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ABSTRACT

In this paper we present an approach towards the classifi-
cation of pitched and unpitched instruments in polyphonic
audio. In particular, the presented study accounts for three
aspects currently lacking in literature: model scalability
to polyphonic data, model generalisation in respect to the
number of instruments, and incorporation of perceptual in-
formation. Therefore, our goal is a unifying recognition
framework which enables the extraction of the main in-
struments’ information. The applied methodology consists
of training classifiers with audio descriptors, using exten-
sive datasets to model the instruments sufficiently. All
data consist of real world music, including categories of
11 pitched and 3 percussive instruments. We designed our
descriptors by temporal integration of the raw feature val-
ues, which are directly extracted from the polyphonic data.
Moreover, to evaluate the applicability of modelling tem-
poral aspects in polyphonic audio, we studied the perfor-
mance of different encodings of the temporal information.
Along with accuracies of 63% and 78% for the pitched and
percussive classification task, results show both the impor-
tance of temporal encoding as well as strong limitations of
modelling it accurately.

1. INTRODUCTION

Instrument recognition is one of the big problems of cur-
rent research in music information retrieval (MIR). Auto-
matic indexing and retrieval of audio data are basic con-
cepts to efficiently administrate and navigate through big
datasets. Providing the information about the instrumen-
tation of audio tracks via an automatic recognition sys-
tem can highly facilitate these operations. Besides, such
a system provides higher-level musical information, which
helps to narrow the well-known semantic gap [1].

Computational recognition of musical instruments makes
use of the intrinsic properties of, and differences between,
each of the target categories. In the case of pitched in-
struments, where the sound is mostly composed of quasi-
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harmonic components, these are the amplitudes and fre-
quency positions of the components and their evolution
in time. The time-varying spectral envelope, an eminent
feature for pitched instrument recognition [2], can be es-
timated out of them. For percussive instruments, proper-
ties such as attack and decay time, or frequency coverage,
are properties which allow to distinguish between them
[3]. While these specific characteristics can be determined
without big problems in the case of a monophonic record-
ing, the problem gets harder in polyphonic audio. Since
the co-occurrence of multiple sound sources is producing
overlapping frequency components, information extracted
from the raw audio is often ambiguous and only partially
useful for discriminating between several musical instru-
ments. Without any preprocessing based on source sepa-
ration, which is still not mature enough, models derived
from simplified scenarios seem to imply strong limitations
for the use on polyphonic audio. However, we hypoth-
esize that, by providing a well suited dataset, a coarse –
but MIR useful – modelling of predominant instruments
directly from polyphonic audio is possible.

Below follows a short review of the current state of the
art in computational musical instrument recognition. In
Sec. 3 we substantiate our work and provide details about
the general concepts we used for tackling the problem.
Sec. 4 gives insights in the used data, the developed al-
gorithms, and shows the experimental results. In the sub-
sequent discussion we point out capacities as well as lim-
itations of the chosen techniques and, finally, Sec. 6 con-
cludes this article.

2. RELATED WORK

In current literature there exists a great unbalance between
the amount of studies dealing with recognition of pitched
instruments from polyphonic data and the amount of pub-
lications studying the monophonic case. Since the latter is
not addressed in this paper, we refer to [4] for a compre-
hensive overview. Regarding the scarce publications ad-
dressing the more complex scenario, Kitahara et al. [5] pre-
sented a method to eliminate unreliable feature data caused
by source inference for instrument recognition in artifi-
cial polyphonic mixtures. Linear discriminative analysis
(LDA) was used to enhance features which discriminate
best the five categories. The features were extracted from
the harmonic structures of the corresponding instruments



and used to train multivariate gaussian prototypes. Addi-
tional post-processing was applied by integrating the frame-
wise a-posteriori probabilities and incorporating higher-
level musical knowledge to get the final classification. In
a more recent work, Every [6] manually annotated songs
from a commercially available collection according to per-
ceptually dominant instruments along with their correspond-
ing pitches. A great set of audio descriptors was extracted
from the raw audio in an unsupervised system, where the
feature vectors were clustered and the resulting accuracies
were measured. A strategy for tackling the problem at hand
from a complete different direction was presented by Essid
et al. [7]. Unlike trying to isolate the instruments present
in the mixture, the whole audio was classified consider-
ing the more frequent combinations of them. Therefore,
a suitable taxonomy was automatically generated by clus-
tering a training corpus. Statistical models were built for
each of the derived categories and used to classify unseen
instances.

