
Concatenative Synthesis of Expressive
Saxophone Performance
Stefan Kersten∗, Esteban Maestre∗, Rafael Ramirez∗

∗Music Technology Group, Universitat Pompeu-Fabra, Barcelona, Spain

Abstract—In this paper we present a systematic approach
to applying expressive performance models to non-expressive
score transcriptions and synthesizing the results by means of
concatenative synthesis. Expressive performance models are
built from score transcriptions and recorded performances
by means of decision tree rule induction, and those models
are used both to transform inexpressive input scores and to
guide the concatenative synthesizer unit selection.

I. INTRODUCTION

In the past, important approaches to expressive perfor-
mance modeling have been empirical methods based on
statistical analysis, mathematical modeling, and “analysis-
by-synthesis” (see the summary provided in [1]). In all
these approaches, it is a person who is responsible for
devising a theory or a mathematical model which captures
different aspects of musical expressive performance. The
theory or model is later tested on real performance data
in order to determine its accuracy.

Our approach as well as the one described in [1] is
based on building computational models of expressive
performance by machine learning, in our case inductive
logic decision tree models. Those models are used to
predict expressive transformations for inexpressive scores
as well as guiding sample database note selection and
transition modeling in a concatenative saxophone synthe-
sizer.

II. EXPRESSIVE PERFORMANCE ANALYSIS

Figure 1 gives an overview of the functional parts of
the expressive performance analysis and synthesis system.

Sample DB

Annotated
Score

Sample transformation
and concatenation

Sample
Annotations

Sample Search
(Viterbi state matching)

Performance
Model

Inexpressive
Score

Synthesized
Performance

Fig. 1. Expressive performance analysis and synthesis system overview.

Modeling of expressive performance involves analysis
of recorded performances of a musical piece and the com-
parison of the symbolical information extracted with the
one present in the score in order to build a computational

model for a particular performer in a particular style of
music.

Our approach can be divided into three distinct steps:
In a preprocessing stage low- and high-level perceptive
features are extracted from a short-time fourier transform
(STFT) representation of the musical audio recording and
are grouped into a note-level transcription (Fig. 2). The
transcribed representation is aligned to the symbolic score
in a second step and finally a computational model of the
performance’s characteristics is built.

A. Note segmentation and feature extraction

In this section we shall be concerned with extracting
the symbolic note-level descriptors from a performance
recording that are needed both for building the compu-
tational performance model and for synthesizing a score
enriched with expressivity annotations.

Most of the features are calculated from a short-
time fourier transition (STFT) signal representation, i.e.
overlapping frames of time-domain audio data that are
multiplied by a window function and transformed to
the frequency domain by the discrete fourier transform
(DFT). In our descriptor database we used a frame size
of 1024 with an overlap of 50% at a sample rate of
44100 kHz. The window function used is a Kaiser-Bessel
window [2] with a 25dB side-lobe to main-lobe ratio.

The main low-level features used for describing expres-
sive performance are fundamental frequency and mean
energy. Log-mean-energy is extracted from a time domain
representation using frames of size 1024 with a 50%
overlap weighted by a Blackman-Harris window w of
length N according to (1).

En = 20 log
∑m=∞

m=−∞[x(m)w(n−m)]2

N
(1)

Instantaneous fundamental frequency is extracted fol-
lowing the two-way mismatch procedure described in [3]
and [4]. In order to obtain a “brightness” measure, the
spectral centroid of the discrete spectrum X(n) of size
N is extracted according to (2).

Fcentroid =
∑n=N−1

n=0 f(n)|X(n)|∑n=N−1
n=0 |X(n)|

(2)

Note segmentation is performed in a two-step algorithm
based on descriptors extracted from the spectral signal
representation. First, an onset function is calculated based
on energy envelopes in different bands and by applying

Note onset
Note offset
Note duration
Fundamental Frequency
Mean energy
Energy envelope attack time
Energy envelope sustain init level
Energy envelope sustain end level
Energy envelope sustain time
Energy envelope release time
Legato left
Legato right
Mean spectral centroid

TABLE I
FEATURES EXTRACTED DURING PRE-PROCESSING

psycho-acoustical knowledge [5]. In a second step, the
onset function is combined with a pitch-transition function
to yield the final note onset and offset detection function.

