-
ering these properties. These RQs are additionally used to
structure the evaluation and results (cf., Sec. 5.2):

• RQ I: Are there significant differences between the
individual algorithms for each property?

• RQ II: Do the variations capture the basic rhythm of
the seed patterns?

• RQ III: Is the sorting within the list provided by the
algorithm reasonable?

• RQ IV: Are the investigated properties independent
or are these aspects correlated?

These properties are evaluated against a baseline consist-
ing of pattern variations created by a human expert.

Table 3. List of seed patterns of the web survey.

Note: OHH stands for open hi-hat, HH for hi-hat, SD for snare drum,
and BD for bass drum. Beneath the pattern name a typical tempo
range for the pattern is provided. As tempo for the audio renderings,
the mean of the range was chosen.

5.1 Method
Eight one-bar rhythm patterns (see Table 3), which repre-

sent distinctive characteristic styles found in electronic and
urban music, were selected as basic seed patterns. For each
basic pattern/algorithm combination, three variations were
generated. Additionally, posing as a fourth “algorithm” and
providing a baseline, a human, i.e., a musician familiar with
different EDM styles, created three variations for each seed
pattern (referred to as EXP in the following). The three vari-
ations were taken from the variation lists generated by the
algorithms in an automated process. They were selected
at the following distances to the seed within the list: –3
(sparse variation; in the following referred to as sp1), +3
(dense variation; den1), and +6 (den2). The mnemonics for
the variations can also be found in Table 1. This results
in a total number of 12 variations (four algorithms, each
three variations) for one seed pattern. The maximum total
number of patterns to evaluate per survey participant was,
therefore, 96 patterns.

In the survey, we asked five questions to investigate the
research questions defined earlier:

• How well does this pattern capture the basic rhythm
of the original pattern? (Referred to as rhythm in the
following)

508 J. Audio Eng. Soc., Vol. 64, No. 7/8, 2016 July/August
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Fig. 5. Evaluation page of the web survey. On the left side the original pattern, and the first variation can be seen. In the top right, the
single questions are explained. In the lower right the six-point Likert scales for the five questions are shown.

• How different in terms of details is this pattern com-
pared to the original pattern? (difference)

• Consider this pattern a variation of the original. How
interesting is this pattern as a variation of the original
pattern? (interesting)

• Would it make sense to use this pattern as a substi-
tute for the original pattern as a continuous rhythm
pattern in a song? (substitution)

• Would it make sense to use this pattern as a single bar
variation (drum-fill) of the original pattern within a
song? (fill)

The answers to these questions were collected as the
score on a six-point Likert scale (no neutral answer, thus
“forced choice”).

The survey was conducted by means of a web appli-
cation. On the first page general information such as age,
gender, and questions about musical activity were collected.
Subsequently, every seed pattern was represented on a sin-
gle page where answers to the five questions for the twelve
variations had to be provided. Visual aids in the form of
images of the rhythm pattern in the step sequencer grid,
as well as a rendered audio version of the rhythm patterns
using genre specific drum kits were provided. Fig. 5 shows
a screenshot of a evaluation page of the web survey. The
sequence of the seed patterns (= survey pages) as well as
the sequence of the variations was randomized per user to
avoid bias caused by a certain order of the variations. It
was not mandatory that all seed patterns were processed by
every participant. The progress was stored after each page
and it was possible to continue the survey at another point
in time.

5.2 Survey Results
The web survey was online from October 2015 until

January 2016 and was distributed to local contacts and ad-
vertised on the Music-IR and the SMC mailing lists. In
total, 43 users participated for which 1,536 entries were
recorded. Every entry consists of scores for the five sur-
vey questions (rhythm, difference, interesting, substitution,
and fill) for one of the three variations (sp1, den1, and
den2) of a certain algorithm (one of DB, RBM, GEN, or
EXP) of a specific seed pattern. This results in 384 data
points per algorithm and 512 data points per variation. Fig.
6 shows the distribution of data points among the single
seed patterns.

