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Abstract
This paper focuses on expressive music performance mod-
eling. We induce a population of score-driven performance
models using a database of annotated performances extracted
from saxophone acoustic recordings of jazz standards. In
addition to note-to-note timing transformations that are in-
variably introduced in human renditions, more extensive al-
terations that lead to insertions and deletions of notes are
usual in jazz performance. In spite of this, inductive ap-
proaches usually treat these latter alterations as artifacts. As
a first step, we integrate part of the alterations occurring in
jazz performances in an evolutionary regression tree model
based on strongly typed genetic programming (STGP). This
is made possible (i) by creating a new regression data type
that includes a range of melodic alterations and (ii) by using
a similarity measurement based on an edit-distance fit to hu-
man performance similarity judgments. Finally, we present
the results of both learning and generalization experiments
using a set of standards from the Real Book.

Keywords: Evolutionary Modeling, Expressive Music Per-
formance, Melodic Similarity

1. Introduction
Modeling expressive music performance is a challenging as-
pect for several research areas ranging from computer music
to artificial intelligence and behavioral psychology. The fo-
cus of this paper is the study of how skilled musicians (sax-
ophone jazz players in particular) express and communicate
their view of the musical and emotional content of musi-
cal pieces by introducing deviations and changes of various
parameters. Traditionally, the deviations introduced by the
performer are studied on a note-to-note basis. However, jazz
performance is characterized by a stronger manifestation of
expressivity. A set of common deviations, which we call
performance events, is listed below.
Insertion The occurrence of a performed note that is not in the

score
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Deletion The non-occurrence of a score note in the performance

Consolidation The agglomeration of multiple score notes into a
single performed note

Fragmentation The performance of a single score note as multi-
ple notes

Transformation The change of nominal note features like onset
time, duration, pitch, and dynamics

Ornamentation The insertion of one or several short notes to an-
ticipate another performed note

The listed performance events tend to occur persistently
throughout different performances of the same phrase. More-
over, performances including such events sound perfectly
natural, so much that it is sometimes hard to recognize them
as deviating from the notated score. This supports our claim
that even the more extensive deviations are actually a com-
mon aspect of (jazz) performance. As a starting point, we
deal in this paper with the performance events that occur
most commonly in our training database, namely transfor-
mations, consolidations and ornamentations. Finally, more
subtle alterations such as intra-note modulations (e.g. vi-
brato or loudness shape, see [10]) play an important role in
a saxophone rendition, however such alterations are out of
the scope of this work. We focus here on the influence of the
melodic context on the expressive gestures presented above.
The problem can be stated as follows: how do underlying
patterns in the score account for expressive gestures in a per-
formance? Our approach is the following: we extract a set
of features describing the melodic context of a given set of
musical fragments, e.g. the melodic and rhythmic intervals
between notes, their metrical position within the bar, or how
they are perceptually grouped. On the other hand, we ana-
lyze the recordings of the corresponding pieces performed
by a saxophone player. Each performance transcription can
be stored and considered as training performance. Based on
the melodic context features, we used each model to pre-
dict a set of performance events. A similarity assessment
between training and predicted performances is then com-
puted (see Section. 3) and used to guide the evolutionary
process. Figure 1 summarizes this approach.

The modeling task lies in finding an appropriate map-
ping from melodic descriptors to expressive features that



Figure 1. General framework for evolving a performance
model. For each training fragments, we provide an acous-
tic recording of the performance and the corresponding score.
The transcription of the recording is considered as target and is
compared with the melody generated by the model. The com-
puted similarity in used to characterize the fitness of the model
in the evolutionary process

reflects patterns appearing in a training set. Moreover, we
are interested in a mapping that shows good generalization
capabilities i.e. that produces accurate predictions when
processing unseen data. Despite of the challenge it rep-
resents for multidisciplinary research, inductive expressive
performance modeling has motivated relatively few works.
In [12, 14, 13] the authors investigate loudness and tempo
variations of classical piano performances and induce multi-
level performance models. In [4] the authors use a Case-
Base Reasoning system to model expressivity-aware tempo
transformations and introduce a framework to describe ex-
tensive melody alterations. In [9], we use Inductive Logic
Programming to build a set of independent greedy regres-
sion tree models that can generate and explain expressive
performances regarding timing, ornamentations and consol-
idations. A major drawback of this approach is that the dif-
ferent models are induced separately. As a consequence,
the set of tree models may produce predictions that are not
consistent. Here, we present a way to integrate genera-
tive predictions for a range of performance events into self-
contained performance tree models. This is made possi-
ble by using an evolutionary regression tree approach ([5]).
This technique is flexible enough (i) to produce structured
predictions that are needed to integrate a number of possi-
ble performance events, and (ii) to let us define an accuracy
measurement that goes beyond pair-wise comparisons.