STFT frame description

Note segmentation

Intra-note segmentation
and description

Note feature analysis

Inter-note segmentation
and description

● F0 estimation
● Energy
● Spectral centroid

● Note onset and duration

● Pitch
● Mean energy
● Mean spectral centroid

● Attack, sustain, release times
● Energy slopes
● Energy begin/end values

● Legato descriptor

Fig. 2. Feature extraction for Expressive Performance Analysis.

The note-level feature j is calculated from the frame-
based feature values by calculating the mean value over
the analysis frame indices contained in the ith note’s onset
and offset times expressed in terms of analysis frames kon
and koff (3). In the case of note fundamental frequency
and pitch estimation a histogramming approach according
to [6] is employed, in order to smooth out large errors in
instantaneous fundamental frequency extraction.

Fj(i) =

∑koff
k=kon

Fj(k)
koff − kon

(3)

Once note onsets and offsets have been determined,
energy envelope attack and release times and the corre-
sponding energy levels are extracted along with a legato
descriptor, that captures the “smoothness” of transition
between two successive notes [7]. Table I lists all of the
features being used either by the model generation step,
the concatenative synthesizer or both.

Notes –or units– extracted from performance audio files
are organized in a file-system based database containing
phrase- and note-level information in XML files and
accompanying PCM audio files and binary analysis files
used by the synthesizer.

B. Modeling of expressive performance

The symbolic representation obtained in the analy-
sis step is aligned to the symbolic score by dynamic

timewarping and subsequent manual resolution of errors.
Since a score note only contains a limited amount of
useful information for expressivity analysis, an attempt
was made to capture and associate more meaningful
musical context with each individual score note. For this
purpose the Implication/Realization model described in
[8] is used, which describes relationships within a set
of notes with regard to registral direction and intervallic
difference.

The principle of registral direction states that small
intervals imply a following interval in the same registral
direction (a small upward interval implies another upward
interval and analogously for downward intervals), and
large intervals imply a change in registral direction (a
large upward interval implies a downward interval and
analogously for downward intervals). Based on these two
principles, melodic patterns or groups can be identified
that either satisfy or violate the implication as predicted
by the principles.

2.6 Note clustering
Once each of the notes in the audio recordings has been

characterized by its intra-note features as described above,
we proceed to apply a k-means clustering algorithm to iden-
tify groups of similar notes. This clustering of notes is moti-
vated by the fact that we are interested in devising a mech-
anism to determine in which musical context a particular
type of note (e.g. a note with a very sharp attack) should
be played. In the folowing section we tackle this problem by
inducing a classifier whose input is a particular note musi-
cal context and its output is a class representing a particular
cluster of notes. For synthesis purposes we simply select the
most convenient note within the selected cluster and modify
the note to fit our context.

3. LEARNING THE EXPRESSIVE PERFOR-
MANCE MODEL

In this section, we describe our inductive approach for
learning an expressive music performance model from per-
formances of Jazz standards. Our aim is to obtain a model
capable of endowing a computer generated music perfor-
mance with the expressiveness that characterizes human gen-
erated music. That is to say, we intend to generate automat-
ically human-like expressive performances of a piece given an
inexpressive description of the piece (e.g. a textual descrip-
tion of its score). We are aware of the fact that not all the
expressive transformations performed by a musician can be
predicted at a local note level. Musicians perform music
considering a number of abstract structures (e.g. musical
phrases) which makes of expressive performance a multi-
level phenomenon. In this context, our aim is to obtain a
computational model of expressive performance which com-
bines note-level and structure-level information. As a first
step in this direction, we have based our musical analysis
on the implication/realization model, proposed by Narmour
[26]. The Implication/Realization model is a theory of per-
ception and cognition of melodies. The theory states that a
melodic musical line continuously causes listeners to gener-
ate expectations of how the melody should continue. Any
two consecutively perceived notes constitute a melodic in-
terval and if this interval is not conceived as complete, it is
an implicative interval, i.e. an interval that implies a sub-
sequent interval with certain characteristics. That is to say,
some notes are more likely than others to follow the im-
plicative interval. Two main principles recognized by Nar-
mour concern registral direction and intervallic difference.
The principle of registral direction states that small inter-
vals imply an interval in the same registral direction (a small
upward interval implies another upward interval and anal-
ogously for downward intervals), and large intervals imply
a change in registral direction (a large upward interval im-
plies a downward interval and analogously for downward
intervals). Based on these two principles, melodic patterns
or groups can be identified that either satisfy or violate the
implication as predicted by the principles. Figure 1 shows
prototypical Narmour structures.

