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Abstract

We introduce a generic model of emergence of musical categories during the
listening process. The model is based on a preprocessing anda categorization
module. Preprocessing results in a perceptually plausiblerepresentation of music
events extracted from audio or symbolic input. The categorization module lets
a taxonomy of musical entities emerge according to a cognitively plausible on-
line learning paradigm. We show the advantages of using a conceptual clustering
method in the musical domain. The system extracts multi-level hierarchies and
can be tuned to clustering at various resolutions. The potential of the model is ex-
emplified by exposing it to three different datasets resulting in musical categories
of scales, motives, and harmonies consistent with music theory.

1 Introduction

Our cognitively inspired system shows emergence of musicalcategories during exposure to musical
phrases. The simulation environment is based on cognitive grounds in the following respect: a)
the cognitive representation is modeled in a self-organizing unsupervised fashion, b) input is pro-
cessed online and causally, c) categories incrementally evolve and degenerate. The system is general
enough to be applied to different musical dimensions. We demonstrate the capacity of the model in
three musical domains: scales, melodic motives, and harmony.

Models of unsupervised formation of ’cortical maps’ of tonalities have been based on linear and non-
linear methods of dimension reduction [1]. [2] use ART for dynamic clustering without extracting
hierarchies. Hierarchical clustering in batch mode has been applied to chords by [3].

With regard to motivic categorization, most of the approaches focus on both segmentation and pat-
tern similarity measures. Language and rule-based models have been introduced [4] in order to
extract hierarchical or syntactical representations of the sequences, which are later compared using
edit-distance and other domain-specific distances. Another set of models considers multidimen-
sional input and searches for exact repetition along each different dimension [5]. Due to the nature
of these methods, the input data must be quantized to obtain acorrect behavior.

We present models and experiments that address these problems. The harmonic categorization ex-
periment shows the strength of hierarchical clustering when the data is inherently structured. The
motivic clustering experiment acts by continuously generating a hierarchical structure of distance
relations between the motives and motivic prototypes that have been segmented. This allows to find
motives at different similarity importance and to learn incomplete and fuzzy motivic patterns, and
to be directly applicable to non-symbolic data.
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2 System overview

The model presented in this paper is part of a larger system called the Music Projector. The system
consists of the following units: 1) musical performance on keyboard or music scores parser, 2)
preprocessing, 3) categorization, 4) pattern matching andcompletion, 5) visualization, sonification,
and evaluation.

The goal of the system is to create a framework for building computational models of human music
listening tasks. The output of each run can be visualized using a series of interactive plots allowing
the user to explore the taxonomic hierarchies emerged during the process. This result is comple-
mented by a series of measures on the classification in order to highlight certain behaviors of the
models involved.

Our model consists of an implementation of the three first units of the Music Projector. One aim of
the model is to demonstrate the emergence of musical hierarchical taxonomies, and the usefulness of
the taxonomic information. The second objective of the presented system is to demonstrate how in-
cremental hierarchical clustering can perform online learning with varying resolution. However the
model is applicable to any sequential features extracted inan online manner from musical phrases.

3 Unsupervised Hierarchical Online Learning

In this section we present the different datasets and techniques used in our model as well as the
methods of evaluation and visualization of the results.

3.1 Datasets

In the first example, we show how the system can be used to extract scales from audio recordings.
We analyzeHoquet, No. 28 from CD II ofLes Voix du Monde(Zemp), a piece from the Mbenzele
pygmies in the Central African Republic recorded by Arom andTaurelle. The piece is a song
described as vocal-instrumental hocketting. A woman’s voice regularly alternates with blow sounds
from a flute. It consists of a set of 3 main pitches (around 350,397, 453 Hz), corresponding to the
notesf1, g1, and a ’high’a1 one short impulsive exclamation (between 674-720 Hz, around f2)
approximately one octave higher than the lowest main pitch,and one pitch (around 612 Hz, between
d2 ande♭2) always played by a flute. The flute tone is around a major sixthabove the lowest main
pitch. The melody is highly repetitive. For the sake of simplicity, this piece is suited to test the
algorithm’s ability to extract scales from audio.

