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Abstract

We introduce a generic model of emergence of musical caesyaiuring the

listening process. The model is based on a preprocessing @atkgorization

module. Preprocessing results in a perceptually plaus#geesentation of music
events extracted from audio or symbolic input. The categtion module lets
a taxonomy of musical entities emerge according to a cogtjtiplausible on-

line learning paradigm. We show the advantages of using eegnal clustering

method in the musical domain. The system extracts mulétlbierarchies and
can be tuned to clustering at various resolutions. The piaterf the model is ex-

emplified by exposing it to three different datasets resglin musical categories
of scales, motives, and harmonies consistent with musaryhe

1 Introduction

Our cognitively inspired system shows emergence of musaialgories during exposure to musical
phrases. The simulation environment is based on cognitivangls in the following respect: a)
the cognitive representation is modeled in a self-orgagizinsupervised fashion, b) input is pro-
cessed online and causally, ¢) categories incrementallyeand degenerate. The system is general
enough to be applied to different musical dimensions. Weatestnate the capacity of the model in
three musical domains: scales, melodic motives, and harmon

Models of unsupervised formation of 'cortical maps’ of tbtikes have been based on linear and non-
linear methods of dimension reduction [1]. [2] use ART fondynic clustering without extracting
hierarchies. Hierarchical clustering in batch mode has lagglied to chords by [3].

With regard to motivic categorization, most of the apprascfocus on both segmentation and pat-
tern similarity measures. Language and rule-based modeis been introduced [4] in order to
extract hierarchical or syntactical representations efslquences, which are later compared using
edit-distance and other domain-specific distances. Anatbeof models considers multidimen-
sional input and searches for exact repetition along edtdreint dimension [5]. Due to the nature
of these methods, the input data must be quantized to obtairrect behavior.

We present models and experiments that address thesemsoblée harmonic categorization ex-
periment shows the strength of hierarchical clusteringmtie data is inherently structured. The
motivic clustering experiment acts by continuously getiegaa hierarchical structure of distance
relations between the motives and motivic prototypes thaeheen segmented. This allows to find
motives at different similarity importance and to learnamplete and fuzzy motivic patterns, and
to be directly applicable to non-symbolic data.



2 System overview

The model presented in this paper is part of a larger systdeddhe Music Projector. The system

consists of the following units: 1) musical performance @yboard or music scores parser, 2)
preprocessing, 3) categorization, 4) pattern matchingcantpletion, 5) visualization, sonification,

and evaluation.

The goal of the system is to create a framework for buildinggoatational models of human music
listening tasks. The output of each run can be visualizemgusiseries of interactive plots allowing
the user to explore the taxonomic hierarchies emerged gitiie process. This result is comple-
mented by a series of measures on the classification in asd@ghlight certain behaviors of the
models involved.

Our model consists of an implementation of the three firstsusfithe Music Projector. One aim of
the model is to demonstrate the emergence of musical hiecattaxonomies, and the usefulness of
the taxonomic information. The second objective of the @nésd system is to demonstrate how in-
cremental hierarchical clustering can perform onlinerigay with varying resolution. However the
model is applicable to any sequential features extracted ionline manner from musical phrases.

3 Unsupervised Hierarchical OnlineLearning

In this section we present the different datasets and tqakriused in our model as well as the
methods of evaluation and visualization of the results.

3.1 Datasets

In the first example, we show how the system can be used tacestrales from audio recordings.
We analyzeHoquet No. 28 from CD Il ofLes Voix du MondéZemp), a piece from the Mbenzele
pygmies in the Central African Republic recorded by Arom dadirelle. The piece is a song
described as vocal-instrumental hocketting. A woman’s&oegularly alternates with blow sounds
from a flute. It consists of a set of 3 main pitches (around 350, 453 Hz), corresponding to the
notesf!, g', and a 'high’a' one short impulsive exclamation (between 674-720 Hz, atgfif)
approximately one octave higher than the lowest main péob,one pitch (around 612 Hz, between
d? andeb?) always played by a flute. The flute tone is around a major sikthve the lowest main
pitch. The melody is highly repetitive. For the sake of siitip), this piece is suited to test the
algorithm’s ability to extract scales from audio.