A note in a melody often belongs to more than one struc-
ture, i.e. a description of a melody as a sequence of Narmour
structures consists of a list of overlapping structures. We
parse each melody in the training data in order to automat-
ically generate an implication/realization analysis.Figure 2
shows the analysis for a fragment of All of me.

Figure 1: Prototypical Narmour structures

Figure 2: Narmour analysis of All of Me

3.1 Training data
The training data used in our experimental investigations

are monophonic recordings of four Jazz standards (Body and
Soul, Once I Loved, Like Someone in Love and Up Jumped
Spring) performed by a professional musician at 11 differ-
ent tempos around the nominal tempo. For each piece, the
nominal tempo was determined by the musician as the most
natural and comfortable tempo to interpret the piece. Also
for each piece, the musician identified the fastest and slowest
tempos at which a piece could be reasonably interpreted. In-
terpretations were recorded at regular intervals around the
nominal tempo (5 faster and 5 slower) within the fastest-
slowest tempo limits. The data set is composed of 4360
performed notes. Each note in the training data is anno-
tated with its corresponding performed characteristics and
a number of attributes representing both properties of the
note itself and some aspects of the context in which the note
appears. Information about the note include note duration
and the note metrical position within a bar, while infor-
mation about its melodic context include performed tempo,
information on neighboring notes as well as the Narmour
group in which the note appears in third position.

3.2 Learning task
In this paper, we are concerned with note-level expres-

sive transformations, in particular transformations of note
duration, onset, energy and note type. Initially, for each
expressive transformation, we approach the problem as a
classification problem, e.g. for note duration transforma-
tion we classify each note to belong to one of the classes
lengthen, shorten or same. Once we obtain a classification
mechanism capable of classifying all notes in our training
data, we apply a regression algorithm in order to produce a
numerical value representing the amount of transformation
to be applied to a particular note (in the case of note type
we apply a nearest neighbor algorithm to obtain the index
of the most suitable note within the selected cluster). The
complete algorithm is detailed in the next section.

The performance classes that interest us are lengthen,
shorten and same for duration transformation, advance, de-
lay and same for onset deviation, and soft, loud and same
for energy variation. A note is considered to belong to class
lengthen, if its performed duration is 20% longer (or more)
that its nominal duration, e.g. its duration according to
the score. Class shorten is defined analogously. A note is
considered to be in class advance if its performed onset is
5% of a bar earlier (or more) than its nominal onset. Class
delay is defined analogously. A note is considered to be
in class loud if it is played louder than its predecessor and

2161

Fig. 3. Prototypical Narmour structures

2.6 Note clustering
Once each of the notes in the audio recordings has been

characterized by its intra-note features as described above,
we proceed to apply a k-means clustering algorithm to iden-
tify groups of similar notes. This clustering of notes is moti-
vated by the fact that we are interested in devising a mech-
anism to determine in which musical context a particular
type of note (e.g. a note with a very sharp attack) should
be played. In the folowing section we tackle this problem by
inducing a classifier whose input is a particular note musi-
cal context and its output is a class representing a particular
cluster of notes. For synthesis purposes we simply select the
most convenient note within the selected cluster and modify
the note to fit our context.

