
 
 
 
 

 

Expressive Analysis of Violin Performers 

 

 

Tan Hakan Özaslan  

 

 

 

MASTER THESIS UPF / 2009  
Master in Sound and Music Computing  

 

 

Master thesis supervisor : 

Josep Lluis Arcos 

Department of Information and Communication Technologies  

Universitat Pompeu Fabra, Barcelona  

 

 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To mum. 
 
 



 iii 



 iv 

Acknowledgments 
 
 

First  of  all  I  would  like  to  thank  Josep  Lluis  Arcos  for  his 
constant support during the whole process of the thesis. Without his 
guidance and help this work could not be done. I am also grateful to 
Xaiver Serra for his support and the opportunity to be part of the 
music technology group. Furthermore, special greetings to Emilia 
Gomez, Rafael Ramirez and Agustin Martorel for their help, 
comments and suggestions. Also I would like to thank Dilara Arısoy 
for her supports. 

Finally I would like to thank my mum for her endless support 
and love. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v 



 vi 

Abstract 
 
 

This document presents an ongoing research project in Sound 
and Music Computing Master of Pompeu Fabra University 
collaborating with the Artificial Intelligence Research Institute 
(IIIA), which is belonging to Spanish National Research Council 
(CSIC). Current research is focused on extracting and comparing 
features in the scope of the underlying harmony from commercial 
recordings. We are working with Partitas for solo violin from J.S. 
Bach. We analyzed recordings of 24 different professional violin 
performers. 
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1. Introduction 
 

1.1. Motivation 
 

Expressivity is an important area of research in sound and music 
computing [11]. The music that we hear is much more than the written 
score. The score represents only a small portion of the musical experience 
[9].  If we convert the written score into a Midi file and listen it, we 
realize it is lack of a lot of features, like phrase emphasis, lengthening, 
and shortening of notes, vibratos, glissandos… etc. Thus, when we 
subtract this midi data from a specific recording, what we obtain is the 
expressivity added by the performer [10]. 

There are different ways of analyzing expressivity. One way is to 
record different performers in a studio environment with emphasized 
expressivities. After recording these performers with the annotations of 
emphasized expressivities, try to find computational models. Another 
approach is to analyze commercially recorded pieces. The advantage of 
the first approach is that we can analyze the performances in a more 
detailed and controlled environ. The advantage of the second approach is 
that it is possible to find several recordings of a piece played by different 
performers which would give the opportunity to compare results for 
different performers. Also another important advantage is that in the 
commercial recordings the performance is real and no external influence 
effects the performer’s decisions whereas in studio recordings the 
expressive resources are probably less natural. Working with commercial 
recordings has also disadvantages such as, the quality of the recording 
depends on several externals like the release year, miking and mixing 
technique, quality of the analog to digital conversion [8].  We are 
interested in using both data sources. 

In current research we are exploring the use of harmony-based features 
for the task of performer identification by using automatically extracted 
pre-determined features. We are working with commercial recordings. 
Although mentioned disadvantages, our claim is that the advantage of 
being real and lack of external influence overcomes the disadvantages. As 
stated in previous papers [6], [8] existing feature extraction t e c h n i q u e s  
are not f u l l y  precise; t h u s ,  our first main goal has been to increase 
the precision of this automatic extraction for the specific instrument we 
are dealing with the violin.  
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1.2. Goals 
 

The main goal of this research is to explore the possibilities of 
identifying and differentiating violin performers and also different parts of 
the pieces by using a harmony based expressive analysis. We have 
developed an unsupervised feature extraction method for this 
identification. Duration, amplitude, harmony and intra-note features were 
extracted from audio excerpts. Specifically, in this study we have 
constructed performer similarity matrixes based on the way they 
emphasize notes with different harmonic functions.   

We will test our model with commercial solo violin recordings of 24 
different performers, and concretely we are going to use the Bach’s 
partitas. 

The rest of the document is organized as follows: Section 2 describes 
the related work on the field of expressive music analysis. Section 3 
describes the methodology of our model. In Section 4, we discuss the 
experiments and the results. In section 5 we conclude with conclusion and 
future work. 
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2. Related Work 
 

In our work we followed three main stages which are, feature 
extraction, harmony identification and expressive analysis.  Before 
starting our study we also performed a research about theoretical analysis 
of Bach’s partitas, which helped us to justify the importance of harmony 
in Bach.  The state of the art of these steps can be summarized as follows. 

2.1. Traditional Analysis 
 
 Music theory is the field of study, which deals with notation and 
language of music and also examines how music works. Music theory 
analyzes the parameters or elements of music rhythm, harmony (harmonic 
function), melody, structure, form, and texture. In our study we are 
focusing on Bach partitas and as we examined several analysis of Bach 
we saw that most of the theoreticians give most of the importance to 
harmony in their analysis.  Mctague states that [32] “We analyze first the 
ability of Bach’s single line to suggest local harmonies, illustrate how 
these harmonies lead to a sense of closure both locally and globally…”. 
Moreover Mctague builds his analyzes for Bach’s first movement of 
second violin sonata on the harmonic bases. As a final output Mctague 
constructed the harmonic map of the piece as seen in the next figure.  

 
Figure 2.1 Harmonic analysis of Mctague 
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 Traditional music theory analysis identifies the patterns that govern 
composers’ techniques. However music includes both the written score 
and performance. We cannot taste real music experience in the lack of any 
of them. So it is not totally incorrect to say that, theoreticians analyze the 
written score rather than the music. In order to examine real music, we 
also need to be able to analyze the performance and the performer. By the 
improvement in computational power and memory capacities, now it is 
possible to analyze sound files in acceptable periods of times. Because of 
that recent studies can focus not only on composers but also on 
performers.  

2.2. Feature Extraction 

Several algorithms have been proposed to analyze audio recordings 
and extract features. Well known two models are; Yin algorithm, and 
SMS model. 

SMS model [33] contains a set of techniques and software 
implementations for the analysis, transformation and synthesis of musical 
sounds. The model assumes that, a sound consists of two parts: 
deterministic and stochastic part.  Deterministic part can be represented 
by series of sinusoids’ amplitude and frequency functions. Stochastic part 
can be represented as time varying magnitude envelopes excited by white 
noise. It is also called the residual of the sound. According to the SMS 
model, a sound can be represented by the summation of deterministic and 
stochastic parts. Whole model can be seen in figure 2.2. 