The second dataset used in this paper is the Baantiongcf. Figure 3). We choose thaventions

by J.S. Bach as an example of extensive motivic musical wagiain the Humdrum Kern encoding
is used as representation that preserves the score inform@his dataset allows to show the interest
of conceptual clustering as a multiresolution clustergchnique, capable of clustering segmented
musical patterns and to create generalized patterns.

The third dataset processed is the Austrian monophonicsiatigs from the Essen folk song col-
lection [6] which will be used to demonstrate the emergerfdeaomonic representations. This is
a collection of 94 scores, containing a total of 1170 instan@ars). The songs are in Humdrum
Kern format containing all the information about bar digisj tonality and meter. The input to the
system has also been completed with metrical weight valesah event extracted using the timing
information from the score. This dataset serves us to detrateshe advantage of conceptual clus-
tering over traditional clustering techniques, by reveglieasonable relations between the clusters
that can be used for later processing.

3.2 Preprocessing Unit

This unit performs harmonic, motivic, and pitch preproaags The input is triplets of onset time,
duration and pitch. In the case of the harmonic processooniing bar wise segmented signals are
compressed into 12-dimensional vectors of pitch classash Eomponent in that vector corresponds
to the strength of one pitch class, determined by its frequehoccurrence, overall duration, inten-
sity and metric weight. The key of the piece is extracted fthenscore and the pitch class profile is



transposed so that the first entry is always the key notellfritha pitch classes are mapped to scale
degrees.

The motivic processor applies a first order difference td dath intervals of scale degrees. An
intervalc — df would be encoded as a scale degree interval of 1.5. Eachivdice Bachinventions

is processed separately. The segmentation is performethatitally. Autocorrelation is applied to
the 8 first half-bars (considered as an initial cue-findings#), deriving the length of the motives.
The beginning (anacrusis or not) of the motives is deterthimethe bar position of the first note.
Therefore, a musically plausible segmentation can be pegd based on the assumption that all
motives have same length and that their relative positidhiwva bar (anacrusis or not) is maintained
for all motives within the piece. The durations are quamtizEach duration is represented by an
adequate number of repeating 32th notes of the same toralfushe shortest note in the piece).

The pitch preprocessor acts as an audio front end, allowipgsition to audio recordings. The
task of the unit is to split the audio sample stream into umigarceptual events, such as notes.
The splitting of the stream is done by the use of a custom ateseictor based on the complex
domain method presented in [7]. It generates inter-onggheats. Finally the events are analyzed
and characterized by their duration and pitch which is estih using the multi comb method in
aubi opi t ch [8]. Non-pitched segments are filtered out.

3.3 Categorization Unit

The categorization unit implements clustering methodse TIOBWEB [9] serves as a generic
framework for hierarchical and incremental clusteringcticaode of the tree represents a concept,
characterized by the incremental means and standard idesdor each of the dimensions of the
incoming feature vector. The edges of the structure reptdagonomic relations. Further works
[10, 11] have proposed models to create, in an unsupervigethen, the concept tree based on
the sequence of data presented, by the use of a heuristitdiuric be maximized. The heuristic
function used in this paper is the numerical version of taedard category utility function used by
Fischer and introduced by Gluck and Corter [12]. Such verefdCOBWEB was presented in [10]
as COBWEB/3 and later extended by [11] as COBWEB/95. The versiesented is COBWEB/3
and allows the input of real value attributes and controlsghecificity:
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where K is the number of classes,, is the bounded standard deviation for attribit@ class

k, ando;p is the bounded standard deviation for attribiii@ the parent node, i.e., the no-class
membership case. This formulation adds a new parametethitbshold at which to bound the
standard deviation of the attributes per class in order to avoid divisions by zero. The acuity
parameter of the COBWEB, controls the resolution of disamation, i.e., the minimum standard
deviation taken into account.

