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ABSTRACT
Nowadays, the term cover song (or simply cover) can mean any
new version, performance, rendition, or recording of a previously
recorded track. Cover song identification is a task that has received
increased popularity in the Music Information Retrieval (MIR) com-
munity in recent years, as it provides a direct and objective way for
evaluating music similarity. In this paper, we propose a new method
for determining the similarity between tonal sequences and, there-
fore, for identifying cover songs. This is based on a novel chroma
similarity measure, and on a newly developed dynamic program-
ming local alignment technique. Results confirm that the perfor-
mance of the proposed system is significantly superior to other state-
of-the-art approaches (more than 57% better).

Index Terms— Music, Information retrieval, Acoustic signal
analysis, Multidimensional sequences, Dynamic programming

1. INTRODUCTION

As music collections are growing, it becomes necessary to keep
them organized. Because manually annotating metadata is costly, an
’intelligent’ system for organizing songs based in its content would
be desirable. One critical block of such a system should deal with
the concept of music similarity. But this can be very subjective, ill-
defined and context-dependent. So, from a research perspective, a
good starting point seems to be the identification of cover songs (or
versions), where the similarity between them can be better defined,
objectively measured, and context-independent. In addition, from
the users perspective, finding all versions of a particular song can be
useful and fun.

Tonal sequences are useful descriptors for cover song identifi-
cation. In popular music, the main purpose of recording a version
might be to investigate a radically different interpretation of the orig-
inal song. Then, important changes at different musical facets (tim-
bre, tempo, rhythm, structure, key, lyrics, language, etc.) are in-
volved. Thus, it seems that the features that are mostly preserved are
the main melody, and the overall tonal sequence.

Systems for cover song identification usually exploit these as-
pects and attempt to be robust against changes in other musical facets.
In general, they either try to extract the predominant melody [1, 2],
a chord progression [3, 4], or a chroma sequence [5, 6, 7]. Then,
for obtaining a similarity measure, these sequences of descriptors
are usually compared by means of Dynamic Time Warping (DTW)
[1, 3, 5], an edit-distance variant [4, 6], or a simple correlation func-
tion [2, 7].
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The method exposed here uses sequences of feature vectors de-
scribing tonality (in our case Harmonic Pitch Class Profiles [8], from
now on HPCP), but presents relevant differences in two important as-
pects: we use a new binary similarity function between chroma fea-
tures, and we develop a new local alignment algorithm for assessing
resemblance between sequences.

2. COVER SONG IDENTIFICATION METHOD

2.1. Overview

In figure 1 we show a general block diagram of the system. It
comprises four main sequential modules: pre-processing, similar-
ity matrix creation, dynamic programming local alignment and post-
processing.

Fig. 1. General block diagram of the system.

From each pair of songs A and B being compared (inputs), we
can obtain a distance between them (output). Pre-processing com-
prises extracting HPCP sequences and a global HPCP for each song.
Then, one song is transposed to the key of the other (module named
“Tr”) by means of an Optimal Transposition Index (OTI, section
2.2). From these two sequences, a binary similarity matrix is com-
puted. This last is the only input needed for a Dynamic Programming
Local Alignment (DPLA) algorithm, which calculates a score matrix
that gives highest ratings to best aligned subsequences. Finally, in
the post-processing step, we obtain a normalized distance between
the two processed songs. We now explain these steps in detail. Fur-
ther information and justifications of our choices can be found in
[9].

2.2. Pre-processing

For each song (A and B), we extract a sequence of HPCP feature vec-
tors. The HPCP is an enhanced pitch class distribution (or chroma)
feature computed in a frame-by-frame basis only using the local
maxima of the spectrum within a certain frequency band. HPCPs



consider the presence of harmonic frequencies, and they are normal-
ized to eliminate the influence of dynamics and instrument timbre
(represented by a spectral envelope). The result (for our case) is a
36-bin octave-independent histogram representing the relative inten-
sity of each 1/3 of the 12 semitone equal tempered scale (HPCP
vectors, equation 1). We refer to [8] for a detailed explanation on the
feature extraction process. We represent an HPCP sequence by:

HPCPA = [
−−→
hA,1,

−−→
hA,2, . . . ,

−−→
hA,i, . . . ,

−−→
hA,n]

HPCPB = [
−−→
hB,1,

−−→
hB,2, . . . ,

−−→
hB,j , . . . ,

−−−→
hB,m]

(1)

