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ABSTRACT
Automatic identification of music titles and copyright en-
forcement of audio material has become a topic of great
interest. One of the main problems with broadcast audio
is that the received audio suffers several transformations
before reaching the listener (equalizations, noise, speaker
over the audio, parts of the songs are changed or removed,
etc.) and, therefore, the original and the broadcast songs
are very different from the signal point of view. In this pa-
per, we present a new method to minimize the effects of
audio manipulation (i.e. radio edits) and distortions due
to broadcast transmissions. With this method, the identi-
fication system is able to correctly recognize small frag-
ments of music embedded in continuous audio streams (ra-
dio broadcast as well as Internet radio) and therefore gen-
erate full play-lists. Since the main goal of this system is
copyright enforcement, the system has been designed to
give almost no false positives and achieve very high ac-
curacy.
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1 Introduction

Systems that are able to automatically identify file songs
have received a great deal of recent attention. The main
goal of these systems is to associate a singer and and a title
to an audio file. That is, given an audio file (WAV, MP3,
etc.) the systems analyzes its content and matches it to a
database of originals (previous observations and analysis
of these files or very similar ones).

Among all proposals, content-based identification
techniques has proved to be more flexible and robust
than file comparison, metadata or watermarking proposals
which depend on the integrity of non audible data. Content-
based identification techniques are based on the acustic
qualities of audio. Different system implementation for this
approach have been proposed which contain different au-
dio feathure extraction mechanisms and database matching
algorithms [1, 2]. Nevertheless, none of these system pro-
posals explicitly face the challenges derived from broadcast
audio identification.

As a matter of fact, commercial radio stations modify
the songs before broadcast to increase their impact on ca-
sual listeners and, therefore, it is very common to find some
parts of the song changed (or repeated or deleted). Another
common situation is the broadcasting of only a few seconds
of the song. From a copyright point of view, it is very im-
portant to detect these situations because copyrights should
be taken into account not only for the whole song but also
for small parts of it.

Another problem in broadcast environments is the fact
that the system has no access to isolated songs, but to a con-
tinuous stream of unlabeled audio that contains not only
songs but also news, commercials and other unknown ma-
terial. And all these audio events mix together with often
fuzzy transitions between them.

In the next sections, we present an audio identification
system that is able to correctly identify songs in a continu-
ous stream of unknown audio material (song spotting) and
to generate a play-list finding the beginning and end points
of each song.

This paper is structured as follows. It starts with an
overview of the global system and how it works. Section
3 introduces the feature extraction front-end that discrim-
inates relevant information from the whole audio signal.
Then, section 4 presents the channel estimation technique
used to counterbalance the effects of signal editing and
broadcasting. Since the identification system is based on
a stochastic approach, section 5 sketches the training algo-
rithm for the system, while Section 6 describes the whole
matching process. Finally, section 7 shows the system per-
formance results under different identification conditions.

2 System overview

The identification system is build on a well known stochas-
tic pattern matching technique known as Hidden Markov
Models (HMM). HMMs have proven to be a very powerful
tool to statistically model a process that varies in time [3].
The idea behind them is very simple. Consider a stochastic
process from an unknown source and consider also that we
only have access to its output in time. Then, HMMs are
well suited to model this kind of events. From this point of
view, HMMs can be seen as a doubly embedded stochastic
process with a process that is not observable (hidden pro-



cess) and can only be observed through another stochastic
process (observable process) that produces the time set of
observations.

We can see music as a sequence of audio events. The
simplest way to show an example of this this is in a mono-
phonic piece of music. Each note can be seen as an acous-
tic event and, therefore, from this point of view the piece
is a sequence of events. However, polyphonic music is
much more complicated since several events occur simulta-
neously. In this case we can define a set of abstract events
that do not have any physical meaning but it mathemat-
ically describes the sequence of complex music. In sec-
tion 5, we describe how we deal in our system with this
kind of complex music. With this approach, we can build a
database with the sequences of audio events of all the music
we want to identity.

To identify a fragment of a piece of music in a stream
of audio, the system continuously finds the probability that
the events of the pieces of music stored in the database are
the generators of this unknown broadcast audio. This is
done by using the HMMs as a generators of observations
instead of decoding the audio into a sequence of HMMs
(see section 6).

3 Feature extraction

The first step in a pattern matching system is the extraction
of some features from the raw audio samples. We choose
the parameter extraction method depending on the nature
of the audio signal as well as the application. Since the aim
of our system is to identify music behaving as close as pos-
sible to a human being, it is sensible to approximate the hu-
man inner ear in the parametrization stage. Therefore, we
use a filter-bank based analysis procedure. In speech recog-
nition technology, mel-cepstrum coefficients (MFCC) are
well known and their behavior leads to high performance
of the systems [4]. It can be also shown that MFCC are
also well suited for music analysis [5].