The resulting data set has a strong bias towards male par-
ticipants: Only 2 out of 43 participants (4.7%) are female.
Over 90% (39 out of 43) of the participants are able to read
sheet music and almost half of them (20 out of 43) play
some kind of percussive instrument.

We conducted one-way ANOVA analysis with consec-
utive Post-Hoc tests to analyze if the mean scores of the
answers to the individual survey questions have signifi-
cant differences, i.e., we test against the null hypothesis
that there is no difference in the mean scores of the dif-
ferent algorithms (including the expert user EXP). First,
the single distributions were tested for homogeneity of
variances using Levene’s test. In case of homogeneous
variances an ANOVA with subsequent Ryan-Einot-Gabriel-
Welsch Range Post-Hoc test was used. In case of inhomoge-
neous variances, additionally a Welch test with subsequent
Games-Howell Post-Hoc test was used (p = 0.05 for all
tests). This setup is used to find answers to the four re-
search questions (RQ) defined earlier:
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Fig. 6. Distribution of data points among the single seed patterns used in the web-based survey.

Fig. 7. Mean scores of each algorithm for the aspects evaluated.
The black bars indicate homogeneous subsets according to signif-
icance analysis. The series with asterisk use only a subset of the
full data set: rhythm* and substitution* are calculated using only
variations sp1 and den1, fill* was calculated using only variation
den2.

RQ I: Are there significant differences between the in-
dividual algorithms for each property? Fig. 7 shows the
evaluation results comparing the means of the individual
algorithms for all survey questions. The baseline is repre-
sented by the scores for the expert patterns (EXP) that are
visualized as diamonds in Fig. 7.

For this evaluation, apart from the full data set, two data
subsets were additionally used: In the case of rhythm* and
substitution* all entries with den2 as variation were ex-
cluded. This was done to check if scores for rhythm and
substitution increase if only the similar variations are con-
sidered. In the case of fill* only entries with the more distant
variation den2 were used. This set was used to gain in-
sight if scores for fill increase for dense patterns which are
more different.

For rhythm, all algorithms perform equally well or better
than the baseline. Significantly worse than the baseline are:
GEN in the case of rhythm*, DB and RBM in both cases of
difference and interesting, GEN in both cases of substitution
and substitution*, and DB and RBM in the case of fill. In all
other cases the algorithms perform equally well or better
than the baseline patterns created by the expert.

The algorithms are able to reproduce the basic rhythm
pattern of the seed patterns as good as the expert. While
RBM and DB fail to produce as interesting and differ-

Fig. 8 Mean scores for rhythm (left) and difference (right) for each
algorithm split by variation. The black bars indicate homogeneous
subsets according to significance analysis.

ent patterns as the expert, GEN does not generate sub-
stitutes as well as the expert. Since fill* is more relevant
in a real-live scenario (in the interviews users tended to
browse to the far right to look for fills), all algorithms
can be considered to produce fills equally well as the ex-
pert, while GEN still performs significantly better than DB
and RBM.

RQ II: Do the variations capture the basic rhythm of
the seed patterns? The analysis to RQ I shows that for
rhythm, all algorithms perform equally well or better than
the human expert when calculating means over the full data
set. For this question the data is split into three subsets for
the variations sp1, den1, and den2. This is done in order
to check if rhythm stays the same regardless of the degree
of variation. In the left plot of Fig. 8 it can be observed
that rhythm does not stay the same for the single variations,
not even for EXP which was the baseline. In the case of
RBM and EXP only the pattern den2 scores significantly
worse. DB performs equally well for den1 and den2 but
significantly worse for sp1. Also GEN scores worse for
den2 and even more so for sp1.