 

 
Figure 2.2 SMS Model 
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Yin is an algorithm [22], which is presented for the estimation of the 

fundamental frequency of speech or musical sounds. It is based on the 
well-known autocorrelation method with a number of modifications that 
combine to prevent errors. Yin algorithm has three outputs, 
aperiodicity, fundamental frequency and energy. Furthermore its analysis 
parameters can be modified by changing the fields of a structure called 
P, with fields explained in table 1.1. By this way Yin algorithm can be 
tuned according to desired sound. 

 
Parameter Explanation of the Parameter 
p.minf0 minimum expected F0 (default: 30 Hz) 
P.maxf0 maximum expected F0 in Hz 
P.thresh threshold (default: 0.1) 
P.relfag if ~0, thresh is relative to min of difference function 
P.hop hopsize((default: 32/sampling rate (P.sr))) 
P.range range of samples ([start stop]) to process 
P.bufsize size of computation buffer (default: 10000) 
P.sr sampling rate (usually taken from file header) 
P.wsize integration window size (defaut: SR/minf0) 
P.lpf intial low-pass filtering (default: SR/4) 
P.shift 0: shift symmetric, 1: shift right, -1: shift left 

(default: 0) 
 

Table 2.1 Yin algorithm inputs 

2.3. Harmony Identification 
 

In her doctoral dissertation, Gomez [27] proposed and evaluated a 
computational approach for the automatic description of tonal aspects of 
music from the analysis of polyphonic audio signals. Gomez used 
different abstractions for differentiating between low-level signal 
descriptors and high-level textual labels. The problems that appeared 
when computer programs try to automatically extract tonal descriptors 
from musical audio signals were also discussed in the dissertation. 

There are different key correlation profiles for key determination. In 
his paper Izmirli presents a model for template based key finding from 
audio and he compares two different models[34]. He computes templates 
from spectra’s of monophonic sound recordings. According to his model 
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key determination is based on the correlations between spectral summary 
information obtained from audio input and the pre-computed templates. 
First model that implements the template based model by using a pure 
spectral representation, and second one uses a chroma-based 
representation. An audio test collection is used in order to evaluate and 
compare both models.  

 
Table 2.2 Profiles used in Izmirli’s study 

Izmirli used two different profiles, which were Temperly’s [35] and 
Krumshanl’s [20] key profiles. Table 2.2 shows these key profiles. First 
letter represents the profile name and second one represents the scale. For 
instance TM means Temperley major. DM and Dm are the representation 
of major and minor scales in 12 semitones.  

2.4. Expressive Analysis 

No two performers play the same piece in the same way. Their 
contribution to written score depends to several facets: physical, acoustic, 
physiological, psychological, social, artistic [12]. Basically, expressive 
analysis can be defined as; finding computational models, which are close 
to performers’ contributions. 

Previously, expressive analysis was mostly done in written score 
based. However, improvements in audio analysis techniques rise the 
opportunity to current researchers for analyzing recordings. There are 
works focused on machine learning rules for expressive analysis.  
Although the instrument they analyze differs, most of them focus on 
analyzing audio level monophonic or single instrument recordings. 
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A   group   led   by   Gerhard   Widmer   has   worked   on   piano 
expressivity. They present a new approach for discovering general rules 
of expressive music performance from real performance data by   using   
inductive   machine   learning   techniques   [10].   They introduce a new 
rule-learning algorithm to a very large set of expert performance data. 
Their test data includes 13 sonatas and 106000 notes, which is 4 hours of 
music. After feature extraction, they used their own algorithm, PLCG 
(partial-learn-cluster-generalize), which consists of three well-known 
machine learning techniques, rule learning, hierarchical clustering and 
rule selection. 

Another important contribution for expressive analysis related to piano 
was done by Dovey [16]. In his paper Dovey used Sergei Rachmaninoff’s 
recorded recitals on the Ampico Recording Piano. The technique used not 
only recorded the notes, duration and tempo but also the dynamics of key 
pressure and pedaling. Dovey’s goal was to determine general rules 
about duration, tempo, dynamics and pedaling by using inductive machine 
learning techniques. 

A recent contribution to expressive piano analysis has been done by 
Saunders e t  a l  [17]. They are using the beat-level tempo and beat- 
level loudness information of six famous concert pianists, playing the 
same piece. The extracted tempo and loudness information is used for 
Support Vector Machines to identify the new performer. 

Dixon and his colleagues restrict their attention to two expressive 
dimensions: tempo and loudness [26]. Their system is able to measure 
tempo and dynamics of a musical performance and to track their 
development over time. The system accepts raw audio input (e.g., from a 
microphone), tracks tempo and dynamics changes in real time, and 
displays the development of these expressive parameters in an intuitive 
graphical format, which provides insight into the expressive patterns 
applied by skilled artists. The output of the system can be seen in figure 
2.3. 
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Figure 2.3 Performance worm analysis of Rachmaninov's op.23 
no.6 prelude by Vladimir Ashkenazy. 

 
Ramirez investigated expressivity in jazz saxophone [18]. They used 

an algorithm, which combines sequential covering, and genetic 
algorithms.   They were interested in note level feature extraction. Since 
they were not only analyzing but also creating expressive phrases, they 
used Narmour’s Implication-Realization theory [23]. 

Mantaras et al worked on analyzing the computer music generating 
systems based on Artificial Intelligence technologies. Also they 
introduced a system called SAXEX, which was capable of generating 
expressive jazz performance [19]. 

Another contribution to saxophone expressive researches is 
TempoExpress [25], which is a global tempo transformation model while 
preserving the expressivity. The research was focused on expressivity-
aware tempo transformations of monophonic audio recordings of 
saxophone jazz performances. Their main goal is to investigate the 
problem of how a musical performance played at a particular tempo 
can be rendered automatically at another tempo, while preserving 
naturally sounding expressivity. 
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Figure 2.4 Expressivity generation model, SAXEX. 
 

Solana et al [6] focused on analyzing violin performers’ features. Their 
main  goal  is  to  identify  performers  for  a  given  audio recording. 
They used Swipe [1] for extracting energy and duration.   Their   model   
was   divided   into   three   parts: feature extraction, trend analysis and 
identification module. 

 



 10 

 
 

Figure 2.5 Performer identification model of Solona 
 

In his master thesis Cheng applied computational methods to the 
extracted features, which are dynamics and tempo, for the quantitative 
description and analysis of expressive strategies in violin performances 
[14]. He used eleven commercial recordings of Andante movement from 
Bach’s Sonata No. 2 for solo violin. 
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3. Methodology 
 

This chapter describes the strategies and the tools that have guided 
this research to significant results. The proposed t a s k  workflow is: 
first feature extraction is applied to audio files; then, extracted features 
are analyzed using machine learning techniques and; finally distance 
matrix are calculated. 