4 Channel estimation

Techniques for dealing with known distortion are straight-
forward. However, in real radio broadcast, the distortion
that affects the audio signal is unknown. To remove some
effects of this distortions, we can assume that they are
caused by a linear time-invariant (or slowly variant) chan-
nel. With this approach we assume that all the distortion
can be approximated by a linear filter ������� that slowly
changes in time. Thus, if we define 	
����� as the audio signal
received, 
������ as the original signal and ����� as the Fourier
transform, we can write� ����������� 	
������������������� ����� (1)

and in the logarithmic space!#"%$ � ����� $ � !&"%$ ������� $(')!&"%$ �*����� $ (2)

Since we only have access to the distorted data and
due to the nature of the problem we cannot know how the
distortion was, we need a method to recover the original
audio characteristics from the distorted signal without hav-
ing access to the manipulations this audio has suffered.
Here we define the channel as a combination of all pos-
sible distortions like equalizations, noise sources and DJ
manipulations.

If the distorting channel ������� is slowly varying we
can design a filter that, applied to the time sequence of pa-
rameters, is able to remove the effects of the channel. The
filter we designed for our system is

+-, ��./�0�2143 565 798 .4:<;798 143 56=>. :<; (3)

By filtering the paramenters of the distorted audio
with this filter, they are converted, as close as possible, to
the clean version. By removing this channel effect from
the received signal the identification performance is greatly
improved because all the distortions caused by any equal-
ization and transmission are removed [6]. Therefore the
system will be able to deal with not only clean CD audio
but also broadcast noisy audio.

5 Training

In our approach, HMMs represent generic acoustic genera-
tors. Each HMM models one generic source of audio. For
example, if the audio we model has a piano and a trumpet,
we will have one HMM to model the piano and another
one to model the trumpet. However, commercial pop mu-
sic has a very complex variety and mixture of sounds and
so it is almost impossible to assign a defined sound source
to each HMM. Therefore, each HMM in the system mod-
els abstract audio generations, that is, each HMM is cal-
culated to maximize the probability that if it was really a
sound generator, it will generate that sound (complex or
not). Thus, HMMs are calculated in a way that the proba-
bility that a given sequence of them will generate a partic-
ular song and, that given all possible songs, we can find a
sequence of HMMs for each of them that generates them
reasonably well.

To derive the formulas to calculate the paramenters
of each HMM we used a modification of the Expectation--
Maximization algorithm were the incomplete data (as they
are defined in [7]) are not only the parameters of the HMMs
but also their correct sequences for each song. If we sup-
pose that a probability density function exists ?@��A $ B � that
is related to the probability density function of the incom-
plete data then we can relate them with

C �ED $ B �0� FHG
I&JLK ?@��A $ B �NM/A (4)

where D are the samples from the incomplete samples
space and O are the samples of the complete samples space.
We also suppose that there is at least one transformation



from the space of complete samples to the space of incom-
plete samples.

Therefore, the training stage in our system is done in
a iterative way similar to the Baum-Welch algorithm [8]
widely used in speech recognition system. Speech systems
use HMMs to model phonemes (or phonetic derived units)
but, unfortunately, in music identification systems we do
not have any clear kind of units to use. That is why at
each iteration a new set of units is estimated as a part of
the incomplete data in order to jointly find the sequence
of probabilities and also the set of abstract units that best
describes complex music. After some experimental results
we found that a good set of units is completely estimated
after 25-30 iterations.

6 Audio Identification

HMM training described in the previous section was aimed
at obtaining the maximum distance between all possible
song models in order to increase speed and reliability dur-
ing the audio identification phase. Once the HMMs are
trained, the next steps toward building the entire system
consist in getting the song models and matching them
against streaming audio signals.

6.1 Signature generation

Signature generation consists in obtaining a sequence of
HMMs for each song that uniquely identifies it among the
others. The song signatures are generated using a Viterbi
algorithm [9]. The Viterbi algorithm computes the high-
est probability path between HMMs on a complete HMM
graph model as shown in Figure 1.a. This figure is followed
by an example of Viterbi signature generation in Figure 1.b.
All the song signatures are stored in a signature database.
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Figure 1. The Viterbi algorithm computes the optimum
path travel on a complete HMM graph model.

The time complexity of the Viterbi algorithm that
computes the signature of a song with P frames on a com-
plete graph with Q HMMs is RS��PUTVQXWY� , while the space
complexity required for backtracking the optimal sequence
is RS��PVTHQX� . Therefore, the implementation of the signature
generator is feasible as far as Q is kept under small orders
of magnitude.

