Modeling the Acquisition of Statistical Regularities in Tone Sequences
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Abstract

Sequence learning is an important process involved in many
cognitive tasks, and is probably one of the most important
processes governing music processing. In this work we build
and evaluate computational models addressed to solve a tone-
sequence learning task in a framework which simulates forced-
choice tasks experiments. The specific approach we have se-
lected is that of Artificial Neural Networks in an on-line set-
ting, which means the network weights are always updated
when new events are presented.

Here, we aim at simulating the findings obtained by Saffran,
Johnson, Aslin, and Newport (1999). We propose a valida-
tion loop that follows the experimental setup that was used
with human subjects, in order to characterize the networks’
accuracy to learn the statistical regularities of tone sequences.
Tone-sequence encodings based on pitch class, pitch class in-
tervals and melodic contour are considered and compared. The
experimental setup is extended by introducing a pre-exposure
forced-choice task, which makes it possible to detect an initial
bias in the model population prior to exposure. Two distinct
models (i.e. Simple Recurrent Network or a Feedforward Net-
work with a time window of one event) lead to similar results.
We obtain the most consistent learning behavior using an en-
coding based on Pitch Classes, which is not a relative repre-
sentation. More importantly, our simulations and additional
behavioral experiments highlight the impact of tone sequence
encoding in both initial model bias and post-exposure discrim-
ination accuracy. Furthermore, we suggest that melodic encod-
ing and representation should be further investigated when in-
specting and modeling behavioral experiments involving mu-
sical sequences.

Keywords: statistical learning; computational modeling; mu-
sic

Introduction

In the context of the EmCAP Project ' we are developing
a computational model of musical memory and expectation
that would form a module of an interactive music system.
The model should take as input a musical stream and form
specific expectations regarding the future sequence events,
based on the sequence listened so far, and the internal repre-
sentations developed by learning. As an outcome the model
must be able to (1) Expect musical sequences based on what it
has been exposed to, (2) Represent aspects of the structure of
the attended material in a meaningful way from the cognitive
point of view. While the first outcome of the system is closely
related to attempts of building interactive music systems (Pa-
chet, 2003), our second aim constrains the model to be in-
formed of music cognition findings as observed in psycholog-
ical experiments. In our view, a main concern lies in finding

'EmCAP (Emergent Cognition through Active Perception) is a
European Commission research project. http://emcap.iua.upf.es/

specific musical and cognitive tasks that a model should per-
form to be validated. In this perspective, we exploit the idea
that statistical environmental regularities are fundamental for
perception and knowledge acquisition. Statistical regularities
in the environment influence the processing of information
in the brain, such as learning, memory and inductive infer-
ence. So far, humans’ exploitation of these statistical reg-
ularities in cognitive mechanisms has been subject of study
by cognitive sciences (Barlow, 2001). Learning, this way,
could be seen as the internalization of environmental regu-
larities. Gestalt laws (proximity, common fate, good contin-
uation), that play an important role in current psychological
research, can also be seen as statistical inferences from en-
vironmental regularities. Learners take advantage of statisti-
cal information of syllable sequences such as the distribution
of patterns of sounds to discover word boundaries. Several
works have devised an experimental protocol for assessing
how humans learn regularities in acoustic sequences, made of
either tones, phonemes, or timbres. The regularities observed
in the sequence can be derived from transition probabilities
(Saffran, Newport, & Aslin, 1996; Saffran et al., 1999; Till-
mann & McAdams, 2004), finite-state automata (Loui, Wes-
sel, & Hudson Kam, 2006), or grammars (Bigand, Perruchet,
& Boyer, 1998). While these experiments can be seen as
a means to validate models of expectation, we also suggest
that computational simulations may be used to inspect fur-
ther and eventually validate the experimental protocols them-
selves. As a starting point, we aim at simulating the experi-
ment presented by Saffran et al. (1999). This latter consists
of a non-linguistic analogue of the word segmentation task
applied to tone sequences. As we will see in next section, the
structures to be implicitly learned depend on the transition
probabilities between tones in the attended stream. Because
of the very statistical nature of these tone sequences, simulat-
ing the learning process using statistical models may be seen
as straightforward because the learned models would eventu-
ally reflect the statistical regularities from which the stimuli
were created. However our experimental results suggest that
this is not always the case and that the outcome depends on
the tone sequence encoding, the statistical model, and the spe-
cific task.



Background
Transition statistics of tones

Saffran et al. (1999) focused on assessing whether humans
can learn regularities related to the transition probabilities
regulating the elements inside words or the word transitions.
The authors created a set of artificial stimuli by setting high
inside-word and low across-boundaries transition probabili-
ties. In this work, two languages L1 and L2 were created.
Each one contained 6 tone triplets, called tone-words. First, a
random sequence of words of the defined language was pre-
sented to the subjects. However the tone triplets were pre-
sented in a regular order. There was no explicit cue indicating
the boundaries among them. This means that the presented
material appeared as a stream of tones which could be only
segmented using the statistical regularities of words. In the
first experiment, words from L1 were non-words in L2, and
vice versa. That is, there was no word in one language that
appeared, even partly, in the other language. In the second
experiment, words from one language were part-words in the
other language, that is, only one tone differed between each
language word. After exposure, the subjects had to perform
forced-choice tasks involving exhaustive word-pairs belong-
ing to each language. The task consisted in choosing which
word of the pair had been effectively heard in the presented
material. This study pointed out that the subjects are able
to categorize above chance the words belonging to the mate-
rial they were exposed. This means that the subjects are able
to segment the input stream into words and to distinguish if
a word presented subsequently belongs to the sequence they
have been exposed to. Also, because in Experiment 2 the
words from each language were more similar, the categoriza-
tion accuracy of subjects is lower than in Experiment 1. The
tone words used in Experiment 1 and 2 are given in Table 1.