The second dataset used in this paper is the BachInventions(cf. Figure 3). We choose theInventions
by J.S. Bach as an example of extensive motivic musical work.Again the Humdrum Kern encoding
is used as representation that preserves the score information. This dataset allows to show the interest
of conceptual clustering as a multiresolution clustering technique, capable of clustering segmented
musical patterns and to create generalized patterns.

The third dataset processed is the Austrian monophonic folksongs from the Essen folk song col-
lection [6] which will be used to demonstrate the emergence of harmonic representations. This is
a collection of 94 scores, containing a total of 1170 instances (bars). The songs are in Humdrum
Kern format containing all the information about bar division, tonality and meter. The input to the
system has also been completed with metrical weight values of each event extracted using the timing
information from the score. This dataset serves us to demonstrate the advantage of conceptual clus-
tering over traditional clustering techniques, by revealing reasonable relations between the clusters
that can be used for later processing.

3.2 Preprocessing Unit

This unit performs harmonic, motivic, and pitch preprocessing. The input is triplets of onset time,
duration and pitch. In the case of the harmonic processor, incoming bar wise segmented signals are
compressed into 12-dimensional vectors of pitch classes. Each component in that vector corresponds
to the strength of one pitch class, determined by its frequency of occurrence, overall duration, inten-
sity and metric weight. The key of the piece is extracted fromthe score and the pitch class profile is
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transposed so that the first entry is always the key note. Finally the pitch classes are mapped to scale
degrees.

The motivic processor applies a first order difference to deal with intervals of scale degrees. An
intervalc−d♯ would be encoded as a scale degree interval of 1.5. Each voicein the BachInventions
is processed separately. The segmentation is performed automatically. Autocorrelation is applied to
the 8 first half-bars (considered as an initial cue-finding phase), deriving the length of the motives.
The beginning (anacrusis or not) of the motives is determined by the bar position of the first note.
Therefore, a musically plausible segmentation can be performed based on the assumption that all
motives have same length and that their relative position within a bar (anacrusis or not) is maintained
for all motives within the piece. The durations are quantized. Each duration is represented by an
adequate number of repeating 32th notes of the same tone (usually the shortest note in the piece).

The pitch preprocessor acts as an audio front end, allowing exposition to audio recordings. The
task of the unit is to split the audio sample stream into unique perceptual events, such as notes.
The splitting of the stream is done by the use of a custom onsetdetector based on the complex
domain method presented in [7]. It generates inter-onset segments. Finally the events are analyzed
and characterized by their duration and pitch which is estimated using the multi comb method in
aubiopitch [8]. Non-pitched segments are filtered out.

3.3 Categorization Unit

The categorization unit implements clustering methods. The COBWEB [9] serves as a generic
framework for hierarchical and incremental clustering. Each node of the tree represents a concept,
characterized by the incremental means and standard deviations for each of the dimensions of the
incoming feature vector. The edges of the structure represent taxonomic relations. Further works
[10, 11] have proposed models to create, in an unsupervised manner, the concept tree based on
the sequence of data presented, by the use of a heuristic function to be maximized. The heuristic
function used in this paper is the numerical version of the standard category utility function used by
Fischer and introduced by Gluck and Corter [12]. Such version of COBWEB was presented in [10]
as COBWEB/3 and later extended by [11] as COBWEB/95. The version presented is COBWEB/3
and allows the input of real value attributes and control thespecificity:
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whereK is the number of classes,σik is the bounded standard deviation for attributei in class
k, andσiP is the bounded standard deviation for attributei in the parent node, i.e., the no-class
membership case. This formulation adds a new parameter, thethreshold at which to bound the
standard deviation of the attributes per classσik in order to avoid divisions by zero. The acuity
parameter of the COBWEB, controls the resolution of discrimination, i.e., the minimum standard
deviation taken into account.

3.4 Visualization and Evaluation Unit

Two main representations have been used to assess the quality of the model. A dendrogram allows
a visualization of the taxonomic structure. The branch length represents the distance from the cen-
troid of each node to its parent. The radius of the node markers are proportional to the quantity of
instances. The darkness represents the distance between the spread vectors of nodes and their par-
ents. Finally, the labels show the name of the node and the class of maximal frequency occurrence
in the node when the groundtruth is available. The interactive scatter plot allows sonification and
visualization of all the instances that have input the categorization unit. Each instance is represented
by a marker identifying the cluster to which it belongs.