6.2 Identification algorithm

The identification algorithm is in charge of matching all the
signatures against the input streaming audio signals to de-
termine whenever a song section has been detected. The
Viterbi algorithm is used again with the purpose of exploit-
ing the observation capabilities of the HMM models con-
tained in the signature sequences. Nevertheless, this time
the graph model is not a complete graph but a cyclic HMM
model as shown in Figure 2. This model is built linking all
song HMM sequences from the identity signature database
in a ring structure where each HMM only has two links,
one to itself and one toward its immediate neighbor. Nev-
ertheless, the Viterbi algorithm is allowed periodically to
use internal ring links in order to allow jump between dif-
ferent song sections. Combining the Viterbi algorithm with
the HMM ring model proposal, the identification phase can
perform all the following key features:Z Normal operation: Identify the song signature and

perform continuous time tracking between song start
and song end. The optimal path corresponds to con-
secutive HMM matching where only external links are
used.Z Song mixing: Identify internal jumps between songs.
The optimal path corresponds to consecutive HMM
matching using external links and only one internal
link.Z Song interruption: Identify non modeled sections.
The optimal path corresponds to behaviors where the
optimal path can not be classified in the previous
cases.
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Figure 2. HMM model for a signature database with four
songs: S0-S1-S2-S3.

The time complexity of the Viterbi algorithm for the
ring graph is RS��P[T-QX� , while it only requires a space ofRS��Q%� to process P audio frames with Q HMMs in the



ring graph. Therefore, the identification algorithm scales
linearly with the number of songs in the database because
each HMM only has two links and the internal link period
can be large enough to have small impact on the time com-
plexity while maintaining a reasonable song-mixing capa-
bility.

7 Experimental results

The identification algorithm and the song signature
database were implemented using the C++ programming
language. The innermost time critical loop was developed
in assembler code in order to achieve higher optimization.
The running process consumed 35Mbytes memory space
and achieved real-time performance while processing one
streaming audio input. The computing platform was a sin-
gle Pentium-III CPU with 1GHz clock.

The system parameters used for the real-time imple-
mentation were:Z 256 HMMs to generate the song signatures.Z 450 HMMs average per song signature.Z 3852 song signatures in the database.Z 6 seconds periodicity for the internal links.

The first experiment consisted in streaming one song
to the audio identification algorithm. Figure 4 shows the
Viterbi output from the identified song signature. In this
case, the Viterbi algorithm kept running under normal op-
eration since no transitions were performed between songs.
The continuous diagonal line corresponds to the end-to-end
detection of the main sound track while the small parallel
diagonals correspond to sections that were identified mul-
tiple times inside the same song.

Three additional experiments were run with the aim of
studying the identification system reliability under differ-
ent broadcast audio distortions. An automated test-bench
was built with the aim of performing exhaustive statisti-
cal studies of the identification system over the complete
song database. The schematic of the complete test-bench
used in all the experiments is shown in Figure 3. The first
block builds the signature database by processing all the
mp3 audio files from original CD albums. An audio tool
produces a continuous audio stream and the original audio
labels associated with the complete mp3 file database. The
audio stream contained a single mono channel coded with
signed words at 22050Hz rate. The audio labels combined
the song identification number and the time stamp that mea-
sured the distance from the beginning. The distortion block
is optional and modifies the original audio stream trying to
reproduce the main audio editions performed in real radio
broadcast studios. The identification block is in charge of
observing the audio stream with the HMMs, match them
against the signature database and generate detected audio

labels. Finally, the monitoring tool verifies the detected au-
dio labels against the original labels and retrieves statistics
about the audio identification system reliability.
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Figure 3. Test-bench schematic.

Figure 4. Planar plot of the Viterbi score achieved by the
song signature (horizontal axis) over time (vertical axis).

7.1 Matching the complete audio database

This experiment aims at studying the capabilities of the au-
dio identification system to identify original audio streams.
This feature is exploited when the content of mp3 or other
audio files can be analyzed directly by the application. In a
broader sense, these experiments determines the raw identi-
fication capabilities of the HMM observers with the Viterbi
algorithm.

The input for this experiment was a continuous au-
dio stream generated appending the 3856 songs contained



in the complete mp3 audio database. Aproximately, the
length of the complete audio stream was 250 hours (10.5
days). The distortion block was not present during this ex-
periment. The experiment took 8 hours to complete on a
16 computer cluster with dual Pentium-III CPU at 1GHz
and running paralellized versions of the audio tool and the
audio identification block.