3.4 Visualization and Evaluation Unit

Two main representations have been used to assess the gfidtie model. A dendrogram allows
a visualization of the taxonomic structure. The branch tlemgpresents the distance from the cen-
troid of each node to its parent. The radius of the node mardes proportional to the quantity of
instances. The darkness represents the distance betweespréad vectors of nodes and their par-
ents. Finally, the labels show the name of the node and tise oflamaximal frequency occurrence
in the node when the groundtruth is available. The intevacitatter plot allows sonification and
visualization of all the instances that have input the aati@gtion unit. Each instance is represented
by a marker identifying the cluster to which it belongs.

A new application of the Strahler number is introduced irs tbaper. The Strahler number is a
measure of rooted tree complexity and has been lately ettasenable its application to non-binary
trees [13]. This measure allows us to evaluate the dynanfiteedierarchical clustering, such as



the states of stabilization. The Strahler number calatatised in this paper is the following:

1 if sisleaf
J(S) = { max (0’(51-) + i)OSiSk otherwise (2)

wheres; are the children of in an order such that(s;) < o(s;), if i < j.

Several approaches have addressed the problem of quaetgatluation of unsupervised incre-
mental clustering techniques. However in most cases tHaati@n is based and compared to non-
incremental techniques, diminishing focus on the inteesgst goal of incremental unsupervised
approaches. In these cases, additionally to the conterlustiecs, the amount of them and their
assignment to groundtruth classes must be evaluated.

In [9], three elements of the learning process are congidfnethe evaluation. The knowledge
base, the performance task and the environment. The knge/lease analysis is performed here by
comparing the dendrogram results to musicology studieg. performance element quantifies the
inference ability of the model, and the environment evéduatests the incremental nature of the
model.

We present a new evaluation method, the incremental clngtErmeasure. Differently to the other
evaluations of incremental clustering techniques suchredigtion accuracy or flexible prediction
[9, 14, 11], our evaluation is focused on the incrementadteling performance in the context of
transcription for pattern discovery tasks. In this sitoatihe focus goes towards the dynamics of the
system during training. Therefore the system is exposed snaotated set of instances. Although
the instances keep the original labels, these are not us@ugdelustering. We then use a new
measure of precision and introduce a measure of recall érdhulting cluster configuration, the
leaves of the unpruned cluster hierarchy. This allows udrextly apply well known methods of
evaluation such as the F-measure. In contrast to the pi@uatcuracy, we create a stable evaluation
measure by considering several hypotheses of class assignotthe clusters, and integrate them
by taking an average of their precision and recall measumghted by each class frequency of
occurrence.

In pattern discovery tasks two main situations of the chirsgemust be penalized: the mixture of
instances of different classes into one same cluster anigtrébuion of instances of the same class
among different clusters. We consider three extreme corfiguns. The case in which all instances
are gathered in a single cluster and the case in which evstarioe has a different cluster assigned to
it, are trivial solutions that output no information and slibreceive the lowest evaluation possible.
This is in contrast to the case where all the instances of elasls are gathered in a different and
unique cluster, which should be considered as the besi@olut

Therefore, in a cluster configuration of a set of groundtalisse<” and a set of clusterk’, we
define the precision of a given classn clusterk as the number of occurrences of classes other
thanc in clusterk, divided by the total number of occurrences of classes dtiarc. The recall
corresponds to the number of occurrences of ctasscluster minus oné: divided by the total
number of occurrences of clagsninus one, we substract one occurrence due to not congiderin
clusters that do not have any instances of a given class:
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wheren, j, is the number of occurrences of clags clusterk, n. is the total number of occurrences
of classe. The pairs of precision and recall of each cluster are iategrto acheive precision and
recall measures per class. This is done by summing all thie pha class weighted by the number
of occurences of the class in each of the clusters:

ZkEK nc,kPIC(C7 k) ZkeK nc,kRIC'(Cy k)
= IC(C) =

P
IC(C) e e

®)



F-Measure
=4 4
e - S

Duration (s)

0.4

@l«-«« <«
. .
-

%""QQ
>

. ]
09T 707 14 22 320 462 607 962 00 50 100 150 200 250 300

Estimated Frequency (Hz) Number of Events

Figure 1: Pitch and duration category dendrogram (lefgitec plot (center) and F-Measure (right)
after exposure téloquet

The total precision and recall measures are the weighted$time per-class measures:

ZCGC nCPIC(C) RIC _ ZCGC nCRIC(C) (6)
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These new definitions of precision and recall solve someaptbblems of applying the traditional
measures on incremental clustering configurations, sutheasivial cases of all instances being
classified into one single cluster or one cluster create@#ch instance. This new method allows
for a higher range of precision and recall values, permitirage fine grained evaluations.