In addition, a global HPCP vector is computed by averaging all
HPCP vectors in a sequence, and this, as all HPCPs, is normalized
by its maximum value. With the global HPCPs of two songs (

−→
hA

and
−→
hB), we compute what we call an Optimal Transposition Index

(OTI), which represents the number of bins that an HPCP needs to
circularly shift to have maximal resemblance to the other:

OTI(
−→
hA,

−→
hB) = argmax

0≤n≤NB−1
{
−→
hA · circshiftR(

−→
hB , n)} (2)

where ‘·’ indicates a dot product, NB is the number of bins of the
feature vector considered, and circshiftR(

−→
h , n) is a function that

rotates a vector (
−→
h ) n positions to the right. A circular shift of one

position is a permutation of the entries in a vector where the last
component becomes the first one and all the other components are
shifted to the right. Equation 2 can be computed in O(NB ·log(NB))
time (and thus, not becoming prohibitively time consuming for high
resolution HPCPs) by means of the Fast Fourier Transform (FFT)
properties related to the circular convolution [9].

The last operation of the pre-processing block consists in trans-
posing both musical pieces to a common key. This is done by cir-
cularly shifting OTI(

−→
hA,

−→
hB) positions each HPCP in the whole

sequence of one song (module labeled “Tr” in figure 1). So, the i-th
HPCP for song A becomes:

−−→
hTr

A,i = circshiftR(
−−→
hA,i, OTI(

−→
hA,

−→
hB)) (3)

where superscript ‘Tr’ denotes musical transposition.

2.3. Similarity matrix

The next step is to compute a similarity matrix S between the pair
of HPCP sequences obtained in previous section 2.2. Notice that the
sequences can have different lengths n and m, and that, therefore,
S will be an n × m matrix. Element (i, j) of the similarity matrix
S, has the functionality of a local sameness measure between HPCP

vectors
−−→
hTr

A,i and
−−→
hB,j (Si,j = s(

−−→
hTr

A,i,
−−→
hB,j)). In our case, this is

binary (i.e., only two values are allowed).
We outline some reasons for using a binary similarity measure

between chroma or HPCP features. First, as these features might not
be in an euclidean space [10], we would prefer to avoid the com-
putation of an euclidean-based (dis)similarity measure (in general,
we think that tonal similarity, and therefore chroma feature distance,
is a still far to be understood topic, with many of perceptual and
cognitive open issues that require lots of research). Second, using
only two values to represent similarity, the possible paths through
the similarity matrix become more evident, leading us with a clear
notion of where the two sequences agree and where they don’t (see
figure 2 for an example). In addition, binary similarity allows us to

operate like many string alignment techniques do: just considering
if two elements of the string are the same. With this, we have an
expanded range of alignment techniques borrowed from string com-
parison, DNA or protein sequence alignment, symbolic time series
similarity, etc. [11]. Finally, we believe that considering the binary
similarity of an HPCP vector might be an easier (or at least more
affordable) task to assess, than obtaining a reliable graded scale of
resemblance between two HPCPs correlated with (sometimes sub-
jective) perceptual similarity.

An intuitive idea to consider when deciding if two HPCP vectors
refer to the same tonal root, is to keep circularly shifting one of them
and calculate a similarity index for all possible transpositions. Then,
if the transposition that leads to maximal similarity corresponds to
less than a semitone, the two HPCP vectors are claimed to be the
same. This idea can be formulated in terms of the OTI function
explained in equation 2. As we are using a resolution of a 1/3 of a
semitone, the binary similarity measure between the two vectors is
then obtained by:

s(
−−→
hTr

A,i,
−−→
hB,j) =

(
+1 if OTI(

−−→
hTr

A,i,
−−→
hB,j) ∈ {0,1,NB-1},

−1 otherwise.
(4)

Although the dot product is used in the calculation of

OTI(
−−→
hTr

A,i,
−−→
hB,j), the nonlinearity of the proposed s(

−−→
hTr

A,i,
−−→
hB,j)

leads us to a non-euclidean similarity measure that empirically works
dramatically better than thresholding an euclidean-based distance1.

(i) (ii) (iii)

Fig. 2. Examples of comparing two covers of the same song (i) and
two songs that do not share a common tonal progression (ii) with the
new binary similarity measure. We can see diagonal white lines in
the former, while this pattern does not exist in the latter. The same
similarity matrix of the two songs in (i) with an euclidean similarity
measure is shown in (iii).