A new application of the Strahler number is introduced in this paper. The Strahler number is a
measure of rooted tree complexity and has been lately revised to enable its application to non-binary
trees [13]. This measure allows us to evaluate the dynamics of the hierarchical clustering, such as
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the states of stabilization. The Strahler number calculation used in this paper is the following:

σ(s) =

{

1 if s is leaf
max (σ(si) + i)

0≤i≤k otherwise (2)

wheresi are the children ofs in an order such thatσ(si) ≤ σ(sj), if i < j.

Several approaches have addressed the problem of quantitative evaluation of unsupervised incre-
mental clustering techniques. However in most cases the evaluation is based and compared to non-
incremental techniques, diminishing focus on the interestand goal of incremental unsupervised
approaches. In these cases, additionally to the content of clusters, the amount of them and their
assignment to groundtruth classes must be evaluated.

In [9], three elements of the learning process are considered for the evaluation. The knowledge
base, the performance task and the environment. The knowledge base analysis is performed here by
comparing the dendrogram results to musicology studies. The performance element quantifies the
inference ability of the model, and the environment evaluation tests the incremental nature of the
model.

We present a new evaluation method, the incremental clustering F-measure. Differently to the other
evaluations of incremental clustering techniques such as prediction accuracy or flexible prediction
[9, 14, 11], our evaluation is focused on the incremental clustering performance in the context of
transcription for pattern discovery tasks. In this situation the focus goes towards the dynamics of the
system during training. Therefore the system is exposed to an annotated set of instances. Although
the instances keep the original labels, these are not used during clustering. We then use a new
measure of precision and introduce a measure of recall for the resulting cluster configuration, the
leaves of the unpruned cluster hierarchy. This allows us to directly apply well known methods of
evaluation such as the F-measure. In contrast to the prediction accuracy, we create a stable evaluation
measure by considering several hypotheses of class assignment to the clusters, and integrate them
by taking an average of their precision and recall measures weighted by each class frequency of
occurrence.

In pattern discovery tasks two main situations of the clustering must be penalized: the mixture of
instances of different classes into one same cluster and thedistribuion of instances of the same class
among different clusters. We consider three extreme configurations. The case in which all instances
are gathered in a single cluster and the case in which every instance has a different cluster assigned to
it, are trivial solutions that output no information and should receive the lowest evaluation possible.
This is in contrast to the case where all the instances of eachclass are gathered in a different and
unique cluster, which should be considered as the best solution.

Therefore, in a cluster configuration of a set of groundtruthclassesC and a set of clustersK, we
define the precision of a given classc in clusterk as the number of occurrences of classes other
thanc in clusterk, divided by the total number of occurrences of classes otherthanc. The recall
corresponds to the number of occurrences of classc in cluster minus onek divided by the total
number of occurrences of classc minus one, we substract one occurrence due to not considering
clusters that do not have any instances of a given class:

PIC(c, k) =







1 if
∑C

i6=c ni = 0

1 −
∑ C

i6=c
ni,k

∑

C
i6=c

ni
otherwise

(3)

RIC(c, k) =

{

1 if nc <= 1

max(
nc,k−1

nc−1
, 0) otherwise

(4)

wherenc,k is the number of occurrences of classc in clusterk, nc is the total number of occurrences
of classc. The pairs of precision and recall of each cluster are integrated to acheive precision and
recall measures per class. This is done by summing all the pairs of a class weighted by the number
of occurences of the class in each of the clusters:

PIC(c) =

∑

k∈K nc,kPIC(c, k)

nc

RIC(c) =

∑

k∈K nc,kRIC(c, k)

nc

(5)
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Figure 1: Pitch and duration category dendrogram (left), scatter plot (center) and F-Measure (right)
after exposure toHoquet.