Regarding the recognition of percussive events in poly-
phonic music, work has focused on transcription of most
common drum kit sounds (i.e. Bass Drum, Snare Drum
and Hi-Hat sounds). For an excellent overview of studies
on drum transcription up to 2006 see [3]. In a more recent
work Paulus and Klapuri [8] evaluated a system based on
Hidden Markov Models (HMM). In addition to standard
spectral features, temporal features were derived from sub-
band envelopes using 100 ms windows. Slight improve-
ments in transcription accuracy were reported by incorpo-
rating this temporal information. Gillet and Richard [9]
used source separation as preprocessing to obtain a drum-
enhanced signal. A set of features was computed from
both original and “enhanced” signals. Classification was
derived from previously trained support vector machines
(SVM) on an experimental database consisting of 28 songs
from the ENST database (see Sec. 4.1 for an overview of
this database).

Examining the literature review above we detect three
main gaps in which we substantiate our present work. More
precisely, we miss the aspect of polyphonic scalability, i.e.
a detailed research about the application of current meth-
ods for instrument recognition to highly polyphonic audio.
Second, there does not exist, to our knowledge, a study ac-
counting for instrument generality, i.e. presenting a consis-
tent methodology incorporating multiple instruments from
different musical styles for tackling this problem. Finally,
we see a clear need for incorporating temporal character-
istics within the recognition process when working with
statistical models, as this information is known to be im-
portant but often neglected.

3. CONCEPTUAL OVERVIEW

The present study is thought as a first step towards assess-
ing the aforementioned gaps. We propose a methodology
using statistical recognition techniques to build indepen-
dent classification systems for 11 pitched and 3 unpitched
instruments. Ground truth obtained from mostly manually
created collections is used for training the models, gathered

only from real world music. Additionally, we evaluate the
importance and modelling accuracy of temporal aspects by
comparing systems using different encodings of temporal
information. What follows is a more detailed description
of the concepts addressed within this work.

Polyphonic scalability. In this paper we are taking an
approach of learning the time-frequency characteristics of
musical instruments directly from polyphonic data. Our
aim is to label a given audio excerpt with the name(s) of
the most salient instrument(s). There exist some evidence
that the performance of a recognition system is improved
when the polyphonic context is incorporated into the train-
ing process [10]. As we focus on the application of a recog-
nition algorithm on commercially available music, we in-
troduce the least simplified conditions and work directly
with real world data, all containing predominant instru-
ments plus accompaniment.

Instrument generality. We included the recognition of
pitched as well as unpitched (percussive) instruments in
our study. As they imply obvious differences in their sound
characteristics, both groups have to be treated in a slightly
different way for computational processing. Percussive in-
struments produce a high energetic, impulsive sound and
carry the main information in a relative short time interval
(typically between 100 and 200 ms), whereas pitched in-
struments tend to have a quasi-harmonic and continuous
tone ranging from very short to medium long durations
(several seconds). Moreover, percussive sounds produce
a spectrum in which their energy is scattered among the
frequency bins, whereas pitched instruments have a fre-
quency representation with peaks at quasi-integer multi-
ples of their fundamental. Furthermore, a clear pitch de-
pendency of the spectrum can be observed with pitched in-
struments unlike the more fixed spectral patterns of drum
sounds.