2.4. Dynamic programming local alignment (DPLA)

A binary similarity matrix S is the only input to our DPLA algo-
rithm. Dynamic programming algorithms (such as DTW) have been
proven to be a powerful tool for dealing with tempo variations [12].
In [9] we have seen that using global constraints and, thus, forcing
warping paths to be around the alignment matrix main diagonal had
a detrimental effect in final system performance. Instead, the use
of local constraints [13] can help us preventing ‘pathological warp-
ings’ and just admitting certain ’logical’ tempo changes. Also in
[9] it has been discussed the suitability of performing a local align-
ment to overcome strong song structure changes (i.e., to check all
possible subsequences). The Smith-Waterman algorithm [14] is a
well-known procedure for performing local sequence alignment in

1See table at http://www.iua.upf.es/∼jserra/
ICASSP08appendix.html



Molecular Biology. It was originally designed for determining simi-
lar regions between two nucleotide or protein sequences. Instead of
looking at the total sequence, the Smith-Waterman algorithm com-
pares segments of all possible lengths and optimizes the similarity
measure.

So, in the same manner as the Smith-Waterman algorithm does,
we create an (n+1)×(m+1) alignment matrix H through a recur-
sive formula, that, in addition, incorporates some local constraints:

Hi,j = max

8>>><>>>:
Hi−1,j−1 + Si−1,j−1 − δ1(i, j)

Hi−2,j−1 + Si−1,j−1 − δ2(i, j)

Hi−1,j−2 + Si−1,j−1 − δ3(i, j)

0

(5)

for 3 ≤ i ≤ n+1 and 3 ≤ j ≤ m+1. Si−1,j−1 corresponds to the
value of the binary similarity matrix S at row i−1 and column j−1,
and δk(i, j) denotes a penalty for a gap opening or extension. This
latter value is set to 0 if Si−1,j−1 > 0 (no gap between Si−1,j−1

and either Si−2,j−2, Si−3,j−2 or Si−2,j−3), or to a positive value if
Si−1,j−1 ≤ 0. Empirically, a good value was found to be 0.5 for a
gap opening (e.g., negative Si−1,j−1 but positive Si−3,j−2 in equa-
tion 5, option 2), and 0.6 for a gap extension (e.g., negative values
in both Si−1,j−1 and Si−3,j−2 in the same option as the previous
example). Notice that options 1, 2 and 3 in equation 5 represent a
’hybrid’ between the ones employed in [13] and in [14]. Values of
H have the interpretation that Hi,j is the maximum similarity of two

segments ending in
−−−−→
hTr

A,i−1 and
−−−−→
hB,j−1 respectively. The zero is in-

cluded to prevent negative similarity, indicating no similarity up to
−−−−→
hTr

A,i−1 and
−−−−→
hB,j−1. Alignment matrix H is initialized as follows:

Hi,1 = 0; H1,j = 0;
Hk,2 = Sk−1,1; H2,l = S1,l−1;

(6)

for 1 ≤ i ≤ n + 1, 1 ≤ j ≤ m + 1, 2 ≤ k ≤ n + 1 and
2 ≤ l ≤ m + 1.

An example of the resultant matrix H is shown in figure 3. We
can see clearly two local alignment traces, which correspond to two
highly resemblant sections between two versions of the same song
(from H150,25 to H250,100 and from H280,25 to H400,100).

2.5. Post-processing

In the last step of the method, only the best local alignment in H
is considered. This means that the score determining the local sub-
sequence similarity between two HPCP sequences, and, therefore,
what we consider to be the similarity between two songs, corre-
sponds to the value of H’s highest peak:

Score(HPCP Tr
A , HPCPB) = max{Hi,j} (7)

for any i, j such that 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ m + 1.
Finally, to obtain a distance value that is independent of the com-

pared song lengths, the inverse of equation’s 7 result is normalized
by the maximum path length possible:

d(SongA, SongB) =
n + m− 1

Score(HPCP Tr
A , HPCPB)

(8)

where n and m are the respective lengths for songs A and B. A
proper justification of this choices is done in [9].

Fig. 3. Example of a local alignment matrix H between two covers.
It can be seen that the two songs do not coincide entirely (just in
two fragments), and that, mainly, their respective second halves are
completely different.