The total precision and recall measures are the weighted sumof the per-class measures:

PIC =

∑

c∈C ncPIC(c)
∑

c∈C nc

RIC =

∑

c∈C ncRIC(c)
∑

c∈C nc

(6)

These new definitions of precision and recall solve some of the problems of applying the traditional
measures on incremental clustering configurations, such asthe trivial cases of all instances being
classified into one single cluster or one cluster created foreach instance. This new method allows
for a higher range of precision and recall values, permitingmore fine grained evaluations.

4 Results

Naturally, the evaluation of unsupervised methods is not straight forward as for classification. Since
no hierarchical taxonomy of musical entities is available against which the results can be matched,
the results are qualitatively evaluated in the light of music theory.

4.1 Pitch Categories

We present the results of our system exposed toHoquet. In this run the acuity for COBWEB/3 has
been set as close as possible to the minimum differences in input data. The parameter is set to 0.02
in order to capture differences of a quarter of a half-tone. The acuity of the duration is set to 0.2.
For visualization and analysis purposes the dendrogram hasbeen pruned to a threshold of 2. Node
divisions with one of the nodes under the threshold are removed.

From the scatter plot in Figure 1 (center) we can see that the data set is essentially one dimen-
sional (dominated by the frequency dimension). During clustering, categories for the 4 main pitches
emerged (vertical accumulation of circles for Node 1.2, pentagons for Node 1.4, upright triangles for
Node 1.3 and upside down triangles for Node 2). Node 1.1 consists of one large cluster stretching in
horizontal direction with big overlap with the other ones. It contains noise and missclassifications.
The fifth pitch of rather impulsive high notes aroundf2 is not captured by a separate cluster, but
rather mostly classified together with Node 2. In the dendrogram, Figure 1 (left), two nodes appear
to represent the notef1, Node 1.1 however is a mixture of errors from the feature extractor and its
label is meaningless, this can be induced from the high distance from its parent node compared to
the rest of nodes in the branch.

The F-Measure curve in Figure 1 shows a convergence of the score with a final value of 88.6 %.
The convergence of the curve begins at around 12 events. The instability of the first events of the
clustering are due to low initial recall values that are compensated later in the process by the COB-
WEB merging operations. This means that any operation performed on the output of such clustering
algorithm will require tracking such operations in order tomake use of such compensations.
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Figure 2: Motivic clustering dendrogram (left) and F-measure plot (right) after exposure to Bach
Inventio no IV.

Figure 3: The first 15 bars of Bach’sInventio no IV. The bar-long motives from [15]’s analysis are
indicated: a, a1, a2, a3, a5, b’, b”.

4.2 Motivic Categories

In this section, we first present the results of our system exposed to the BachInventio no IV, com-
posed of a total of 28 instances (14 two-voice bars). The acuity parameter for the COBWEB/3 has
been set to minimum possible variation of the input data. Since the input data are scale degree inter-
vals the minimum possible interval is 0.5. We show the resulting dendogram at different instants of
the run and the evolution of the F-Measure.
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Figure 4: Harmonic clustering dendrogram after one run (left). Strahler number (mean and standard
deviation) evolution after 30 exposure to shuffled versionsof the Austrian folksong dataset (right).

In Figure 2 we observe that the clustering space evolves incrementally along the arrival of every
new bar and the evaluation of it calculated by the use of F-Measure presented in Section 3.4. The
dendrogram of Figure 2 (left) shows the cluster configuration at certain interesting points in time,
such as the apparition of new annotated patterns, see Figure3. At the first bar the model has created
one cluster forsilenceNode 1 and one for motivea Node 2. After 3 bars the cluster configuration
consists of two new nodes Node 1 and Node 2.2 representing motivesa1anda2 respectevily.

The F-Measure in Figure 2 shows a score of 90.2% according to the groundtruth data in Figure 3.
The curve maintains a score between 80% and 100% during the sequence, presenting local minimas
at clustering errors, such as in Bars 4, 8, 10 and 12, where instances of classesb” , a3, a2anda1are
assigned to incorrect clusters respectively.