Prc =

4 Resaults

Naturally, the evaluation of unsupervised methods is matgtt forward as for classification. Since
no hierarchical taxonomy of musical entities is availatgaiast which the results can be matched,
the results are qualitatively evaluated in the light of raukieory.

4.1 Pitch Categories

We present the results of our system exposdddquet In this run the acuity for COBWEB/3 has
been set as close as possible to the minimum differencegpin data. The parameter is set to 0.02
in order to capture differences of a quarter of a half-tonke &cuity of the duration is set to 0.2.
For visualization and analysis purposes the dendrogranhéms pruned to a threshold of 2. Node
divisions with one of the nodes under the threshold are rechov

From the scatter plot in Figure 1 (center) we can see that &ite skt is essentially one dimen-
sional (dominated by the frequency dimension). Duringteltisg, categories for the 4 main pitches
emerged (vertical accumulation of circles for Node 1.2 tagons for Node 1.4, upright triangles for
Node 1.3 and upside down triangles for Node 2). Node 1.1 stssf one large cluster stretching in
horizontal direction with big overlap with the other onescdntains noise and missclassifications.
The fifth pitch of rather impulsive high notes arouyiéi is not captured by a separate cluster, but
rather mostly classified together with Node 2. In the dendnag Figure 1 (left), two nodes appear
to represent the notg', Node 1.1 however is a mixture of errors from the featureagtar and its
label is meaningless, this can be induced from the highmtistérom its parent node compared to
the rest of nodes in the branch.

The F-Measure curve in Figure 1 shows a convergence of the sdgth a final value of 88.6 %.
The convergence of the curve begins at around 12 events.n8tability of the first events of the
clustering are due to low initial recall values that are cengated later in the process by the COB-
WEB merging operations. This means that any operation pagdmon the output of such clustering
algorithm will require tracking such operations in ordeniake use of such compensations.
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Figure 2: Motivic clustering dendrogram (left) and F-measplot (right) after exposure to Bach
Inventio no IV

Invention #4 - BWV 775
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Figure 3: The first 15 bars of Bachisventio no IV The bar-long motives from [15]'s analysis are
indicated: a, al, a2, a3, a5, b’, b".

4.2 Motivic Categories

In this section, we first present the results of our systenoseg to the Bachnventio no 1V com-
posed of a total of 28 instances (14 two-voice bars). Thetaparameter for the COBWEB/3 has
been set to minimum possible variation of the input datacé&the input data are scale degree inter-
vals the minimum possible interval is 0.5. We show the r@syllendogram at different instants of
the run and the evolution of the F-Measure.



Dendrogram Mean and standard deviation after 30 runs
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Figure 4: Harmonic clustering dendrogram after one rur)(I&trahler number (mean and standard
deviation) evolution after 30 exposure to shuffled versiafrithe Austrian folksong dataset (right).

In Figure 2 we observe that the clustering space evolvegimentally along the arrival of every

new bar and the evaluation of it calculated by the use of Fedeapresented in Section 3.4. The
dendrogram of Figure 2 (left) shows the cluster configuratibcertain interesting points in time,

such as the apparition of new annotated patterns, see Rgétehe first bar the model has created
one cluster fosilenceNode 1 and one for motiva Node 2. After 3 bars the cluster configuration
consists of two new nodes Node 1 and Node 2.2 representingerafl anda2 respectevily.

The F-Measure in Figure 2 shows a score of 90.2% accordingetgroundtruth data in Figure 3.
The curve maintains a score between 80% and 100% during gloeisee, presenting local minimas
at clustering errors, such as in Bars 4, 8, 10 and 12, whetanoss of classds’, a3, a2andal are
assigned to incorrect clusters respectively.