Pitched Instruments: We consider an instrument to be
“pitched” if it is able to produce a continuous, quasi-
harmonic sound. Ten pitched instruments (Cello, Clar-
inet, Flute, acoustic and electric Guitar, Hammond Organ,
Piano, Saxophone, Trumpet and Violin) are used in this
study, being a good representation for most of the possible
instrumentations in real world music of Western culture.
We also include the human singing voice as an extra cat-
egory in the corpus, as it can bee seen as frequently used
pitched instrument in pop and rock music.

Unpitched Instruments: Due to the importance of the
drum kit in Western popular music we decided to con-
centrate our research efforts on this particular set of per-
cussive instruments. Likewise, because of the number of
available instances and the musical relevance of each in-
strument within the drum kit, we work with the following,
most common in literature, instrument classes: Bass Drum
(BD), Snare Drum (SD) and Hi-Hat (HH).

Temporal characteristics. We incorporate temporal in-
formation in our statistical modelling process. According
to experimental findings in literature, the human auditory
system uses temporal aspects as an important cue for the
recognition of musical instruments [2], but this informa-



tion is often neglected in related studies. Together with
quasi static properties of the sound, its evolution in time
shapes the basics of human timbre perception. Therefore
we directly compare different encodings of the temporal
information in our statistical models. Doing that, we do
not only examine the applicability of these aspects to com-
putational musical instrument recognition. We also study
how far they can be modelled directly from the polyphonic
audio.

In [11] the modelling of temporal aspects was already
analyzed by comparing the performance of a monophonic
to a polyphonic similarity task. Timbre similarity was eval-
uated by both static systems, ignoring temporal aspects,
and algorithms incorporating temporal behaviour. The used
data consisted of isolated sound samples for the mono-
phonic similarity task, and one song from The Beatles, seg-
mented into its individual notes, for the polyphonic case.
The authors concluded their work by stating that the frame-
based analysis of polyphonic audio is not suited for mod-
elling any temporal related properties. Moreover, as the
performance of the dynamic systems was superior for the
monophonic analysis and the same amount inferior for the
polyphonic scenario, they identified the polyphony itself
to be the root of all evil. However, we try to tackle this
problem of polyphony by using big, diverse datasets and
show that there still remain temporal aspects which can be
modelled, if not for similarity retrieval, at least for sound
source recognition.

4. METHOD

4.1 Data

A key concept for a successful modelling of musical in-
struments from polyphonic audio is the quality and the
representativeness of the used data. We used two public
available datasets to form the corpus for the recognition of
percussive instruments, and developed our own collection
for the pitched instrument identification task. Therefore
we manually gathered sound samples from the three con-
sidered super-genres of Western music (jazz, classical and
pop/rock), all extracted from commercial available record-
ings.

The objective for the creation of the dataset for the
pitched instruments was to assemble excerpts of poly-
phonic audio in which the target instrument is playing con-
tinuously and is easily audible for a human listener. Each
audio excerpt was then labelled with its predominating in-
strument (double-checked by two human experts), thus as-
signing more than one instrument to an audio excerpt was
not allowed. After all, a corpus containing about 2,500
audio files was created, each one taken from a different
recording. We tried to equally distribute the data among
the three above-mentioned super-genres in order to cover
most musical styles and combinations of instruments.

In the case of percussive instruments we used two pub-
licly available collections with proper annotations of per-
cussive events, namely the ENST-Drums database [12] and
the MAMI database [13]. The first one is the largest pub-

licly available drum database which provides “wet” and
“dry” (see [12] for detailed information) drum tracks, as
well as the respective accompaniment tracks. We decided
to work with the “wet” drums and their accompaniment.
From the obtained collection of 64 songs we randomly
selected 30 second excerpts of every song and its labels.
The MAMI database is a collection of 52 annotated mu-
sic fragments extracted from commercial audio recordings.
We managed to gather 48 songs and aligned them with the
provided annotations. Finally, we mixed the ENST and the
MAMI databases in order to have a representative database
for training purposes. Thus we obtained a large set of poly-
phonic music excerpts adding up a total of 112 songs la-
belled with three, possibly concurrent, tags.