1.1. Why use evolutionary computation techniques?
We present in this section the arguments that led us to con-
sider evolutionary computation (EC), and more specifically
strongly typed genetic programming (STGP, [8]), as conve-
nient methods for building expressive performance models.
Even if the aspects we present here are of interest for apply-
ing EC to a whole range of domains [6], we focus on how
these techniques can benefit our particular problem.

1.1.1. Population of performance models
Human performance is an inexact phenomenon: even if per-
formers learn through rehearsal to produce globally similar

performances, they could hardly reproduce exactly identical
renditions. This is particularly true in jazz music, where
the improvisational contribution to a performance is fun-
damental. At each new rendition, small alterations in the
timing and other expressive features of the musical piece
are introduced. Expressive performance models should take
into account this aspect. In contrast, traditional decision
tree models are essentially deterministic. That is, once in-
duced a feature-based decision tree model will produce a
constant prediction for transforming a given fragment. EC
provide an elegant way to cope with this limitation by evolv-
ing a population of models, with benefits for both end-users
and researchers. The former have access to a population of
models, each one which produce distinct set of performance
events. The latter can refine specific design decisions by
analyzing their consequence on the whole population.

1.1.2. Custom data types for structured modeling/prediction
Although it is possible to use evolutionary computation tech-
niques in a straightforward way i.e. using templates and
well-defined data types, the EC programmer may design
custom data types for the model inputs and outputs. In the
case of STGP, it is possible to refine the input/output specifi-
cations for each primitive of the genetic program. Here, we
make use of such flexibility to define a structured prediction
data type that takes into account features of note timing, or-
namentations, consolidations. This is a first step towards a
more complete prediction of performance events. We will
present this prediction type in detail in the next section.

1.1.3. Integration of domain-specific knowledge
When modeling a given problem, it is sometimes crucial to
integrate elements of domain-specific knowledge in the sys-
tem. In the case of feature-based tree modeling, one can
define this knowledge at several levels. First, the tree struc-
ture has to be defined so that it matches a regression tree
structure. Also, one can easily handle the prior distribution
of inputs and outputs by defining the initialization operator
for each primitive in use in the genetic program. In our case,
we refer to constant generation: on the one hand, features
are compared to constants across the successive tests, these
constants have to respect the statistical distribution of the
feature space. On the other hand, single or even structured
constant predictions are generated independently to where
they will appear in a tree. Consequently, the role of the ini-
tialization operator is to provide a first guess for both fea-
tures and prediction values. Finally, the most central aspect
of EC is that the user has the freedom (and the responsi-
bility) to define a fitness function that is suitable for a given
problem. This enables us to include elaborate accuracy mea-
surements such as performance similarity in the evolution
process.

The rest of the paper is organized as follows: Section
2 presents the types, primitives, and operators of the tree
model. We define the evolutionary constraints needed for



producing consistent regression trees from both typing and
logical point of view, and define a prediction type for our
problem. Section 3 presents a performance-similarity crite-
rion based on edit-distance. In Section 4 we show the learn-
ing and generalization accuracy of the evolved models using
an expressive performance database and discuss the results.
Finally, Section 5 presents our conclusions as well as future
extensions to this work.

2. Evolutionary regression trees
Regression tree models are a specific instance of tree pro-
grams. Their general structure is the following: Each node
is a test comparing an input with a numerical constant (typ-
ically a lower than inequality). The outcome of a test is
either a new test or a prediction. Furthermore, successive
tests must be arranged to form consistent rules. We inte-
grate these constraints in the evolutionary process. First,
it is possible to ensure that the models will be structurally
consistent by defining appropriate types and primitives. We
then address the issue of logical consistency and define a
mechanism to ensure it by overriding the evolutionary oper-
ators.

2.1. Types and primitives
Type consistency refers to how each primitive in the tree
is connected to its neighbors. We use this STGP feature
to ensure the desired regression tree structure. We define
four different types: InputValue, FeatValue, Bool and Reg-
Value. The first two types represent floating-point values,
the first being used as terminal for the inputs of the model,
the second one encapsulating constants to be compared with
the inputs. The third type represents boolean values used as
outcome of these tests.