 

 
 

Figure 3.1 Proposed Scheme. 
 

In our research we are interested in exploring harmony-based 
expressivity. Our model has three different modules: the first one is audio 
input; in our model we used commercial recordings of violin performers. 
Then, second module is a note level feature extraction and the third one is 
identification of performer models. At the end by using our results we 
propose two different expressive analyses, clustering and performer 
distance matrixes. 

3.1. Music Collection 
Since we are working with solo violin pieces, the collection of J.S. 

Bach [30] partitas is suitable for our analysis. Partitas and sonatas for 
solo violin by J.S. Bach is a well-known collection that almost every 
violinist plays during its artistic life. This is one of the most important 
reasons for choosing this collection; by this way we have the opportunity 
to test our model with a big amount of commercial recordings. Also since 
they are monophonic, we do not need to use any source separation 
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algorithms. Additionally   we   included   two   more performers into our 
collection: Garret Fischbach and Tanya Anisimova. They both have 
distinct playing style. Garret Fischbach likes to plays with sustained 
articulations and Tanya Anisimova is a cellist [8]. 

3.2. Algorithm 
 In our model we worked with audio input and we used audio analysis 
techniques to extract features, which will be explained in the following 
sections. Our basic algorithm diagram can be seen in figure 3.2. 

 
Figure 3.2. Algorithm Diagram 

3.3. Tools 
This research combines both musical and quantitative approaches. 

Therefore we used audio signal processing, mathematical and music 
production tools. 

− Audacity1 is a free, open source software for recording and 
editing sounds. It is available for Mac OS X, Microsoft 

                                                 
1 http://audacity.sourceforce.net/ 
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Windows, GNU/Linux, and other operating systems. We used 
Audacity in order to edit our audio files. In our system we 
used mono, 44100, wav files. Also we used Audacity in order 
to cut the desired part from whole audio file.  

− Matlab is an integrated technical computing environment that 
combines numeric computation, advanced graphics and 
visualization, and a high-level programming language. Our 
main platform for desinging our model was Matlab. We also 
used the signal processing toolkit of mathworks2.  

− GarageBand is a software application that allows users to 
create music or podcasts. It is developed by Apple Inc. 
GarageBand can import MIDI files, and offers piano roll or 
notation-style editing and playback. We also export midi 
information from audio files in order to visualization and 
listening test, details will be explained in section 4.2.  

3.4. Feature Extraction 
We start with onset detection and note labeling. Then, we extract 

relative duration, amplitude, attack, and release times of each note 
according to a pre-determined note window. We also automatically 
annotate the relative interval of each note according to its harmonic 
region. 

a) Onset Detection 
For onset detection we are using Yin algorithm [22]. Yin algorithm has 

3 outputs; energy, fundamental frequency and aperiodicity. The 
combination of both energy and aperiodicity is used to determine the 
possible candidates of onsets. We also used convolution technique in 
order to make abrupt changes more abrupt and smooth sections smoother. 
This technique helped us to detect transient sections more accurately. 
Also, in order to label the notes we are taking the portion between attack 
and release times. Reason of this choice will be explained in the preceding 
section, features, of this document. As seen in figure 3.2 red lines are the 
onsets, green lines are the attack and release times.  

 

                                                 
2 http://www.mathworks.com/product/signal/ 
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Figure 3.3 Onset Detection 
 

After onset determination, we take the possible fundamental frequency 
candidates from Yin output and put all of them into a histogram select the 
most probable one as the note label. 

b) Features 
One crucial aspect of expressive analysis is the descriptors that are 

extracted from audio files. In our model we focused on four features, 
which are attack time, release time, amplitude and duration. We follow 
different approaches for each of the features. The methodology and 
reasons of choices will be explained in the following section. Borders of 
the attack and release times are determined according to a predefined 
threshold. 

Attack 
Attack time is an intra-note feature and defined as where the sound’s 

amplitude reaches a threshold. As seen in the figure 3.3, green line is the 
point where the attack time is finished. We defined our attack time as, the 
point where sound reaches 80% of the full volume after the onset. Also 
attack time of the note gives us clues about how the performer uses 
dynamics for his/her unique expressivity. For instance longer attack times 
are common in the legato sections, where as sharper attacks represent 
most of the crescendo sections.  The above reasons are the main 
motivations for us for choosing the attack time as a feature in our model. 
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Figure 3.4 Envelope of sound 

Release 
Release time is also an intra-note feature and defined as, the point 

where the note starts to fade. As seen in figure 3.3 black line is the point 
where release section starts. We defined our release threshold where the 
signal falls below its 20 percent of maximum energy.  

Amplitude 
We use time domain information for amplitude detection. Basically we 

averaged the amplitude values between attack and release times. In 
acoustics and audio, a transient is a short-duration signal that represents a 
non-harmonic attack phase of a musical sound. Also, release section does 
not include reliable information for amplitude due to artificial 
reverberation tail. Therefore we did not consider the attack and release 
portions while calculating the nominal amplitude. 

 

 
Figure 3.5. Averaged time domain amplitude values. 
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Duration 
Although the section of partita that we are working contains only 

eighth notes, performers change the durations’ notes during the 
performance; their lengths are not constant. We are also interested to 
investigate this change in note durations. For duration calculation we 
followed the same approach as we did in amplitude calculation. We take 
only the portions between attack and release times. 

Pitch 
Since violin is played with a bow, the pitch of the note is not stable up 

to end of the attack time, we can also call this attack part as the transient 
of the sound. Transient part of the signal includes several non-harmonic 
partials of a musical sound. It contains a high degree of non-periodic 
components and a higher magnitude of high frequencies than the harmonic 
content of that sound. Transients do not directly depend on the frequency 
of the tone they initiate. Therefore we also use the end of the attack time 
as the starting point of the portion where we use for labeling the note 
name. If we analyze the pure sound of the violin, often, this part is very 
short. However, because of the artificial addition of reverb during the 
commercial mix sessions, release part is longer than expected. We define 
reverb as the combination of real sound source and large number of 
echoes and delays, however this echoes and delays also add different non-
harmonics to the real sound source, which make determination of 
fundamental frequency harder. Therefore while choosing the section for 
determination of the note label, we took the release start time position as 
the finishing point of the section. Finally, for the note annotation our 
model can be seen in figure 3.3. 