4.3 Harmonic Hierarchy

We present the results of our system exposed to the Auswlasdings. In this run the acuity for
COBWEB/3 has been set as close as possible to the minimumettifes in input data. In this case
the smallest difference in an attribute of a pitch profilehis Value added by a shortest note in the
lowest metrical weight position. By analyzing the scoreding that this would correspond to a 16th
note in a position of metrical weight 1/4, assuming a maxintampo of 120 and a time signature
of 4/4, this would result in a smallest possible differen€®.03125. To avoid over-complexity of
the taxonomy we have set the value of the acuity to 0.05. FRualization and analysis purposes
the dendrogram has been pruned to a threshold of 50 (app¥orf e total). Node divisions with
one of the nodes under the threshold are removed.

To evaluate the importance of order of exposure we have tegdéhe experiment 30 times with

different order of presentation of the songs processed. n&lyzed the set of resulting hierarchies
using the Strahler number complexity measure. We herelseptehe entire result of one of the
runs and the evolution of the mean bounded by the standardtievof the Strahler number over

all runs.

Figure 4 (left) shows the dendrogram generated after beingsed to 94 folk songs. Figure 5 entails
a detailed representation of the centroids and spread® ofdties. In the root node on top we see
the profile of the diatonic major scale. This profile can bensesthe tonal essence of the folk song
collection. The root node splits into two subsequent nobleste 1 (542 instances) characterizes the
major triad which is dominant in Austrian folk song servirgyafoil for the Viennese Classic ex-
tensively featuring the triad (especially the tonic onepdl 2 (628 instances) captures the diatonic
major scale with deemphasized tonic and third note. Nodethdusplits into four nodes (third row
of Figure 5): Each of the Nodes 1.1, 1.3, 1.4 represents aredbthe triad. This corresponds to
the fact that long notes in the Austrian folk songs are mdhttriad notes, especially the tonic note
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Figure 5: Harmonic clustering main hierarchy (centroid aptead of each cluster) after one expo-
sure to the Austrian folksong dataset.

(e.g. in the end of a piece) reflected by the relatively lang@lper of instances (172). Node 2 splits
into three nodes. Node 2.1 reveals a feature in the Austolrebngs: The embellishments around
the third note including chromatic shades, i.e. some naindic notes between I-1l, and IV-V ap-
pear. Node 2.3 (177) clearly depicts the well-known domirssventh chord. Node 2.2 contains
various scale runs on the diatonic scale. The latter fugpbis into three subnodes: Subnode 2.2.1
(142 instances) originates in a typical pattern consistihg scale fragment (or a third-fifth jump)
mounting up to the sixth and then returning. Subnode 2.2cBdes a scale fragment I-11-111, how-
ever the presence of the V and VIl is not clear. Similarly, iSude 2.2.3 seems to describe a scale
run from IV to | or serves a container of various substrucutet reveal on the next-lower level.
The Strahler number (Figure 4) describing the complexittheftree shows a stabilization during
exposure.

5 Conclusions and Future Work

We have presented a new approach to music listening modélngsing a concept clustering tech-
nigue for the incremental unsupervised online classificatif musical events. This approach shows
two advantages in face of other traditional clustering roésh The first advantage is the direct gain
in information, given the taxonomy structure created byhileearchical clustering process. This has
been showed by exposing the model to harmonic data whictherémtly hierarchical. Secondly
the conceptual clustering allows classification at diffénesolution levels revealing clusters that
otherwise would be harder to find, such as in the results testwhen exposing the system to mo-
tivic data. We have represented motivic patterns as inaneaheeans and variances of each of the
events. This allows to consider means highly prototypidaémthe variance is small. On the other
hand, components with high variances indicate featurastiedess significant for that category.

Overall, the model demonstrates interesting advancestditional techniques, however further
work will be needed to turn the system into a totally unsuea process. Bar divisions and metrical
weights in harmonic categorization could be determinedraatically to better process expressive
timing. Also motive processing should be extended from ebanagth to variable length motives.