The analysis of the preliminary results determined the
existence of a large number of identification labels that
overlapped and generated false negative detections. As a
matter of fact, three sources of false positives were found:Z Same file: Two copies of same audio file were found

in the mp3 database when it appeared both in the orig-
inal and in the compilation albums by the same artist.
Duplicated copies were also detected in albums from
different artists who performed together.Z Same song: Two different audio files contain the same
song but performed in a slightly different way as may
be the case of the original and live concert versions of
the same song.Z Song mix: A single song is composed by mixing
pieces of songs from different albums.

The false positives where corrected by means of label
exchange using tables that contained allowed correspon-
dences between songs. The error rate measures obtained
before and after extracting false positives are shown in Fig-
ure 5. The figure presents three sections clearly differenti-
ated in terms of error rate: the song introduction, the song
middle stage and the song end. The higher error rates found
at the song introductions and endings is due to a higher
mismatch between the MFCC coefficients and the instru-
mental sections that concentrate at the song introduction
and song end. Moreover, as already stated in Section 5,
each HMM represents a generic acoustic generator and in
average, these sections are simpler in terms of instrumental
complexity or even contain significant silence periods.

7.2 Matching the complete audio database
with radio distortions

It is well known that radio stations use complex sound pro-
cessing techniques to get higher loudness and produce the
effect of impressive sound broadcast. The use of all these
sound processing techniques is not perfectly defined, and it
depends on the music style and the legislation of each spe-
cific country, between other factors. The most common
techniques are signal compressions, enhancements, time
stretching and exciters.

The radio distortion model used in the test-bench fo-
cuses on the compression technique. Audio compression
consists on dynamic range reduction, due an adaptative and
variable gain of the input signal, which allows signal ampli-
fication without changing the maximum peak level, There-
fore, audio compression increases the overall loudness. In
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Figure 5. Probability distribution of the error rate over the
song length.

fact, the distortion block here defined is a combination of a
compressor and a limiter in order to achieve a fixed max-
imum level. There are four important parameters in the
compression process: threshold, ratio, attack and release.

1

Vout

Vin
1threshold

ratio 1:1
ratio 1:2
ratio 1:4
ratio > 1:20

(a) Threshold and Ratio

(b) Attack, Release and
Gain characteristics, over-
laped to the original and
modified signals

Figure 6. Compressor parameters

The threshold defines the minimum value which the
compressor reduces the input signal, according to the ratio.
This is not an instantaneous process, and we must choose
the attack and the release time in order to define how fast
the signal is compressed when its amplitude increases, and
how fast the signal leaves compression when its amplitude
decreases, respectively. The threshold, ratio, attack and re-
lease values used in this experiment are 0.5, 40, 10ms and
2500ms respectively. All these values are experimentaly
fixed for the worst case.

Some Radio Stations apply multi-band compression:
the compression applied at different frequency bands is not
the same. With this technique, the original sound gets more
presence and contrast. In Fig. 7, we can see the effect of
the compression techniques mentioned above, applied to an
original signal from a CD.

The identification test-bench with the distortion block



(a) Original signal (b) Compressed signal

Figure 7. Compressor effects

produced the error rate measures shown in Figure 8. The
figure shows the system performance with and without
false positives corrected using the same tables as the first
experiment. As can be seen, the distortion block introduces
a significant performance penalty in terms of false negative
labels while it has a minimal impact on the final error rate
when comparing Figure 8 and Figure 5.
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Figure 8. Probability distribution of the error rate over the
song length.

7.3 Matching broadcast radio and Mp3 com-
pression

This test used an input of 25 hours of audio captured from
a single radio broadcast station which accumulated 217
songs in total interleaved with news and commercials. Ta-
ble 1 shows the system performance results for the radio
capture as well as different mp3 compression rates before
and after extracting false negatives. Therefore, the system
accuracy can be granted as far as table correspondences are
maintained withing the song database.

8 Conclusions

The combination of channel estimation, trained HMM ob-
servers and Viterbi sequencing and alignment algorithms
results in highly robust audio identification system perfor-
mance. The system has been characterized extensively in
terms of error rate response under original and radio dis-

Audio Source Identification Identification with
with False Positives no False Positives

Original 100% 100%
Radio capture 100% 100%
MP3 128 kbps 100% 100%
MP3 32 kbps 99.83% 100%
MP3 24 kbps 99.04% 100%

Table 1. System performance on different environments.

tortion audio databases, radio captures and different mp3
compression rates. The system analysis showed that false
positives were due to song copies, versions and remixes.
Moreover, the system performance for different song sec-
tions has been detemined. Finally, radio distortion and mp3
compression deteriorate the algorithm output but do not im-
pact the audio detection reliability.
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