Harmony 
We implemented our harmony determination model on the top of 

Gomez’s model [24].  We correlated window regions with tonal profiles 
of Krumhansl and Kessler’s [20] and choose the one with highest 
correlation according to Gomez’s model. Krumshansl and Kessler divided 
key profiles for the major and minor modes, they represent the relative 
importance of the tones in the chromatic scale. They were determined by 
asking listeners to rate how well ‘probe tones’ fitted into various musical 
contexts.  These tonal profiles can be seen in 3.6. Our key finding 
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algorithm is based on these profiles.  

 

 
Figure 3.6 C major and minor tonal profiles of Krumshansl and Kessler 

c) Note Correction 
After preliminary test we realized that we need a note onset correction 

function. Most obvious situation was, when there is an interruption in the 
bow during a relatively long note, which can be, detect as a wrong onset 
by our model. Therefore as a preliminary check, we investigated the 
following same notes for note onset correction. According to our model, if 
there are two same notes following each other and one of them is shorter 
than average length of the score minus or plus deviation value, we joint 
this note to the other one.  This simple error correction algorithm both 
improved our extracted score and qualitative features’ accuracy. 

d) Qualitative Features 
In the previous section we explained our approach about feature 

extraction. At the end of this feature extraction what we obtain are the 
numerical values of the features extracted for each detected note.  
However in our study we are interested in the deviation values. Therefore, 
we also propose an algorithm for qualitative value extraction. 

Our first approach was to averaging attack and release times, 
amplitude and duration for all the notes that compare each note with these 
averaged values and assign -, +, 0 labels if they were smaller, bigger or 
equal with respect to the average values. However this approach failed, 
and there are two main reasons for this failure. First of all comparing 
with an averaged numerical value did not give acceptable results, we 
needed a deviation value. After a couple of tests we determined different 
deviation values for different features. They can be seen in table 3.1. 
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Feature Deviation Function 
Amplitude devAmp=std3(noteWindow) 
Duration devDur=meanDur*0.2 

Attack Time devAtc=meanAtc*0.5; 
Release Time devRls=meanRls*0.5; 

 

Table 3.1 Deviation functions of different features 
 

Secondly, emphasis perception is not global for all the score. For 
instance in a legato section, if these notes are compared with the global 
averaged values of duration, possibly all of them are marked as + for 
duration, however our main concern is to find if there is an emphasized 
legato note in the legato section rather than annotating all the legato 
section. Therefore, we used the local context by taking the investigated 
note to the center. Our approach was to use a window with predetermined 
length. 

Note window 
After note determination of the investigated piece, we had an 

estimation of the score. For each note in the score, we had the numerical 
value of each feature; duration, amplitude, attack and release times. The 
values of the features are visualized in figure 3.7. The table under the 
score represents the extracted feature values of each note.  

 
Figure 3.7. Quantitative values of the features of notes 

 
                                                 
3 Standard deviation function of Matlab 
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Memory is an organism's mental ability to store, retain and recall 
information. We can divide human beings memory into two, short term 
and long-term memory [29]. Short-term memory allows recall for a period 
of several seconds to a minute without rehearsal. However when we 
consider melody memorization this period is measured with items, 
modern estimates of the capacity of short- term memory are lower, 
typically on the order of 4-5 items [29].  

We consider items as notes and as seen in figure 3.8 we determine our 
window borders as 4 notes before and 4 notes after the investigated note. 
In figure 3.8 each color represents the region of the circled note. By this 
way we can determine each note’s feature locally. In our model we made 
tests with different note windows and we conclude with window length of 
9 notes by placing the investigated note in the center, 5th note.  

 

 
 

Figure 3.8. Sliding note windows 

e) Harmony and Relative Interval 
We are using the same note window for related harmony interval 

determination. We correlate window region with tonal profiles of 
Krumhansl and Kessler’s [20] and choose the one with highest correlation 
according to Gomez’s model [24]. After obtaining the harmony of the 
note window, the central note is labeled according to its interval; each 
relative interval value is annotated according to Table 1. 

 
Interval Label 

Tonic P1 
Minor 2nd P2 
Major 2nd P3 
Minor 3rd P4 
Major 3rd P5 

Per. 4th P6 
Dim. 5th P7 
Per. 5th  P8 

Minor 6th P9 
Major 6th P10 
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Minor 7th P11 
Major 7th P12 

 

Table 3.2. Harmonic relative interval labeling 
 

After feature extraction, we obtain different harmonic regions, as 
shown in figure 3.6. 

 

 

Figure 3.9. Harmonic regions. 

f) Output 
At the end we had 10 extracted features, relative and nominal values of 

duration, amplitude, attack and release times, local harmony and relative 
interval. However since we are interested in local harmonic emphasize on 
duration, amplitude, attack and release times, we only used relative values 
for our future test. An example of these values can be visualized in figure 
3.10 and table 3.2. 

 
 Figure 3.10. Qualitative values of the features of notes 

As explained in the note window section, we extracted qualitative 
values. As expected, our model is not perfect and can miss notes. In figure 
3.10 an example of a missed note is marked with a red circle. Error 
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management algorithm will be explained in the preceding sections. 
 

 
 

 

Note Rel. 
Dur. 

Rel. 
Rms 

Rel. 
Attack 

Rel. 
Release 

 

Harmony Rel. 
Int. 

B + 0 + - Bm P1 
C 0 0 - 0 Bm P2 
F# - + 0 + Bm P8 
G 0 0 0 0 Bm P9 
E 0 - - 0 Bm P6 
D 0 - 0 - Bm P4 
C# - 0 0 + F#m P8 
A 0 + + - F#m P4 
F# + + 0 0 DM P5 
D 0 0 0 0 F#m P9 
C# + 0 0 0 F#m P8 
D - 0 - + F#m P9 
A 0 0 + 0 DM P8 
F# - - 0 0 F#m P1 

 

Table 3.3 Example of final extracted features. 

3.5. Performer Models 
After extracting features we aggregate them according to their harmonic 

relevant interval. Thus, the summary of the expressive trend of each 
performer is constructed by relating the deviation of the extracted 
features with the harmonic function of the played notes. By this way we 
can visualize and compare the different performers charts. 
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Figure 3.8. Example of relative values of Garret Fishbach 
performance in Partita 1 BWV 1002 Double 

 

 

Figure 3.9. Example of relative values of Ara Malikian 
performance in Partita 1 BWV 1002 Double. 
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In order to obtain figures 3.7 and 3.8 we counted each relative 

interval values for each performer. Each 12 column represents the 
12 semitones. These values gave us clues about differences of the 
performers. Figures 3.7 and 3.8 show the models constructed for Garret 
Fishbach and Ara Malikian. Notice that the different expressive styles 
are clearly represented by the different histogram distributions. For 
instance if we compare graphs 3.7 and 3.8, Fishbach made longer 
durations than Malikian in tonic notes.  
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4. Experiments 

After the feature extraction we used our extracted qualitative values 
in different stages of experiments. To identify performers or cluster 
different performers we need a measure, therefore we used different 
distance calculation techniques in different stages of our model. We 
used edit distance technique in order to compare the accuracy of the 
extracted notes with real score. We also used different distance 
calculation techniques during the clustering stage.  