Another limitation of the system is the use of a highly ordependent categorization algorithm such



as COBWERB/3, but the choice of such algorithm was based oritsrglity, not on its performance,
and now the system is prepared to accept any conceptuaghgstechnique.

Future research will involve studying further possibégifor incremental conceptual clustering tech-
nigues more robust to the order of exposure. Another gohkiatitomatic tuning of the acuity mea-
sure or other resolution control parameters by higher ardgnition tasks such as pattern recogni-
tion and expectation [16]. Finally other timbral featureidl tve included for better discrimination
and classification of events.

Acknowledgments

This work is funded by EU Open FET IST-FP6-013123 (EmCAP) andSpanish TIC project ProSeMus
(TIN2006-14932-C02-01). Thanks to Hans Peter Reutter for adriogusic theory [17] and to Ines Salselas
for preparing musical data. Thanks are due to Perfecto Herretasfaomments.

References

[1] Hendrik Purwins.Profiles of Pitch Classes - Circularity of Relative Pitch and Key: Experiméntsiels,
Computational Music Analysis, and PerspectivielD thesis, Berlin University of Technology, 2005.

[2] 1. Taylor and M. Greenhough. Modeling pitch perception with ad&ptesonance theory artificial neural
networks.Connection Scien¢®(2-3):135-154, 1994. Journals Oxford Ltd.

[3] M. C. Mozer. Neural network music composition by prediction: Exjpig the benefits of psychoacoustic
constraints and multi-scale processi@pnnection Scien¢é(2 & 3):247-280, 1994.

[4] Rens Bod. A unified model of structural organization in languageraasic.Journal of Artificial Intelli-
gence Resear¢ii7:289-308, 2002.

[5] D. Meredith, K. Lemstrom, and G. Wiggins. Algorithms for discoveriepeated patterns in multidimen-
sional representations of polyphonic musilournal of New Music ResearcB1(4):321-345, 2002.

[6] H. Schaffrath. The essen folksong collection in the humdrum kemmét, 1995.

[7] C. Duxbury, J. Bello, M. Davies, and M. Sandler. Complex domaised detection for musical signals.
Proceedings Digital Audio Effects Workshop (DAFR2Q03.

[8] Paul Brossier.Automatic Annotation of Musical Audio for Interactive ApplicatiohD thesis, Queen
Mary University of London, UK, August 2006.

[9] Douglas H. Fisher. Knowledge acquisition via incremental concéptlustering. Mach. Learn,
2(2):139-172, 1987.

[10] K. McKusick and K. Thompson. Cobweb 3: A portable implementatidechnical Report No. FIA-90-
6-18-2 1990.

[11] Jungsoon Yoo and Sung Yoo. Concept formation in numeric dmndn CSC '95: Proceedings of the
1995 ACM 23rd annual conference on Computer sciepages 36—41, New York, NY, USA, 1995. ACM
Press.

[12] M. Gluck and J. Corter. Information, uncertainty, and the utility degaries.Proceedings of the Seventh
Annual Conference of the Cognitive Science Socpatges 283—287, 1985.

[13] David Auber, Maylis Delest, Jean-Philippe Domenger, Ph. Duchod Jean-Marc Fdou. New Strahler
numbers for rooted plane tree®roceedings of the Third Colloquium on Mathematics and Computer
Sciencepages 203-214, 2004.

[14] Kathleen B. McKusick and Pat Langley. Constraints on tree stregtuconcept formation. IhWCAI,
pages 810-816, 1991.

[15] O. Lartillot and P. Toiviainen. Motivic matching strategies for auttenapattern extractionMusicae
Scientiae Disco.4A/RR:281-314, 2007.

[16] A. Hazan, P. Brossier, P. Holonowicz, P. Herrera, and Hwihg. Expectation along the beat: A use
case for music expectation models. Rroceedings of International Computer Music Conference 2007
Copenhagen, Denmark, 2007.

[17] Hans Peter Reutter. Approach to a melodic analysis of severdfidugolk songs seen from a music
theoretical point of view. http://www.satzlehre.de, 2006.