4.2 Algorithm Processing

Our approach towards assessing the information encoded
by the different instruments and developing suitable mod-
els is based on classical pattern recognition techniques.
First, we extract segments from the audio file containing
the target instrument. For the drum recognition algorithm
we generate excerpts based on onset detection: either we
take a segment starting from the onset and lasting for 150
ms or, if the next onset falls within the following 150 ms,
we take the inter-onset-interval. In the end, we include ev-
ery so-generated excerpt in the dataset. For the pitched in-
struments we randomly extract a maximum of four 2.5 s
long segments from each audio file. This grants a big
amount of variability in the polyphonic background, which
accompanies the main instrument. The length of 2.5 s
was empirically determined and showed superior perfor-
mance over shorter durations, whereas no significant im-
provement could be observed by using longer excerpts.

These segments are then framed with a fixed framesize
of 46 ms and hopsize of 12 ms using a Blackman-Harris
windowing function and audio features are extracted for
every frame. We use a big amount of spectral, cepstral, and
tonal features, all of them are well known audio descrip-
tors and will not be discussed here. For a comprehensive
overview of standard audio features we refer the interested
reader to [14].

The frame-wise extraction results in a time series of fea-
ture vectors, consisting of the raw feature values. This two
dimensional representation (features versus frames) is fur-
ther processed by describing the evolution in time of each
audio feature. We compute standard statistical measures
like mean, variance from both the actual and the delta val-
ues, as well as more specific quantities accounting for the
temporal information. The full set of the applied functions
together with a short description is listed in Table 1. Fi-
nally, we derive one vector with a dimension of 2,023 rep-
resenting the audio content of the extracted segment.

To decrease the complexity of the problem we perform
feature selection on our data. For our experiments we
search for the best subset of descriptors in the feature space,
taking their correlation with the respective classes and their
intercorrelation inside the subset into account [16]. We
apply a 10 fold cross-validated feature selection to return



name description
mean mean of the values

var variance of the values
dmean mean of the delta values

dvar variance of the delta values
max-norm-pos location of the maximum
min-norm-pos location of the minimum

attack slope of the attack
decay slope of the decay
slope overall slope

t-centroid temporal centroid of the values
t-skewness temporal skewness of the values

t-kurtosis temporal kurtosis of the values

Table 1. Applied functions to describe temporal aspects of
the raw feature values. See [15] for details on their imple-
mentation.

Figure 1. Block diagram of the training and recognition
process. Black arrows indicate the training process while
white ones show the prediction cycle. Note the decoupled
modules of extraction, temporal integration and selection
in the feature processing stage.

both a discriminative and compact set of descriptors. This
procedure reduces the dimensionality of the vectors by a
factor of 20, which significantly lowers the computation
time of the following steps.

The feature vectors are then used to train SVMs, pow-
erful classifiers for complex classification tasks. As the
SVM is a binary classifier by definition, different strategies
for combining the data and training the SVMs were tested
to apply them to the multi-class problem. For our drum
recognition system we utilized a balanced one–versus–all
schema, where one SVM discriminates between the target
category and an artificial one, consisting of a mixture of
the remaining classes. Hence, each classifier determines
the presence or absence of the respective class. In the
case of pitched instruments we use a balanced one–versus–
one algorithm with pair-wise coupling (PWC) [17], which
performed superior than the one–versus–all approach in
preceding experiments. Here, the final decision about the
class membership is made by combining the output prob-
abilities of all binary SVMs. The so generated models are
then used to predict the labels of new data, represented as
feature vectors. Fig. 1 shows an overview of the presented
algorithm with a detailed view on the feature processing
stage.

Figure 2. Relative occurrences of different feature cate-
gories in the final feature selection, applied to the full set
of descriptors. The categories are derived in respect to the
acoustic facets the features represent. See text for a de-
tailed description.