4.3 Harmonic Hierarchy

We present the results of our system exposed to the Austrian folksongs. In this run the acuity for
COBWEB/3 has been set as close as possible to the minimum differences in input data. In this case
the smallest difference in an attribute of a pitch profile is the value added by a shortest note in the
lowest metrical weight position. By analyzing the scores wefind that this would correspond to a 16th
note in a position of metrical weight 1/4, assuming a maximumtempo of 120 and a time signature
of 4/4, this would result in a smallest possible difference of 0.03125. To avoid over-complexity of
the taxonomy we have set the value of the acuity to 0.05. For visualization and analysis purposes
the dendrogram has been pruned to a threshold of 50 (approx. 5% of the total). Node divisions with
one of the nodes under the threshold are removed.

To evaluate the importance of order of exposure we have repeated the experiment 30 times with
different order of presentation of the songs processed. We analyzed the set of resulting hierarchies
using the Strahler number complexity measure. We hereby present the entire result of one of the
runs and the evolution of the mean bounded by the standard deviation of the Strahler number over
all runs.

Figure 4 (left) shows the dendrogram generated after being exposed to 94 folk songs. Figure 5 entails
a detailed representation of the centroids and spreads of the nodes. In the root node on top we see
the profile of the diatonic major scale. This profile can be seen as the tonal essence of the folk song
collection. The root node splits into two subsequent nodes:Node 1 (542 instances) characterizes the
major triad which is dominant in Austrian folk song serving as a foil for the Viennese Classic ex-
tensively featuring the triad (especially the tonic one). Node 2 (628 instances) captures the diatonic
major scale with deemphasized tonic and third note. Node 1 further splits into four nodes (third row
of Figure 5): Each of the Nodes 1.1, 1.3, 1.4 represents one tone of the triad. This corresponds to
the fact that long notes in the Austrian folk songs are mostlythe triad notes, especially the tonic note
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Figure 5: Harmonic clustering main hierarchy (centroid andspread of each cluster) after one expo-
sure to the Austrian folksong dataset.

(e.g. in the end of a piece) reflected by the relatively large number of instances (172). Node 2 splits
into three nodes. Node 2.1 reveals a feature in the Austrian folk songs: The embellishments around
the third note including chromatic shades, i.e. some non-diatonic notes between I-II, and IV-V ap-
pear. Node 2.3 (177) clearly depicts the well-known dominant seventh chord. Node 2.2 contains
various scale runs on the diatonic scale. The latter furthersplits into three subnodes: Subnode 2.2.1
(142 instances) originates in a typical pattern consistingof a scale fragment (or a third-fifth jump)
mounting up to the sixth and then returning. Subnode 2.2.2 encodes a scale fragment I-II-III, how-
ever the presence of the V and VII is not clear. Similarly, Subnode 2.2.3 seems to describe a scale
run from IV to I or serves a container of various substructures that reveal on the next-lower level.
The Strahler number (Figure 4) describing the complexity ofthe tree shows a stabilization during
exposure.

5 Conclusions and Future Work

We have presented a new approach to music listening modeling, by using a concept clustering tech-
nique for the incremental unsupervised online classification of musical events. This approach shows
two advantages in face of other traditional clustering methods. The first advantage is the direct gain
in information, given the taxonomy structure created by thehierarchical clustering process. This has
been showed by exposing the model to harmonic data which is inherently hierarchical. Secondly
the conceptual clustering allows classification at different resolution levels revealing clusters that
otherwise would be harder to find, such as in the results described when exposing the system to mo-
tivic data. We have represented motivic patterns as incremental means and variances of each of the
events. This allows to consider means highly prototypical when the variance is small. On the other
hand, components with high variances indicate features that are less significant for that category.

Overall, the model demonstrates interesting advances overtraditional techniques, however further
work will be needed to turn the system into a totally unsupervised process. Bar divisions and metrical
weights in harmonic categorization could be determined automatically to better process expressive
timing. Also motive processing should be extended from equal length to variable length motives.
Another limitation of the system is the use of a highly order-dependent categorization algorithm such
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as COBWEB/3, but the choice of such algorithm was based on its generality, not on its performance,
and now the system is prepared to accept any conceptual clustering technique.

Future research will involve studying further possibilities for incremental conceptual clustering tech-
niques more robust to the order of exposure. Another goal is the automatic tuning of the acuity mea-
sure or other resolution control parameters by higher ordercognition tasks such as pattern recogni-
tion and expectation [16]. Finally other timbral features will be included for better discrimination
and classification of events.
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