4.1. Score Accuracy 
After the feature extraction we used our extracted qualitative values 

in different stages of experiments. In order to be sure that our extracted 
values have acceptable results we applied different techniques, which 
are, edit distance and midi extraction. Both techniques are used in order 
to support each other’s results.   

a) Onset Detection 
Edit distance between two strings of characters is the number of 

operations required to transform one of them into the other. We used 
this technique in order to compare extracted notes with real score. First 
of all we created a vector with the note names. After creating the note 
vector we changed all the note names according to table 4.1. Because 
we realized that if our extracted note is ‘F#’ , and the real note is ‘G’ 
the edit distance value is 2, which is correct mathematically but not 
correct musically, therefore we formed an other vector with 
corresponding note name as listed in Table 4.1. Then, we compared the 
first 72 notes of and calculate the percentage. We also converted all the 
extracted features to midi [28] and for each of the excerpt we made 
listening tests. And we concluded that if the edit distance results are 
lower than 40% extracted features are acceptable. 
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Table 4.1 Corresponding note name  

for edit distance calculation 

b) Midi Extraction 
Edit distance technique gave us numerical values in order to 

compare score accuracy and most of the time they are reliable. 
However during our experiments we faced with some situations where 
edit distance seems to be nice but the extracted score is not reliable 
enough for our future experiments. In order to demonstrate one of 
these situations we continue with two examples. First one is a regular 
situation with acceptable output. For instance, if we extracted 120 
notes and our edit distance result is %20 which means our extracted 
notes are correct 96 out of 120, which is an acceptable result.  In other 
words we can say that in average, we have 3 wrong notes for each 15 
correct notes. As mentioned in section 3.4 we are using tonal profiles 
of Krumhansl and Kessler’s and choose the one with highest 
correlation. Therefore, these errors between correct notes are smoothed 
during correlation.  

For the second example, we continue with a scenario, rare but not 
impossible, where edit distance value is low but we may not have 
acceptable results. For instance again as in the first example if we 

Note Name Edit Distance 
A a 
A# b 
B c 
C d 
C# e 
D f 
D# g 
E h 
F i 
F# j 
G k 
G# l 
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extracted 120 notes and our edit distance result is %20, which means 
we have 96 correct notes and 24 wrong notes. Up this point, according 
to our edit distance calculation, 20%, we may assume that we have 
acceptable features. However it is possible that we may have an 
extracted score, which is not acceptable. It can be like, 48 correct 
notes, 24 wrong notes and again 48 wrong notes, which is totally 
different than the first example but they both have the same edit 
distance values. However in this situation because of having a region 
of wrong notes, correlation function cannot be able to smooth the 
values and gives us totally wrong values for harmonic regions. 
Therefore, we realized that we need another test for verifying edit 
distance values.  

We converted our features in to MIDI file by using MidiToolbox 
[28] of Matlab and made listening tests. By this way we can investigate 
if we have a big region with all wrong notes or wrong notes are 
distributed more or less equally.  

 

 
Figure 4.1 Extracted MIDI File 

 
We also used extracted MIDI files in order to visualize the extracted 

melody. In MIDI protocol each note is assigned a velocity value 
between 0 and 127. They correspond to the volume or amplitude of the 
note. 0 means absolute silence and 127 means louder than limits. 
Therefore we assume as possible minimum velocity is 20 and possible 
max velocity is 120. Than we scaled our amplitude value of note x to 
velocity value v(x) according the formula (1); 
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V(x) =

€ 

maxVel −minVel
maxAmp−minAmp

× amp(x) + 20                     (1) 

 

After scaling our amplitude values, we imported our MIDI vector to 
GarageBand in order to visualize our values, which can be seen in 
figure 4.1. 

4.2. Distance Calculation 
After extracting features we classify them according to their 

harmonic relevant interval. By this way we can visualize and compare 
the different performers charts.  

 
Figure 4.2. Example of relative durations of Garret Fishbach performance 

in Partita 1 BWV 1002 Double 
After acquiring the behavior of the different performers regarding 

the extracted features and their harmony relevant intervals, we can 
calculate the distance between two different performers. The weighted 
distance between performer j and k, djk is: 

djk  

€ 

=

ω f dist( j,k)
f =1

N

∑

#N × ω f∑
                                                  (2) 

where dist(j,k) is Euclidian Distance between performer j and k, N is the 
selected intervals such as tonic, minor 3rd, major 5th and minor 7th, ω is 
the predetermined weight of the feature and f is the feature that is 
compared.  

dist(j,k )

€ 

= ( j
Pi f

+ − kPi f + )2 + ( j
Pi f

0 − kPi f 0 )
2

i=1

N

∑ + ( j
Pi f

− − kPi f − )
2          (3) 

During the testing stage of our model, our preliminary test set 
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contains first 8 bars, which is 72 notes of the Partita No.1 (Double). At 
the end of the 8th bar there is a repetition sign, in our model repetition is 
also treated separately, as seen in figure 3.5, performers first 
performance and repetition. They were named like Perfomer1 and 
Performer2, for instance; Garret_Fischbach1 and Garret_Fischbach2. 

 

 
 

Figure 4.3. Distance values of eight performers are shown. 
N = tonic, minor 3rd, major 5th and minor 7th. 