The last type is used for encoding the model predictions.
We give in table 1 details of the RegValue data type. The
first three RegValue members, namely Duration Ratio, On-
set Deviation and Relative Loudness, are float-valued and
they refer to a transformation event. The fourth member,
namely Ornamentation Event, is a boolean value indicat-
ing whether an ornamentation will be generated. If it is
false, no ornamentation will be generated, and members 5
to 8 (namely Ornamentation Relative Onset, Ornamentation
Absolute Duration, Ornamentation Relative Pitch and Or-
namentation Relative Loudness) are ignored. Otherwise,
we use these float-valued members to generate the orna-
mentation. The ninth RegValue member, namely Consoli-
dation Event, is a boolean indicating whether a consolida-
tion will be generated. Otherwise, the last Consolidation
Relative Duration member is used along with the three first
members to produce a consolidation. Note that this design
allow the system to predict the following events combina-
tions: transformation, ornamentation+transformation, con-
solidation, ornamentation+consolidation.

Corresponding to these types, we present in table 2 the

Table 1. RegValue data type description

Member Name Type
Duration Ratio float
Onset Deviation float
Relative Loudness float
Ornamentation Event bool
Ornamentation Relative Onset float
Ornamentation Absolute Duration float
Ornamentation Relative Pitch float
Ornamentation Relative Loudness float
Consolidation Event bool
Consolidation Relative Duration float

Table 2. STGP primitives in use for this work. Each primitive
is presented along with the number of arguments it handles,
the type of each argument, and its return type; Note that prim-
itives EFV and ERV, which are used for constant generation,
take no argument as input

Name Nb args Arg. Type Return Type
LT 2 1st: InputValue, 2nd

FeatValue
Bool

IF 3 1st: Bool, 2nd and
3rd: RegValue

RegValue

EFV 0 - FeatValue
ERV 0 - RegValue

needed primitives and show how they correspond to the struc-
ture of a regression tree. First, LT primitive tests whether
an input of type InputValue is lower than a FeatValue typed
constant generated by the EFV primitive. A LT primitive re-
turns a Bool that is used as first argument of the IF primitive.
The latter performs a test on this boolean value and returns
a RegValue. If the test succeeds, the second argument is re-
turned, otherwise, the third argument is returned. Both of
these arguments are RegValue typed. Finally ERV primi-
tive generates an RegValue prediction constant. As a result,
the second and third arguments of an IF primitive can either
be linked to an ERV primitive, or to another IF primitive,
chaining successive tests until an ERV primitive is reached.

2.2. Logical consistency
Based on these ideas we show in Figure 2 two prototypical
models that are type consistent. Both models perform two
successive tests involving the InputValue primitive labeled
IN0. The root of both trees, indicated by an arrow, first
tests whether IN0 is lower than a constant equal to 0. If
the test succeeds, an ERV primitive connected to the sec-
ond argument of the root is returned. Otherwise, a new
test is performed via the right-most IF primitive, checking
whether IN0 is either lower than 1 (upper model), or -1



Figure 2. Two type-consistent regression trees. (Top) Logically
consistent tree, (Bottom) Logically inconsistent tree

(lower model). We can see that the upper model is logically
consistent: its tests are plausibly structured and can possi-
bly represent the feature space. Oppositely, the lower model
is logically inconsistent: because the right-most test is not
logically consistent with the left-most one, all the primitives
marked in gray turn to be useless. This leads to a situation of
code bloat [11] where the evolved tree may contain useless
branches, called introns. The influence of code bloat in the
results of an evolutionary system is still debated and may
depend of the model application domain. However, in this
paper, because our work is preliminary, we decide to discard
individuals containing such introns by introducing a logical
consistency check mechanism. As a future extension, we
plan to study thoroughly the influence of such introns in the
evolutionary process for our particular domain.

2.3. Genetic Operators
In order to implement the logical consistency check pre-
sented above, we slightly modified the operators provided
in [1], which are a refinement of the strongly typed oper-
ators proposed in [8]. We modified the base class of each
of these operators to implement a logical consistency check.
The main operators are Tree Crossover, where two individu-
als can swap subtree and Standard Mutation, where a subtree
is replaced by a newly generated one. Additionally, Shrink
mutation replaces a branch with one of its child nodes, and
Swap mutation swaps two subtrees of an individual.