3. LEARNING THE EXPRESSIVE PERFOR-
MANCE MODEL

In this section, we describe our inductive approach for
learning an expressive music performance model from per-
formances of Jazz standards. Our aim is to obtain a model
capable of endowing a computer generated music perfor-
mance with the expressiveness that characterizes human gen-
erated music. That is to say, we intend to generate automat-
ically human-like expressive performances of a piece given an
inexpressive description of the piece (e.g. a textual descrip-
tion of its score). We are aware of the fact that not all the
expressive transformations performed by a musician can be
predicted at a local note level. Musicians perform music
considering a number of abstract structures (e.g. musical
phrases) which makes of expressive performance a multi-
level phenomenon. In this context, our aim is to obtain a
computational model of expressive performance which com-
bines note-level and structure-level information. As a first
step in this direction, we have based our musical analysis
on the implication/realization model, proposed by Narmour
[26]. The Implication/Realization model is a theory of per-
ception and cognition of melodies. The theory states that a
melodic musical line continuously causes listeners to gener-
ate expectations of how the melody should continue. Any
two consecutively perceived notes constitute a melodic in-
terval and if this interval is not conceived as complete, it is
an implicative interval, i.e. an interval that implies a sub-
sequent interval with certain characteristics. That is to say,
some notes are more likely than others to follow the im-
plicative interval. Two main principles recognized by Nar-
mour concern registral direction and intervallic difference.
The principle of registral direction states that small inter-
vals imply an interval in the same registral direction (a small
upward interval implies another upward interval and anal-
ogously for downward intervals), and large intervals imply
a change in registral direction (a large upward interval im-
plies a downward interval and analogously for downward
intervals). Based on these two principles, melodic patterns
or groups can be identified that either satisfy or violate the
implication as predicted by the principles. Figure 1 shows
prototypical Narmour structures.

A note in a melody often belongs to more than one struc-
ture, i.e. a description of a melody as a sequence of Narmour
structures consists of a list of overlapping structures. We
parse each melody in the training data in order to automat-
ically generate an implication/realization analysis.Figure 2
shows the analysis for a fragment of All of me.

Figure 1: Prototypical Narmour structures

Figure 2: Narmour analysis of All of Me

3.1 Training data
The training data used in our experimental investigations

are monophonic recordings of four Jazz standards (Body and
Soul, Once I Loved, Like Someone in Love and Up Jumped
Spring) performed by a professional musician at 11 differ-
ent tempos around the nominal tempo. For each piece, the
nominal tempo was determined by the musician as the most
natural and comfortable tempo to interpret the piece. Also
for each piece, the musician identified the fastest and slowest
tempos at which a piece could be reasonably interpreted. In-
terpretations were recorded at regular intervals around the
nominal tempo (5 faster and 5 slower) within the fastest-
slowest tempo limits. The data set is composed of 4360
performed notes. Each note in the training data is anno-
tated with its corresponding performed characteristics and
a number of attributes representing both properties of the
note itself and some aspects of the context in which the note
appears. Information about the note include note duration
and the note metrical position within a bar, while infor-
mation about its melodic context include performed tempo,
information on neighboring notes as well as the Narmour
group in which the note appears in third position.

3.2 Learning task
In this paper, we are concerned with note-level expres-

sive transformations, in particular transformations of note
duration, onset, energy and note type. Initially, for each
expressive transformation, we approach the problem as a
classification problem, e.g. for note duration transforma-
tion we classify each note to belong to one of the classes
lengthen, shorten or same. Once we obtain a classification
mechanism capable of classifying all notes in our training
data, we apply a regression algorithm in order to produce a
numerical value representing the amount of transformation
to be applied to a particular note (in the case of note type
we apply a nearest neighbor algorithm to obtain the index
of the most suitable note within the selected cluster). The
complete algorithm is detailed in the next section.

The performance classes that interest us are lengthen,
shorten and same for duration transformation, advance, de-
lay and same for onset deviation, and soft, loud and same
for energy variation. A note is considered to belong to class
lengthen, if its performed duration is 20% longer (or more)
that its nominal duration, e.g. its duration according to
the score. Class shorten is defined analogously. A note is
considered to be in class advance if its performed onset is
5% of a bar earlier (or more) than its nominal onset. Class
delay is defined analogously. A note is considered to be
in class loud if it is played louder than its predecessor and

2161

Fig. 4. Prototypical Narmour structures

Figure 3 shows prototypical Narmour structures. A note
in a melody often belongs to more than one structure,
i.e. a description of a melody as a sequence of Narmour
structures consists of a list of overlapping structures.
We parse each melody in the training data in order to
automatically generate an implication/realization analysis.
Figure 4 shows the analysis for a fragment of the Jazz
standard All of me.