We can summarize that for den2 the rhythm scores are
generally worse than for den1. This leads to the assumption
that it is difficult for the algorithms (but also for the expert)
to reproduce the basic rhythm for more different patterns.
The only exception to this is the DB approach, which can
be explained by the fact that DB never changes the basic
rhythm pattern when producing patterns with more notes,
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as explained in Sec. 3.3. On the other hand DB seems to
fail to provide sparse patterns with the same basic rhyth-
mic structure. This is probably caused by the fact that the
database consists of a limited number of patterns, therefore
it is hard to find sparse patterns with the same basic rhythm.
GEN fails to provide good patterns not only for den2 but
also for sp1, which was also observable in the interviews:

“To the left it [GEN] just goes crazy.” JKU-15-01

“If I turn to the right, there were many things which were
OK, but on the left side not so much. [. . .] [GEN] went
completely crazy on the left side.” JKU-15-03

While the results for RBM are comparable to the ex-
pert baseline (EXP), GEN and DB seem to have problems
reproducing sparse patterns that capture the basic rhythm.

RQ III: Is the sorting within the list provided by the
algorithm reasonable? To evaluate this question two as-
sumptions regarding the scores for difference are tested.
The first assumption is, that variations sp1 and den1 score
equally since they were taken at the same distance to the
seed pattern. Second, for variation den2 the score should
raise since the distance was twice as large compared to
den1. The right plot in Fig. 8 shows the evaluation results
for RQ III. Only for RBM both assumptions are true. The
second assumption is true for all algorithms, only the as-
sumption that sp1 and den1 score equally has to be rejected
for DB, GEN, and EXP. sp1 is, in fact, always rated to be
more different than den1. Since this is even the case for the
baseline (EXP) one could assume that sparse patterns are
generally perceived more different than dense patterns with
the same distance.

Apart from the fact that sparse patterns generally seem
to be rated more different than dense patterns, the sorting
can be considered reasonable.

RQ IV: Are the investigated properties independent or
are these aspects correlated? Fig. 9 visualizes the corre-
lation between the answers to the survey questions. Only
the pair rhythm/fill shows no significant correlation, which
might imply that for fills it is not important if the basic
rhythmic feel is preserved. Substitution and fill show a
weak negative correlation that seems reasonable, since pat-
terns rarely qualify for both categories. Interesting shows a
slight positive correlation with rhythm and difference. This
could imply that participants only find patterns interesting
if they conserve the basic rhythm while introducing change.
There is a strong positive correlation between interesting
and fill that implies that participants tend to consider in-
teresting patterns suitable as fills. Difference shows a weak
positive correlation with fill that might imply that fills are
supposed to be different from the basic rhythm. Substitu-
tion and rhythm also turn out to correlate strongly posi-
tively, which comes as no surprise since substitutes should,
in general, be similar to the basic rhythm patterns. The
same line of reasoning can be applied to the strong nega-
tive correlation between substitution and difference. Since
rhythm also correlates strongly negatively with difference,
the aforementioned correlation might be merely a transient

Fig. 9. Symmetric correlation matrix of Spearman’s correla-
tion values (ρ) and significance levels (p) for the answers to
the survey questions. The upper right half visualizes the value
(darker=higher) and direction (negative / positive) of the correla-
tion. The lower left half contains the numeric values.

effect caused by the two very strong correlations of rhythm
with difference (negative) and substitution (positive).

6 CONCLUSION

We presented three different algorithms to create vari-
ations of one bar drum rhythm patterns as well as the
extension of an interface prototype. The aim of the pro-
totype is to support EDM producers and performers to find
suitable drum patterns. We used the prototype to test and
evaluate the variation algorithms by means of two studies:
A series of qualitative expert interviews and a quantita-
tive web-based survey. The expert interviews show that the
interaction concept of the prototype is something most par-
ticipants can imagine working with. It also implies that the
acceptance of such a tool in a studio environment would be
high, while concerns were raised about precision and reli-
ability when it comes to live performance scenarios. The
patterns created by the database-based approach (DB) and
the neural-network-based method (RBM) were mostly con-
sidered musical and in many cases perceived to reflect the
basic rhythmic idea of the seed pattern. While the genetic
algorithm (GEN) produced usable patterns in many cases,
it was considered more suitable for fills and creative explo-
ration. The web-based study, using an expert-created base-
line, allows interesting insights that support the findings of
the expert interviews: GEN produces patterns suitable for
fills that have a tendency to be more different and interest-
ing than the ones produced by RBM or DB, which in turn
are more conservative and suitable as substitute patterns
for basic rhythms. The findings of the two studies support
each other and shed light on the properties of the compared
methods as well as on the perception of rhythm variations
of users in general.