2.4. Constant Generation
Finally we use the ERV (respectively EFV) primitive for
generating constants that are used for prediction (respec-
tively comparison with inputs). ERV and EFV initialization

operators are used to integrate the distribution of both inputs
and outputs in the training data. We approximate these dis-
tributions with gaussians, and use the latter when generating
random constants. This is a first step towards using a larger
repertoire of statistical distributions (e.g. gamma distribu-
tions, mixture of gaussians).

We defined in this section a framework for evolving re-
gression trees from the typing and logical point of view. Ad-
ditionally, we use a mechanism for constant generation that
reflects both input and output distributions of the training
data. What we need now is a fitness measure in the context
of performance modeling.

3. Accuracy for performance modeling:
fitness evaluation
In this section, we devise a fitness function to guide the
model search in the right direction. The fitness function per-
forms a performance similarity measurement using the edit-
distance. The formulas we introduce apply to the fitness
computation for a given performance fragment. The aver-
age model fitness is computed over the distinct fragments of
the training database.

3.1. Performance similarity based on edit-distance
How accurately can a given model learn to generate expres-
sive fragments? We want to measure how similar is a pre-
dicted performance with the training one. To achieve this,
we use a edit-distance that was fit to human performance
similarity judgments, as shown below. The edit-distance
[7] is used to determine the similarity between two per-
formances of the same melody. It is defined as the min-
imal total cost of a sequence of editions needed to trans-
form one performance into the other, given edit-operations
like deletion, insertion, and replacement. The edit-distance
is flexible enough to accommodate for comparison of per-
formances of different lengths (in case of e.g. consolida-
tion/fragmentation) and it allows for customization to a par-
ticular use by adjusting parameter values of the edit-operation
cost functions. The cost of a particular edit-operation is de-
fined through a cost function w that computes the cost of
applying that operation to zero or more notes of one perfor-
mance and zero or more of the other, given as parameters
to w. We defined the following cost functions for 1-0, 0-1,
1-1, N-1, and 1-N mapping edit-operations, which we write
respectively w(si, ∅), w(∅, tj), w(si, tj), w(si−K:i, tj) and
w(si, tj−L:j):

w(si, ∅) = α1 ( δD(si) + εE(si) ) + β1

w(∅, tj) = α1 ( δD(tj) + εE(tj) ) + β1

w(si, tj) = α2

 π |P(si)− P(tj) | +
δ |D(si)−D(tj) | +
o |O(si)−O(tj) | +
ε |E(si)− E(tj) |

 + β2



w(si−K:i, tj) = α3


π

∑K

k=0
|P(si−k)− P(tj) | +

δ |D(tj)−
∑K

k=0
D(si−k) | +

o |O(si−K)−O(tj) | +
ε
∑K

k=0
|E(si−k)− E(tj) |

 + β3

w(si, tj−L:j) = α3


π

∑L

l=0
|P(si)− P(tj−l) | +

δ |D(si)−
∑L

l=0
D(tj−l) | +

o |O(si)−O(tj−L) | +
ε
∑L

l=0
|E(si)− E(tj−l) |

 + β3

where s and t are the performances as sequences of per-
formed notes. Subsequences are denoted si:j = (si, ..., sj),
and si = (si), and P(si), D(si), O(si), and E(si) respec-
tively represent the pitch, duration, onset, and dynamics at-
tributes of a note si. Each attribute has a corresponding pa-
rameter (π, δ, o, and ε, respectively), that controls the impact
of that attribute on operation costs. The β parameters con-
trol the absolute cost of the operations. The α parameters
control the partial cost of the operation due to (differences
in) attribute values of the notes.

3.1.1. Fitting the edit-distance to human judgments
The cost parameters presented above were optimized in [4]
to fit human performance similarity judgments based on a
web survey. In this survey, 92 subjects were presented ques-
tions containing target performance A (the nominal perfor-
mance, without expressive deviations) of a short musical
fragment, and two different performances B and C of the
same fragment. The task was to indicate which of the two
alternative performances was perceived as most similar to
the target performance. The edit-distance cost parameters
were optimized using a genetic algorithm to fit the survey
results. We show in table 3 the final parameters values.