Figure 4.3 presents distance calculations of different performers. We 
are comparing distance between Garret Fischbach’s first 8 bars with 
Ara Malikian, Arthur Grumiaux, Brian Brook, Christian Tetzlaff, 
George Enescu, Henry Szyeryng and Itzhak Perlman. We are 
comparing first and second repetitions. By looking figure 4.3, it can 
be observed that emphasize on related harmony is not depended to 
performer, besides we can conclude that this emphasize is much more 
dependant of the repetition than the performer. Because the distance 
between G. Fischbach’s first repetition and most of the performer’s 
first repetition is lower than the G. Fischbach’s second repetition. 

a) Distance Vector 
 After extracting our features from audio files, we imported these 
features to a tab separated text file. Our text file contains all performers’ 
different sections’ features. As a result we had big file with all the 
features and performers. As briefly explained in section 4.2, we did not 
take in to account all the intervals for our experiments. We chose 
different intervals for different experiments. For instance we mostly 
chose the tonic, perfect fifth and the major seventh.  
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Figure 4.4. Duration value distribution for 12 semitones of  

Garret Fischbach and Ara Malikian 

In figure 4.4 two graphs are the duration values for 12 semitones of 
Garret Fischbach and Ara Malikian for the first 72 notes. For our 
clustering vector we only take the values of the features that are marked 
with blue rectangles.   
 We took all value counts for all the features. Then we import our 
values to Weka in order to examine the clustering results. In this stage, 
we also realized that we needed to make our experiments in a small 
portion of the score rather than the whole score. Our model is based on 
harmonic emphasize. We want to explore the expressivity in the scope 
of harmony. Therefore, when we extended the region we were 
investigating, we realized that values were becoming smoothed.  For 
instance, we applied our model to a section with 80 notes. We extracted 
our features as explained in section 4. We also applied our model to a 
bigger section, which contains 300 notes.  We also extracted features 
from this section. Since we are collecting the features’ frequency 
distribution of  ‘+’, ‘0’ and ‘-’, as our section for our model’s input gets 
bigger, the frequency values were becoming smoothed. Therefore we 
chose our sections like in the first example rather than second example. 
 What we import to Weka are all feature values of the chosen relative 
intervals. An example of the imported features can be visualized in 
tables 4.2 and 4.3. 
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 Table 4.2. Relative amplitude percentage distribution  

          values of  7 performers 
 

 
Table 4.3. Relative duration percentage distribution  

values of 7 performers 

Tables 4.2 and 4.3 are examples of what we import to Weka. In our 
model we import all the 4 features: amplitude, duration, attack and 
release times. Also we are working with 24 performers (in the tables 
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only 7 of them are visualized). As mentioned previously, we are 
working with small portions rather than the whole score. In the tables 
4.2 and 4.3 the number near the performer name represents the 
repetition of the first 72 notes and A or D represents, amplitude or 
duration, the number after A or D represents the interval4 and last signs, 
‘-’, ‘+’ or ‘0’ represents the relative value, which were explained in 
section 3.4.c. The number represent the percentage values of the 
relative features, for instance if we look at table 4.3, Arthur Grumiaux, 
shortens 8%, lengthen and 33% among all the tonics and 58% plays 
without any articulation in duration.  

b) Distance Matrixes 
As we explained in section 4.2, we used Euclidian distance in order 

to calculate the distance between two performers. Previously we only 
computed the distance of one performer with respect to others. We 
were also interested to see the distance of all performers with respect to 
each other. Therefore, we formed a matrix with all the distances of 
performers. Then, we used a java code in order to visualize the distance 
calculations of each performer in a space.  

In the second experiment we calculated the distances of a different 
part from the partita number 1 BWV 1002 Double. This section is 
between 9th and 15th bars. This part includes continuous arpeggios and 
also bass and melody sections. It can be seen in figure 4.5. 

 
Figure 4.5. 9th and 16th bars of partita 1 BWV 1002 Double. 

 

 

                                                 
4  1 = tonic, 8 = major 5th and 11 = minor 7th  
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4.3. Distance Calculation Results 
In figure 4.7, it can be visualized the distance matrix of first and 

second repetition of the first 72 notes. This figure helps us to visualize 
the similar and different playing styles of the one piece with different 
repetition. Actual distances between performers in the figure are a 
representation of the real distance values. For instance in figure 4.6, 
which is a small portion of figure 4.7, George_Enescu_1 and 
George_Enescu_2 are close to each other, greem line (d1), which 
meant that, Enescu’s expressivity in the first and second repetition that 
is measured according to our model, is close to each other. Or again as 
seen in figure 4.6 Christian Tetzlaff’s first and second repetition has 
distinct differences according to our model. Red line with having 
distance value d1.  

 

Figure 4.6 Distance matrix example. 

Second experiment can be visualized in figure 4.8. This section is 
different than the first section that we investigated. It only includes one 
part and did not include repetition. In this experiment we focused on 
visualizing different playing styles of different performers. We used 
distance matrixes to compare different performers, rather than 
comparing repetitions.  
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Figure 4.7 Distance matrix example. 

As seen in figure 4.7 we can conclude that, performers that are close 
to each other have similar ornamentations according to our model. For 
instance according to our model, the performers who are in region ‘r1’, 
Sergiu Luca, Scholomo Mintz, Jascha Heifetz and James Ehnes have 
similar expressivity for the section that we are investigating. Also we 
can say that, Scholomo Mintz has similar expressivity to Jascha Heifetz 
than Nathan  Milstein because d1 < d2.  
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Figure 4.8. Distance of first and second repetition of first 72 notes of 

partita 1 BWV 1002 Double 
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Figure 4.9. Distances of the performers between 9th and 15th bar of  
partita 1 BWV 1002 Double 
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4.4. Clustering 
 By using distance calculation techniques it is only possible to 
compare one excerpt with another one. In previous section we 
explained how we compare the distances between first repetition and 
second repetition of first 72 notes. However only distance calculation 
did not provide us sufficient information for performer comparison. 
Therefore we also used clustering techniques in order to investigate 
different clusters. Clustering is a method of unsupervised learning. 
Cluster analysis is the assignment of a set of observations into subsets 
which are called clusters so that observations in the same cluster are 
similar in some sense. In our clustering experiment we also used Weka5 
(Waikato Environment for Knowledge Analysis) software [31], which 
consists of a collection of machine learning algorithms for data mining 
tasks. An important step in clustering is to select a distance measure, 
which will determine how the similarity of two elements is calculated. 
We used the same distance function as we proposed in section 4.2. It is 
basically an Euclidian distance calculation. We used symmetric 
distance, which is another important property that we determined. 
According to our calculations the distance from performer A to 
performer B is the same as the distance from B to A.   

c) K – Means Clustering 
K-means clustering is a method that aims to divide n observations to 

k clusters. In other words, k-means clustering is an algorithm to classify 
or to group your objects based on attributes/features into K number of 
group. Although there are several clustering algorithms, our reason for 
choosing the K-means clustering is that since in the previous stages of 
our model we were using Euclidian Distance calculations, and K-means 
clustering is mainly relies on squares of distances between data and the 
corresponding cluster centroid, which is an Euclidian distance 
calculation. In Weka the number of clusters are determined before hand 
and Weka calculates the centroids according to number of clusters. 
Cluster centroids are the mean vectors for each cluster; each feature’s 
value in the centroid represents the mean value for that feature in the 
cluster. Thus, centroids can be used to characterize the clusters. In our 
experiments the clusters consists of performers and the centroid is a 

                                                 
5 http://www.cs.waikato.ac.nz/ml/weka/ 
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performer. Then, the determination of the centroid distance calculation 
was done according to this centroid. All distances are calculated 
according to centroid and performers clustered according to their 
distances to centroids. As we mentioned, we used Euclidian distance for 
distance calculation. Different distance calculation values can be chosen 
in Weka. 