The resulting aligned sequences are cast into several
inductive logic models (see II-C), one for note onset
prediction, one for note duration prediction and one for
note transition (legato) prediction. The models –capturing
predictions for note onset and duration transformations–
can be applied to a non-expressive input score, e.g. a
MIDI or MusicXML description, to obtain an expressively
enriched score that includes the corresponding note onset
and duration transformations and expressive performance
annotations used in synthesis. The legato predictor in
particular is used to guide the sample selection process in
the concatenative synthesizer, described in III-B.

C. Learning of expressive performance models

For building a computational model of a set of per-
formances of a particular performer in a particular style,
we use Tilde, a top-down decision tree induction algo-
rithm [9]. Tilde can be considered as a first order logic

extension of the C4.5 decision tree algorithm: instead of
testing attribute values at the nodes of the tree, Tilde
tests logical predicates. This provides the advantages
of both propositional decision trees (i.e. efficiency and
pruning techniques) and the use of first order logic (i.e.
increased expressiveness). The increased expressiveness
of first order logic not only provides a more elegant and
efficient specification of the musical context of a note, but
it provides a more accurate predictive model [10].

We apply the learning algorithm with target predicates
duration/3 and energy/3. (where /n at the end of
the predicate name refers to the predicate arity, i.e. the
number of arguments the predicate takes). Each target
predicate corresponds to a particular type of transforma-
tion: duration/3 refers to duration transformation and
energy/3 to energy transformation.

For each target predicate we use the complete training
data specialized for the particular type of transformation
as an example set, e.g. for duration/3 we used the
complete data set information on duration transformation
(i.e. the performed duration transformation for each note
in the data set). The arguments are the musical piece, the
note in the piece and performed transformation.

We use (background) predicates to specify both note
musical context and background information. The pred-
icates we consider include context/8, narmour/2,
succ/2 and member/3. Predicate context/8 spec-
ifies the local context of a note, i.e. its arguments are
(Note, Pitch, Dur, MetrStr, PrevPitch, PrevDur, NextPitch,
NextDur): note identifier, note’s nominal duration, du-
ration of previous and following notes, extension of
the pitch intervals between the note and the previous
and following notes, and tempo at which the note is
played. Predicate narmour/2 specifies the Narmour
groups to which the note belongs. Its arguments are the
note identifier and a list of Narmour groups. Predicate
succ(X,Y) means Y is the successor of Y, and Predicate
member(X,L) means X is a member of list L. Note
that succ(X,Y) also mean X is the predecessor of
Y. The succ(X,Y) predicate allows the specification
of arbitrary-size note-context by chaining a number of
successive note (4).

succ(X1, X2), succ(X2, X3), . . . , succ(Xn−1, Xn) (4)

where Xi (1 ≤ i ≤ n) is the note of interest.

III. EXPRESSIVE PERFORMANCE SYNTHESIS

Synthesis of expressive performance in our case is the
problem of rendering a score that has been previously
enriched with expressivity annotations drawn from an in-
ductive logic model by means of concatenative synthesis.

Speech synthesis research indicates, that one of the
most important aspects to be handled by a convincing
synthesizer are transitions between phones in addition to
the phones themselves [11]. When applied to musical
instrument synthesis this means that, depending on the
different playing techniques supported by a particular

instrument, inter-note transitions will play an important
role in the final model. In our case of jazz saxophone,
we concentrated on the most notable tongued vs. legato
note transition differentiation: When a note is “tongued”
on a reed instrument, the air flow between mouth cavity
and mouthpiece is interrupted for a short period of time
by the player putting his tongue slightly below the tip of
the reed. When the interruption is released again and air
continues to flow, the build-up in mouth-cavity pressure
causes an increase in reed excitation of the air column in
the instrument. The effect of tonguing can range from a
very subtle and barely noticable alteration of the attack
phase of a note to a very pronounced maximum in the
energy envelope. Playing legato, on the other hand, means
that the air pressure is held more or less constant over the
course of a phrase and transitions in pitch to new notes
are cause merely by opening or closing keys and thus
shortening or lengthening the resonating air column.