The optimized edit-distance is used to compute the fit-
ness of the model, by comparing the model output perfor-
mance to the training performance. We obtain the value of
the error-driven fitness component by applying the follow-
ing formula:

ferror =
1

1 + editdistance
(1)

4. Experimental results and discussion
4.1. Data
In this paper we use an expressive performance database that
comes from annotations of acoustic saxophone recordings.
We consider four jazz from standards the Real Book. The
excerpts are the following: Body and Soul, Once I Loved,
Up Jumped Spring, Like Someone In Love. We character-
ize the score melodic context of this data using, for each
note, the following features: note duration, metrical strength
within the bar, previous and next note relative duration and
previous and next note relative interval. We analyze the cor-
responding acoustic recordings to obtain the performance
transcriptions. See [3] for detailed description of the tran-
scription process.
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Figure 3. Average edit-distance of best-of-run model during
the evolution. Plain: training data, dashed: test data

4.2. Method
The training and generalization experiments we present here
are completed as follows: we include in the training data
(used for calculating the fitness) the musical data that comes
from the first two thirds of each of the four musical frag-
ments presented above. The material of the last third of
each fragment is used as test data. That is, we train the
model to predict the performance events that take place dur-
ing the first part of each fragment. During the test phase, we
evaluate how accurately the model is able to predict the per-
formance events from the end of these fragments. The test
fragments were carefully chosen so that they do not contain
melodic information present in the training set.

4.3. Evolutionary settings and Implementation
We used the following evolutionary settings for this experi-
ment. The population size was set to 1000 individuals, and
the maximum number of generations was set to 200. We
used the following probabilities for our evolutionary oper-
ators: Crossover probability is set to 0.9, with a branch-
crossover probability of 0.2. The Standard mutation prob-
ability is set to 0.01, while the Swap mutation has been set
to 0.1. Finally, Shrink mutation probability is set 0.05. The
maximum tree depth has been set to 20.

4.4. Results
Figure 3 shows a plot of the average edit distance over the
training fragments (solid) and the test fragments (dashed)
for the best-of-run model during the evolution. The x-axis
indicates the generation number while the y-axis shows the
average edit distance for training and test set. We can notice
a first period in which the overall distance to the actually
performed fragments is globally decreasing until generation
20. After this period, we can observe a clear tendency: the
training distance decreases while the test distance does not



Table 3. Optimized values of edit-operation cost parameters

α1 α2 α3 β1 β2 β3 π δ o ε
0.031 0.875 0.243 0.040 0.330 0.380 0.452 1.000 0.120 0.545

decrease anymore. This is a situation of overfitting, which
might be a consequence of the limited amount of training
data. To confirm this, we can see that the maximum depth
of the evolved models is 11, while the tree programs were
allowed to grow to a depth of 20. This means that the train-
ing data are not sufficient for the models to grow enough and
find a system of rules that is suitable for both training and
test set.

5. Conclusion
We have presented an approach to derive evolutionary re-
gression trees for modeling expressive music performance.
We first presented the benefits of evolutionary computation
and strongly typed genetic programming, which can be sum-
marized as follows: evolution of a population of models,
prior knowledge integration, and flexibility regarding the
data types, structures, and model evaluation. In continua-
tion, we defined the basis of a structured-prediction regres-
sion tree for modeling expressive music performance. We
specified the types, primitives, operators and fitness function
used in the STGP framework. We have set the basis of a per-
formance modeling evolutionary framework based on a per-
formance similarity measure that was fit to human similarity
judgments. We finally presented preliminary results for both
learning and generalization experiments, using a small ex-
pressive performance database annotated from monophonic
recordings of jazz standards. We compared the training and
test performance similarities, to identify an overfitting point.

We plan to extend our work in the following directions:
first we want to increase substantially the size of the anno-
tated performance database we are using in order to more
robustly assess the training and generalization abilities of
the evolved models. We will take advantage of recent works
such as [2] that highlight the importance of a validation set
for selecting robust best-of-run models. At this point, it is
worth mentioning that the incorporation of an edit-distance
based fitness computation into the evolutionary framework
has led to a massive use of computation time: increasing
substantially the training database will require us to set a dis-
tributed framework, which is featured in Open Beagle. Also,
we will integrate an extended set of performance events in
order to reflect all the possible manifestations of expressiv-
ity that characterize jazz performance. Finally, in our actual
approach we achieve score-driven performance prediction.
In the context of sequential processing, an exciting work di-
rection is studying the contribution of both score context and
past expressive gestures in music performance.
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