3. EVALUATION

3.1. Personal music collection

To test the effectiveness of the system we compiled a music collec-
tion comprising 2053 songs distributed in different genres. Within
these songs, there were 451 original pieces, and 1462 covers. The
average number of covers per song was 4.24, ranging from 2 (the
‘original’ song + 1 cover) to 20 (the ‘original’ song + 19 covers). In
order to add difficulty, there were also 140 songs from the same gen-
res and artists as the originals that were not associated to any group
of covers.

We queried all the covers and canonical versions and obtained
a 1913x2053 distance matrix. This data was further processed in
order to obtain several evaluation measures. The database and the
methodology used are properly explained in [9]. With this music
collection, we obtained an average Recall of 0.562 within the 10
first retrieved items. Precision at 1 was 0.722 and we reached an
F-measure of 0.601.

3.2. MIREX Evaluation

The Music Information Retrieval Evaluation eXchange (MIREX) is
an international effort to develop formal, common evaluation frame-
works for MIR. It is coordinated and managed by the International
Music Information Retrieval Systems Evaluation Laboratory
(IMIRSEL) at the University of Illinois at Urbana-Champaign
(UIUC). For the first time in 2006, there was an evaluation for cover
song identification that was repeated in 2007 with an increasing num-
ber of participants.

The MIREX test data was composed of 30 cover sets, each one
having 11 different versions. Therefore, the total cover song col-
lection contained 30x11 = 330 songs. These were embedded in a
database summing up a total of 1000 tracks. The test collection in-
cluded a wide diversity of genres (e.g., classical, jazz, gospel, rock,
folk-rock, etc.), and the variations spanned a variety of styles and
orchestrations.



Measure Range SG EC JB JEC KL1 KL2 KP IM
TNCI10 [0-3300] 1653 1207 869 762 425 291 190 34
MNCI10 [0-10] 5.009 3.658 2.633 2.309 1.288 0.882 0.576 0.103
MAP [0-1] 0.521 0.330 0.267 0.238 0.13 0.086 0.061 0.017
Rank1 [0-1000] 9.367 13.994 29.527 22.209 57.542 51.094 46.539 97.470
Runtime [HH:MM] 01:37(1) 04:28(5) 04:32(8) 00:47(8) 10:45(8) 02:37(1) 03:51(1) 02:04(1)

Table 1. Results for MIREX 2007 Audio Cover Song task. Clock time measures are reported on the last line of the table (number of used
threads in brackets). Performance values for the algorithm presented here are shown in the first column (SG).

Each of the 330 cover songs were used as queries and the sys-
tems were required to return a 330x1000 distance matrix. Systems
were evaluated on the number of the songs from the same class/set
as the query that were retrieved. Four measures were used to eval-
uate the performance of the algorithms: the total number of covers
identified in top 10 answers (TNCI10), the mean number of covers
identified in top 10 (average performance, MNCI10), the arithmetic
Mean of Average Precision (MAP), and the rank of the first correctly
identified cover (Rank1). Notice that MNCI10/10 leads an average
Recall measure like the one used in section 3.1. Clock time measures
(not CPU time) and the number of threads used were also provided.

A total of 8 different algorithms were presented to the MIREX
2007 Audio Cover Song task. Table 1 shows the overall summary re-
sults obtained2. Our algorithm (SG, first column) performed the best
in all evaluation measures considered, reaching an average accuracy
of 5.009 of correctly identified covers within the 10 first retrieved
elements (MNCI10) and a Mean Average Precision (MAP) of 0.521.
Furthermore, the next best performing system reached and MNCI10
of 3.658 and a MAP of 0.330, which represents a substantial differ-
ence to ours (57.88% superior in terms of MAP). In addition, statis-
tical significance tests showed that the results for our system were
significantly better than the 6 other systems presented in the contest.

4. CONCLUSIONS

We have presented a method for determining the similarity between
songs by comparing tonal subsequences. The system’s main nov-
elty relies on two facts: a new binary similarity measure for chroma
features and a custom-made dynamic programming local alignment
algorithm for determining subsequence similarity.

The performance of the system was assessed by retrieving cover
songs in a big music collection, reaching an average Recall value
of 0.562 with a 2053 song database. Furthermore, the method ex-
plained here was evaluated in the MIREX 2007 Audio Cover Song
contest, obtaining the highest values for all the evaluation measures
considered, and being substantially superior to all the other algo-
rithms that participated in it.

Although cover song identification is still a relatively new re-
search topic, and systems dealing with this task can be further im-
proved, we think that the method presented in this paper represents
an important milestone into it.
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