4.3 Experiments and Results

First we evaluated the application of our features in the
context of the pitched and the unpitched classification tasks.
We grouped all selected descriptors in respect to the acous-
tic facets they represent: 8 categories were derived to eval-
uate the relative importance of the raw features when ex-
tracted from polyphonic data. In particular, the categories
included ton (HPCPs, pitch salience), bar (Barkband en-
ergies), cep (MFCCs), lpc (LPCs), har (tristimuli, inhar-
monicity, odd2even), sp1 (the four spectral moments), sp2
(crest, rolloff,...), and pow (RMS, 3-bandenergies). Their
relative occurrences are shown in Fig. 2. Furthermore, to
assess the importance of temporal information encoded in
the selected descriptors, we again grouped all of them into
three new subsets. According to their modelling of the
temporal information we derived the categories µ/σ2 (only
the average and deviation of the values), ∆ (coarse encod-
ing of the temporal characteristics in the delta descriptors),
and time (detailed modelling of temporal aspects). Fig. 3
shows the results.

For the final evaluation of the recognition systems we
split our data into two sets of 90 and 10% of their sizes.
10 fold cross validation was performed on the 90% dataset
while the remaining 10% were used as an independent hold-
out test set. Performance was measured by the resulting
classification accuracy. Furthermore, to evaluate the ef-
fectiveness of the descriptors derived by the temporal in-
tegration of the raw feature values, we compared the per-
formance of 3 different feature subsets. The first subset
consisted of the full set of features, the second contained
the average and the variance of both the actual and the delta
feature values and subset 3 only included the mean and the
variance of the raw values. Hence, we look at different
encodings of the temporal information and their applica-
tion for the recognition process. For all three groups we
performed the above described feature selection procedure



Figure 3. Relative occurrences of different descriptor cate-
gories in the final feature selection, applied to the full set of
descriptors. The categories represent increasing encodings
of the temporal information.

data full set µ/σ2+∆ µ/σ2

Pitched 63.1 / 50.3% 63.4 / 50.3% 61.1 / 47.2%
Drums 77.8 / 78.1% 77.6 / 82.6% 74.7 / 78%

Table 2. Performance comparison of different feature sub-
sets with decreasing incorporation of temporal informa-
tion. Accuracy of 10 fold cross validation (left values) and
the hold-out set (right values) is shown (values for drums
represent averaged individual accuracies).

before classification. The resulting accuracies can be seen
in Table 2. Additionally, Fig. 4 provides details about the
system performance in correctly identifying the individual
classes on subset 2.

A binomial test [18, p. 37] revealed a significant dif-
ference between the cross-validated accuracies in the first
two columns of Table 2 and those from the third column,
for both pitched and unpitched instruments (p-value of the
null hypothesis ≤ 10−3). Obviously, no statistical signif-
icance was found by comparing the first two columns for
both recognition algorithms.

5. DISCUSSION

The above presented results show the capacities of the cho-
sen approach as well as some clear limitations. By using a
big, well suited dataset covering all relevant musical styles
and a selected set of audio descriptors, the algorithm is able
to learn the time-frequency characteristics of different mu-
sical instruments even from polyphonic data to a certain
degree. This indicates that, although the target instrument
is partly masked by various accompanying sounds, there
still exist information in the audio data which is correlated
with the main instrument. Moreover, our selected audio
features can be used for extracting this intrinsic informa-
tion from complex mixtures.

Looking at the results of the grouping experiment pre-

Figure 4. System performance in correctly identifying in-
dividual instrument categories. F-measures of the 10 Fold
Cross Validation on the µ/σ2 + ∆ feature subset.

sented in Fig. 2 we can infer that both Barkband ener-
gies and cepstral features play a major role in discriminat-
ing between instrument classes. In particular, in the drum
recognition the Barkbands form about 60% of all selected
descriptors. This confirms that the spectral energy distri-
bution is an important characteristic of percussive instru-
ments. In the case of pitched instruments, the number of
cepstral and spectral descriptors selected indicates the im-
portance of the spectral envelope for recognition.