As noted above, the approach taken here is to build
separate models on the note level for predicting onset and
energy transformations, as well as on the intra-note level,
for predicting the type of transition to the next note.

A. Concatenative synthesis

The enriched, expressive score is used as input to a
concatenative synthesizer [12], which, apart from depend-
ing on expressivity annotations, is completely independent
from the rest of the system. The synthesizer reads an
annotated input score in an extended WaveSurfer format
1.

The concatenation unit database is comprised of more
than 3000 individual saxophone notes extracted from
complete, expressively performed phrases. Notes are ex-
tracted and identified with their corresponding features as
described in II-A.

B. Unit selection algorithm

The unit database is searched with a dynamic program-
ming algorithm adapted from [13], [14] as described in
[15] to find a sequence of database samples matching a
given input score according to a cost function based on
pitch, duration, timbre and musical context.

The algorithm starts by constructing a node-cost matrix
with columns representing input score notes and rows
denoting samples from the corpus, hereby associating a
set of candidate samples S{t} with each input score note
at time t. In order to cut down the computational cost
of the sample search per input score note, the sample
database is divided into groups of similar samples by
offline clustering, based on intra-note spectral features
(currently spectral centroid, see II-A). From this clustering
an additional model is created that can be applied to each
input score note and annotates the note with a cluster
number, which in turn determines the candidate list during
sample search.

1Additional ATTRIBUTE:VALUE annotations are passed on the same
line as arguments to a note, delimited by spaces

At each point in time t –i.e. for each input score note–
the current path cost (5) is recursively calculated for each
of the corresponding candidate samples i ∈ S{t}, based
on the current node cost Ĉi(t) and the previous path cost
Cj(t−1). Finally, the optimal path is traced from the node
corresponding to the last score note that has the minimal
overall path cost to the beginning of the score.

Ci(t) = minj∈S{t−1}[Ĉi(t) + Cj(t− 1)] (5)

The cost function (6) is a weighted sum of two separate
cost functions: The transformation cost (7) is computed
from feature distance costs FT j(t, i) of the score note at
time t and the sample candidate i, weighted by weights
wtj .

Ĉi(t) = wT ĈT
i (t) + wCĈC

i (t) (6)

ĈT
i (t) =

√∑
j

(wT jFT j(t, i))2 (7)

The features costs used include pitch transformation
cost, energy transformation cost, duration compression
and expansion costs, and the transformation costs asso-
ciated with the interval to the previous and the next note,
respectively.

The concatenation cost (8) is composed of features
based on the score note t, the sample database candidate
note i and the currently accumulated best path p. The
features currently used are path transition cost based
on the legato descriptor, a duplicate feature penalizing
reusing the same sample for different notes in the rendered
phrase, a phrase membership cost rewarding the use of
successive samples from the same database phrase, and
a heuristic spectral continuity cost, rewarding a smooth
spectral envelope for the resulting phrase based on the
spectral centroid feature.

ĈC
i (t, p) =

√∑
j

(wCjFCj(t, i, p))2 (8)

Once an optimal mapping from database notes to input
score notes is found, the phrase segments corresponding
to notes are transformed in time and pitch by means of
spectral peak processing [16], [17] and concatenated in
the frequency domain in order to yield a high fidelity
rendering of the expressive input score. Special care is
taken to preserve attack and release segments and in
particular sample transitions by only time-stretching the
sustain part of the amplitude envelope.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a concatenative synthesis system
using dynamic programming for determining the best
sequence of database samples based on a cost function de-
rived from high-level musical features. An inductive logic
model for predicting inter-note transitions in an input
score was used to improve note transition quality during
concatenative synthesis. Future work will concentrate on

refining transition modeling, because informal listening
evaluations suggest that this is the most critical area for
improvements. Another important planned undertaking is
the systematic construction of a comprehensive sample
database dedicated to synthesis.