4.5. Clustering Results 
In clustering experiment, we made our tests with different numbers 

of clusters. For the first experiment we used the first 72 notes and the 
repetition. We determined the number of clusters as two. The centroid 
of the clusters is written in bold.  

Cluster 1 Cluster 2 

Arthur Grumiaux 1 Ara Malikian 1 
Christian Tetzlaff 1 Ara Malikian 2 
Garret Fischbach 2 Arthur Grumiaux 2 
Henryk Szeryng 1 Brian Brooks 1 
Henryk Szeryng 2 Brian Brooks 2 
Itzhak Perlman 1 Christian Tetzlaff 2 
Jaap Schroder 1 Garret Fischbach 1 
Jacqueline Ross 1 George Enescu 1 
James Ehnes 1 George Enescu 2 
Jascha Heifetz 2 Itzhak Perlman 2 
Josef Suk 1 Jaap Schroder 2 
Josef Suk 2 Jacqueline Ross 2 
Julia Fischer 1 James Ehnes 2 
Lucy Van Dael 1 Jascha Heifetz 1 
Lucy Van Dael 2 Julia Fischer 2 
Mela Tenenbaum 1 Rachel Podger 2 
Mela Tenenbaum 2 Scholomo Mintz 1 
Nathan Milstein 1 Scholomo Mintz 2 
Nathan Milstein 2 Susanna Yoko Henkel 1 
Rachel Podger 1 Susanna Yoko Henkel 2 
Sergiu Luca 1 Tanya Anisimova 1 
Sergiu Luca 2 Tanya Anisimova 2 
Sigiswald Kuijken 1 Yehudi Menuhin 1 
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Sigiswald Kuijken 2 Yehudi Menuhin 2 

Table 4.4 Clusters for first and second repetition of first 72 notes of 
partita 1 BWV 1002 Double 

This clustering experiment gave us interesting results about the 
playing styles. Before getting the results our aim was to see whether 
could we differentiate two repetitions. In other words our expectation 
about clustering is, one cluster contains all the first repetition and 
second one contains the second repetition. Although the results were 
not as expected, we conclude with valuable information. After getting 
the results we went back and listen the excerpts again. What we see is, 
if the first and second repetition of a performer fall in to different 
clusters, this performer made the more ornamentation between first and 
second repetition. Moreover, as seen in the table 4.5, the performers 
that have distinct differences between first and second repetition, are 
80% in the same cluster.  

Cluster 1 Cluster 2 

Itzhak Perlman 1 Itzhak Perlman 2 
Jaap Schroder 1 Jaap Schroder 2 
Jacqueline Ross 1 Jacqueline Ross 2 
James Ehnes 1 James Ehnes 2 
Julia Fischer 1 Julia Fischer 2 
Rachel Podger 1 Rachel Podger 2 
Arthur Grumiaux 1 Arthur Grumiaux 2 
Christian Tetzlaff 1 Christian Tetzlaff 2 
Garret Fischbach 2 Garret Fischbach 1 
Jascha Heifetz 2 Jascha Heifetz 1 

Table 4.5 Performers with distinct harmonic ornamentation for first 
and second repetition of first 72 notes of partita 1 BWV 1002 Double 

Therefore according to our model we can conclude that Itzhak 
Perlman, Jaap Schoder, Jaqueline Ross, James Ehnes, Julia Fischer, 
Rachel Podger, Arthur Grumiaux, Christian Tetzlaff, Garret Fischbach 
and Jascha Heifetz made more harmonic ornamentation between first 
and second repetition than the rest of the performers.   
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5. Conclusion 

5.1. Conclusion 
Motivation of this thesis has been analyzing the expressivity of 

professional violin performers from harmonical point of view. We 
were using Bach partitas for our experiments. Our starting point was 
finding the key points of traditional analyzes of Bach music. We 
realized that harmony was one of the most crucial point of these 
analyzes. Therefore we extracted all our features (duration, 
amplitude, attack and release times) relative to harmonic interval of 
the notes. 

Our experiments gave us new findings about harmonic 
emphasize. By calculating the performer distance matrixes, we could 
visualize the performers who are having close or distant to each 
other in the scope of harmony emphasize. K-means clustering results 
gave valuable information about repetition of a passage.  

5.2. Contributions 
Expressive analysis necessitates combination of different tools 

like; harmony identification, onset detection, machine learning vb. 
In our model we used these tools to take further step in order to 
understand whether harmony is a way for applying expressivity. 
Therefore we believe that our harmonic analysis model can have an 
important role for future expressive analysis both for classical and 
popular music.  

5.3. Future Work 
As a future work we want to combine audio and gestural features 

in a model. We want to use our results in a physically informed 
spectral model. Also we want to apply our model to different 
instruments and genres. 

 
 
 
 
 
 
 
 
 
 



 

 40 

Bibliography 
 
 
[1] Camacho, A. (2007) Swipe: A sawtooth waveform Inspired 

pitch estimator for speech and music. Doctoral dissertation, 
University of Florida, USA. 

 
[2] Grachten,  M.,  Arcos,  J.,  Mantaras,  R.  (2005)  Melody 

Retrieval using the Implication/Realization Model. (ISMIR). 
 
[3] Ramirez,  R.,  Hazan,  A.  (2005)  A  Learning  Scheme  for 

Generating Expressive Music Performances of Jazz 
Standards. International Joint Conference on Artificial 
Intelligence, pp. 1628--1629. 

 
[4] Ramirez, R ., P e r e z , A ., K e r s t e n , S .  (2008) Performer 

Identification in Celtic Violin Recordings. (ISMIR) 
 
[5] Ramirez, R., Perez, A., Kersten, S. (2008) Modeling Moods 

in Violin Performances. In: Sound and Music Computing 
Conference 

 
[6] Solana, M., Arcos, J.,Gomez, E. (2008) Using Expressive 

Trends for Identifying Violin Performers, In Proc. Ninth Int. 
Conf. on Music Information Retrieval
 (ISMIR2008) Philadelphia, USA, pp. 495-500. 