However, apart from the imbalance of categories (11 vs.
3), the performance differences between the pitched and
percussive recognition indicate that the former task is more
complex than the latter. This can also be derived from the
fact that the characteristics of pitched instruments are more
difficult to capture with the current audio features. As the
required information is carried in a few frequency bins, a
lot of noise due to overlapping components is incorporated
into the feature values. Furthermore, percussive sounds
generally carry more energy at the same time scale and
therefore exhibit a more robust feature extraction.

Examining the performance of the individual instru-
ments (Fig. 4), we can observe that the Snare Drum per-
forms worse in respect to Bass Drum and Hi-Hat. As the
latter ones only cover the very low and high frequency re-
gions respectively, the Snare Drum has to compete with
several other instruments in the same region, which de-
grades the systems’ performance in correctly labelling
Snare Drum sounds. Regarding pitched instruments, the
weakness of the saxophone can be explained by its variety
inside the class (e.g. Bass, Baritone, Tenor, and Alto), in
contrary to other classes (e.g. hammond organ). Interest-
ingly, the singing voice performs best among the pitched
instruments, which was not expected. As an additional
support of these observations, it is worth mentioning that
similar results were obtained by the hold-out test set.

Nevertheless, compared to the human ability to recog-
nize sounds, which is still the measure of all things, the
results clearly indicate an inferior performance of our ap-



proach. First, the evaluation of the detailed temporal mod-
elling of our audio features shows that, when extracted
from polyphony, the resulting descriptors are not very dis-
criminative between different instruments. We could not
observe any improvement in performance when they were
incorporated for the drum recognition task, even if a major-
ity of the selected descriptors are describing fine temporal
characteristics (see Fig. 3). Moreover, hardly any of these
descriptors are selected for the pitched model. This im-
plies that in the context of polyphony a detailed modelling
becomes impossible for both short (percussive) and longer
time-scale analysis (pitched), and that the remaining tem-
poral aspects are best encoded in the coarse delta descrip-
tors. That all strengthens the fact that temporal information
is important for recognition but also shows the problems
of modelling it accurately. These outcomes partly conform
with the results presented in [11] by identifying fine tempo-
ral modelling of polyphonic audio as very fragile descrip-
tors but proving the more coarse delta coefficients to be
powerful, even when extracted from polyphonic data. Sec-
ondly, even if there would be some headroom for improve-
ments, the algorithm will never be able to solve certain,
dead-easy for humans, recognition tasks. Therefore we
clearly see the need for different approaches in this area,
starting from new audio representations to new algorithms
for polyphonic processing. Enhanced signal processing as
a front end system coupled with a complete probabilistic
architecture (both bottom-up and top-down) could help to
discover new paths, where an explicit source separation is
not needed. Moreover, the integration of different knowl-
edge sources could increase performance, as one solution
might not always be applicable to all problems at hand.

6. CONCLUSIONS

In this paper we addressed three open gaps in automatic
recognition of instruments from polyphonic audio. First
we showed that by providing extensive, well designed data-
sets, statistical models are scalable to commercially avail-
able polyphonic music. Second, to account for instrument
generality, we presented a consistent methodology for the
recognition of 11 pitched and 3 percussive instruments in
the main western genres classical, jazz and pop/rock. Fi-
nally, we examined the importance and modelling accuracy
of temporal characteristics in combination with statistical
models. Thereby we showed that modelling the temporal
behaviour of raw audio features improves recognition per-
formance, even though a detailed modelling is not possible.
Results showed an average classification accuracy of 63%
and 78% for the pitched and percussive recognition task,
respectively. Although no complete system was presented,
the developed algorithms could be easily incorporated into
a robust recognition tool, able to index unseen data or label
query songs according to the instrumentation.
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