ACKNOWLEDGMENTS

This work is supported by the Spanish PROSEMUS
project (TIN2006-14932).

REFERENCES

[1] G. Widmer and W. Goebl, “Computational models of expressive
music performance: The state of the art,” Journal of New Music
Research, vol. 33, no. 3, pp. 203–216, 2004.

[2] J. Kaiser and R. Schafer, “On the use of the i0-sinh window for
spectrum analysis,” Acoustics, Speech, and Signal Processing [see
also IEEE Transactions on Signal Processing], IEEE Transactions
on, vol. 28, no. 1, pp. 105–107, Feb 1980.

[3] R. C. Maher and J. W. Beauchamp, “Fundamental frequency
estimation of musical signals using a two-way mismatch procedure
,” Acoustical Society of America Journal, vol. 95, pp. 2254–2263,
Apr. 1994.

[4] R. Ramirez and A. Hazan, “Inducing a generative expressive
performance model using a sequential-covering genetic algorithm,”
in GECCO ’07: Proceedings of the 9th annual conference on
Genetic and evolutionary computation. New York, NY, USA:
ACM, 2007, pp. 2159–2166.

[5] A. Klapuri, “Sound onset detection by applying psychoacoustic
knowledge,” in ICASSP ’99: Proceedings of the Acoustics, Speech,
and Signal Processing, 1999. on 1999 IEEE International Confer-
ence. Washington, DC, USA: IEEE Computer Society, 1999, pp.
3089–3092.

[6] R. McNab, L. Smith, and I. Witten, “Signal processing for melody
transcription,” in Proc. 1996 Australasian Computer Science Con-
ference, Melbourne, Australia, January 1996, pp. 301–307.

[7] E. Maestre and E. Gómez, “Automatic characterization of dy-
namics and articulation of monophonic expressive recordings,” in
Proceedings of the AES 118th International Conference, 2004.

[8] E. Narmour, The Analysis and Cognition of Basic Melodic Struc-
tures. Chicago and London: The University of Chicago Press,
1990.

[9] H. Blockeel, “Top-down induction of first order logical deci-
sion trees,” Ph.D. dissertation, Department of Computer Science,
Katholieke Universiteit Leuven, 1998.

[10] R. Ramirez, A. Hazan, E. Maestre, and X. Serra, A Machine
Learning Approach to Expressive Performance in Jazz Standards.
Springer, 2006.

[11] M. Beutnagel, A. Conkie, and A. Syrdal, “Diphone synthesis using
unit selection,” in The 3rd ESCA/COCOSDA Workshop on Speech
Synthesis, Jenolan Caves, NSW, Australia, November 1998.

[12] D. Schwartz, “Data-driven concatenative sound synthesis,” Ph.D.
dissertation, University of Paris 6 – Pierre et Marie Curie, 2004.

[13] A. J. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” in IEEE Transactions on
Information Theory. IEEE, April 1967, vol. 13, no. 2, pp. 260–
269.

[14] G. D. Forney, Jr., “The viterbi algorithm,” in Proceedings of the
IEEE, vol. 61, no. 3, March 1973, pp. 268–278.

[15] A. Hunt and A. Black, “Unit selection in a concatenative speech
synthesis system using a large speech database,” Acoustics, Speech,
and Signal Processing, 1996. ICASSP-96. Conference Proceed-
ings., 1996 IEEE International Conference on, vol. 1, pp. 373–376
vol. 1, May 1996.

[16] J. Laroche and M. Dolson, “Improved phase vocoder time-scale
modification of audio,” IEEE Transactions on Speech and Audio
Processing, vol. 7, no. 3, pp. 323–332, May 1999.

[17] J. Bonada, “Automatic technique in frequency domain for
near-lossless time-scale modification of audio,” in Proc. 2000
International Computer Music Conference, 2000. [Online].
Available: citeseer.ist.psu.edu/529334.html