Accompanying materials covering the raw survey data,
images and audio renderings of the survey patterns,
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the UI prototype, a short demo video, and the train-
ing configuration for the RBM are available at: https://
github.com/GiantSteps/rhythm-pattern-variation-study
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Based Rhythmic Pattern Generation and Variation with Ge-
netic Algorithms,” in Proc. 12th Sound and Music Comput-
ing Conf. (2015).

[13] J.-F. Paiement, Y. Grandvalet, S. Bengio, and D.
Eck, “A Generative Model for Rhythms,” in NIPS Work-
shop on Brain, Music and Cognition (2007).

[14] D. Shiffman, S. Fry, and Z. Marsh, The Nature of
Code (Daniel Shiffman, 2012).

[15] G. Soros and C. Guedes, “Complexity Driven Re-
combination of MIDI Loops,” in Proc. 12th Intl. Society
for Music Information Retrieval Conf. (2011).

[16] G. Sioros, A. Holzapfel, and C. Guedes, “On Mea-
suring Syncopation to Drive an Interactive Music System,”
in Proc. 13th Intl. Society for Music Information Retrieval
Conf. (2012).

[17] P. Smolensky, “Information Processing in Dynami-
cal Systems: Foundations of Harmony Theory,” in Parallel
Distributed Processing: Explorations in the Microstructure
of Cognition, Vol. 1, pp. 194–281 (MIT Press, 1986).

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I.
Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way
to Prevent Neural Networks from Overfitting,” J. Ma-
chine Learning Research, vol. 15, no. 1, pp. 1929–1958
(2014).

[19] T. Tieleman and G. Hinton, “Using Fast Weights
to Improve Persistent Contrastive Divergence,” in
Pro. 26th Intl. Cons. on Machine Learning (2009),
http://dx.doi.org/10.1145/1553374.1553506.

[20] G. Toussaint, “A Comparison of Rhythmic Similar-
ity Measures,” in Proc. 5th Intl. Cons. on Music Information
Retrieval (2004).

[21] R. Vogl and P. Knees, “An Intelligent Musical
Rhythm Variation Interface,” in Companion Publication
21st Intl. Cons. on Intelligent User Interfaces (2016),
http://dx.doi.org/10.1145/2876456.2879471.

512 J. Audio Eng. Soc., Vol. 64, No. 7/8, 2016 July/August



PAPERS INTELLIGENT INTERFACE FOR DRUM PATTERN VARIATION

THE AUTHORS

Richard Vogl Matthias Leimeister Cárthach Ó Nuanáin Sergi Jordà
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Sergi Jordà holds a B.S. in fundamental physics and a

Ph.D. in computer science and digital communication. He

is a senior researcher with the Music Technology Group
at Universitat Pompeu Fabra in Barcelona, where he di-
rects the Music and Multimodal Interaction team, and an
Associate Professor in the same university.

•
Michael Hlatky works as a product designer in the areas

of interaction design, user interface design and experience
design. Before joining Native Instruments, he worked as
a sound designer and DSP developer for Audi AG and
Bang&Olufsen a/s.

•
Peter Knees holds a doctorate degree in computer science

and is currently assistant professor of the Dept. of Compu-
tational Perception of the Johannes Kepler University Linz
in Austria. For over a decade, he has been an active mem-
ber of the music information retrieval research community,
branching out to the related areas of multimedia, text IR,
recommender systems, and digital media arts.

J. Audio Eng. Soc., Vol. 64, No. 7/8, 2016 July/August 513



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'AP_Press'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