 
[7] Solana, M., Arcos, J., Gomez, E. (2008) Learning Violinist's 

Expressive Trends, In Proc. Int. Workshop on Machine 
Learning and Music (MML08), Held in conjunction with 
ICML/COLT/UAI 2008. Helsinki, Finland, pp. 3-4. 

 
[8] Solana, M., Arcos, J.,Gomez, E. (2008): Using expressive 

trends for identifying violin performers. In: International 
Conference on Music Information Retrieval, ISMIR'08, 
p.495-500 

 
[9] Widmer, G., Saunders, C., Hardoon, D., Shawe-Taylor, J. 

(2004): Using String Kernels to Identify Famous Performers 



 

 41 

from their Playing Style. In: The 15th European Conference 
on Machine Learning 

 
 
[10] Widmer,  G. (2002)  Machine  Discoveries:  A  Few  Simple, 

Robust Local Expression Principles. Journal of New Music 
research, Vol.31, No.1, Mar 2002, pp.37-50. 

 
[11] Widmer,  G.  (2003)  Discovering  simple  rules  in  complex 

data: A meta-learning algorithm and some surprising 
musical discoveries. Artificial Intelligence,
 Vol.146, pp.129-148. 

 
[12] Widmer, G.,Goebl Werner (2004) Computational Models of 

Expressive Music Performance: The State of the Art. Journal 
of New Music Research Vol. 33, No. 3, pp. 203–216 

 
[13] Valimaki V., Rabenstein R., Rocchesso D., Serra X., Smith 

J. O. (2007) Signal processing for sound synthesis: 
Computer-generated sounds and music for all. IEEE Signal 
Processing Magazine, 24(2):8–10. 

 
[14] Cheng, E., K. (2007) Computational Analysis of Expression 

in Violin Performance. Master of Science Thesis, University 
of Southern California. 

 
[15] Sundberg,  J.,  Askenfelt,  A.,  Frydén,  L.  (1983)  Musical 

performance. A synthesis-by-rule approach.
 Computer Music  Journal, 7, 37–43. 

 
[16] Dovey,  M.  J.  (1995)  Analysis  of  Rachmaninoff  ’s  piano 

performances using inductive logic programming. In Proc. 
of the 8th European Conference on Machine Learning 
(ECML95), pages 279–282, London, UK,. Springer-Verlag. 

 
[17] Saunders C., Hardoon D., Shawe-Taylor J., and Widmer G.  

 (2008) Using string kernels to identify famous performers 
from their playing style. Intelligent Data
 Analysis, 12(4):425–440. 

 



 

 42 

[18] Ramirez, R., Hazan, A., Maestre, E., Serra, X. (2008) A 
 Genetic Rule- based Expressive Performance Model for Jazz 
 Saxophone. Computer Music Journal, 32(1), pp.38-50.  

[19] Mantaras R., L., Arcos J., L. (2002) AI and music: from 
composition to expressive performance.   AI   Magazine, 
23(3):43–57. 

 
[20] Krumhansl, C. L., Kessler, E. J. (1982) Tracing the dynamic 

changes in perceived tonal organization in a spatial 
representation of musical keys. Psychological Review 89 
(1982), 334-368. 

 
[21] Lee, W., Shiu, Y., Kuo, C. (2007) Musical onset detection 

with joint phase and energy features. IEEE International 
Conference on Multimedia and Expo 

 
[22] Cheveigné A., Kawahara H,. (2002) YIN, a fundamental 

frequency estimator for speech and music. The Journal of 
the Acoustical Society of America, 111:1917. 

 
[23] Narmour E. (1990) The Analysis and Cognition of Basic 

Melodic Structures: The Implication Realization Model. 
Chicago, IL: Univ. Chicago Press. 

 
[24] Gómez, E. (2006) Tonal description of polyphonic audio for 

music content processing. INFORMS Journal on 
Computing, Special Cluster on Computation in Music, 18(3) 

 
[25] Grachten M., Arcos J. L.,  Mántaras R. L.   (2006) 

TempoExpress: An expresivity-preserving musical tempo 
transformation system, 21st National Conference on 
Artificial Intelligence (AAAI-06), Boston, USA, Volume 2, 
p.1609-1612. 

 
[26] Dixon, S., Goebl, W., and Widmer, G. (2002) The 

Performance Worm: Real Time Visualisation of Expression 
Based on Langner's Tempo-Loudness Animation. In 
Proceedings of the International Computer Music 



 

 43 

Conference (ICMC'2002), Goteborg, Sweden. 
 
[27] Gómez,  E.  (2006). Tonal  Description  of  Music 

Audio Signals. Ph.D. Dissertation. Universitat Pompeu Fabra. 
 
[28] Eerola, T., Toiviainen, P. (2004). MIDI Toolbox: MATLAB 

Tools for Music Research. University of Jyväskylä: 
Kopijyvä,  Jyväskylä, Finland. Available at 
http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/ma 
terials/miditoolbox/. 

 
[29] Jourdain. R. (1997). Music, the Brain, and Ecstasy: How 

Music Captures Our Imagination. New York: William 
Morrow and Company. 

 
[30] Maldonado M. R.(2007) Comparative analysis of 

expressivity in recorded violin performances.  Study of the 
sonatas and partitas for solo violin by J. S.Bach. Master 
Thesis, Universitat Pompeu Fabra, Department of 
Information and Communication Technologies. 

 
[31] Holmes G., Donkin A. and Witten I.H. (1994). Weka: A 

machine learning workbench. Proc Second Australia and 
New Zealand Conference on Intelligent Information Systems, 
Brisbane, Australia. Available at 
http://www.cs.waikato.ac.nz/~ml/publications/1994/Holmes-
ANZIIS-WEKA.pdf. Retrieved on 2007-06-25. 

 
[32] Mctague C .  (2004). The allemande of Bach’s second solo 

violin partita (BWV 1004). Available at 
http://www.mctague.org/carl/school/ccm/theory/partita/paper
.pdf 

 
[33] Serra,  X. (1989).  A system for sound 

analysis/transformation/synthesis based on a deterministic 
plus stochastic decomposition. Ph.D. Dissertation. Stanford 
University 

 
[34]     Izmirli Ö, (2005). Template based key finding from audio, in 



 

 44 

Proceedings of the International Computer Music Conference 
(ICMC'05), Barcelona, Spain, September 2005. 

 
[35 ]   Temperley, D (2001). The Cognition of Basic Musical    

Structures, Cambridge, MA: MIT Press, 2001. 
 
 
 