Table 1: Tone words used in (Saffran et al., 1999)

Experiment| Language 1 Language 2

Exp. 1 ADB,DFE,GG#A, ACHE F#GHE,GCD#,
FCF#D#ED,CC#D | C#BA,C#FD,G#BA

Exp. 2 ADB,DFE,GG#A, G#DB,DFF#,FG#A,
FCF#,D#ED,CC#D | C#CF#,D#EG#,CC#B

Artificial Neural Networks for statistical sequence
learning

Here we use Artificial Neural Networks (ANN) to learn to
predict the continuation of an encoded tone sequence, based
on the tones observed so far. Two types or ANN are consid-
ered here, namely Feed-forward Neural Networks (FNN) and
Simple Recurrent Networks (SRN). In the FNN, inputs are
presented to an input layer and successively transformed and
propagated into successive layers via connection weights un-
til activating the output layer. A learning rule such as back-
propagation (Rumelhart & McClelland, 1986) is applied to

update the connection weights of the network according to
the measured mismatch. FNN can be applied to next-event
prediction tasks by using as inputs a certain number of past
events and using as output the next event to be predicted
(Kuhn & Dienes, 2008). The number of past events applied
to the input layer determines the context available to provide
a prediction. SRN are a variation on the FNN. A three-layer
network is used, with the addition of a set of ’context units” in
the input layer. There are connections from the middle (hid-
den) layer to these context units fixed with a weight of one.
The fixed back connections result in the context units always
maintaining a copy of the previous values of the hidden units
(since they propagate over the connections before the learn-
ing rule is applied). Thus the network can maintain a sort of
state, allowing it to perform such tasks as sequence-prediction
that are beyond the power of a standard feed-forward neu-
ral network. Simple Recurrent Networks have already been
used in several works in order to build computational mod-
els of sequence learning from a cognitive perspective (EIl-
man, 1990; Cleeremans & McClelland, 1991). Indeed these
techniques have a great potential for modeling sequence pro-
cessing, mainly because they do not rely on a specific time-
window as used in FNN. There are other more recent op-
tions for modeling musical sequence processing from a sta-
tistical point of view, such as Echo State Networks (Jaeger,
2003), Self-Organizing Maps (Tillmann, Bharucha, & Bi-
gand, 2000), N-grams (Pearce & Wiggins, 2004) or Bayesian
Networks (Temperley, 2006). However these models are not
addressed here and are left for further investigation.

Simulation setup

In this section, we provide details about our experimental
setup, the alternatives we use in order to encode tone se-
quences, and our ANN models settings. First, we present in
Figure 1 an overview of the experimental setting used in both
original experiment and our simulation.

Tone sequence encoding

e Pitch Class (PC): each tone is encoded using a pitch class
representation: we use 12 input units, for representing a
given pitch we set one unit to one while the others are set
to zero.

e Pitch Class Intervals (PCI): Each interval from one tone to
the next one is encoded using a pitch class representation:
we use 25 input units, for representing a given interval we
set one unit to one while the others are set to zero. The 25
units allow to represent intervals ranging from -12 to +12
semitones.

e Melodic Contour (C): Each interval from one tone to the
next one is encoded using a contour representation: we use
three input units, for representing a given interval we set
one unit to one while the others are set to zero. The three
units allow to represent the contours down, same and up.



Original experiment Proposed simulation

1. Initialization 1. Initialization
I Choose one expectation
l l p«:«l&] model
i Two groups of listeners et
@ @ Two musical languages Two groups of expectators,
(6 3-tones musical words) each expectators with
random initial conditions
@ o Random-generated sequences .
Two musical languages
(6 3-tones musical words)

2. Exposure

2-0 20O

Example Sequence:

Random-generated
seguences

O£ -
O b &

2. Pre-exposure forced-choice task:
Exhaustive pairs, one word from each
language. Unbiased models should provide

=
Frl F s

(failure)

pitch

midi .-'.-__-'.- -
I =]

word.1 word.2 word.3 word.4 word.2 word.1
3. Post-exposure forced-choice task:

Exhaustive pairs, one word from each language,
subjects choose the most expected word

1\% l/% 50

(success) 4. Post-exposure forced-choice task

(success)

(failure)

Figure 1: Overview of the experimental setup. left: original
experiment, right: simulation

ANN settings

ANN are usually trained in several epochs. Then a test phase,
in which no weight update takes place, is subsequently per-
formed. Here, by analogy with the approach of Kuhn and Di-
enes (2008), we make no distinction between training and test
mode. At each time step, even during the forced-choice task,
the network weights are updated to reduce the mismatch be-
tween their expectation and the next note event. The number
of epochs is set to 1, because we want to reproduce a psycho-
logical experiment in which the subjects attend the sequence
of stimuli only once. We use an FNN with a time window
of one event, that is, the FNN network has only access to the
current event which predicting the next one. For both FNN
and SRN, the detail of the parameters we explored is given
below.

Exploration of the model parameters For our experi-
ments, we used a set of parameters for defining and train-
ing the SRN. These parameters are learning rate, momentum,
and number of hidden (and context) nodes. As a comparison
with (Kuhn & Dienes, 2008), we do not allow a very large
number of hidden and context units, for instance 60 or 120.
This is because we believe that the task addressed by (Saf-
fran et al., 1999) involves smaller time dependencies than the
bi-conditional learning task addressed by Kuhn and Dienes
(2008). Moreover we think that this may reduce the risk of
structural overfitting. Thus, we use a smaller number of hid-
den unit. We summarize the set of possible parameters in
Table 2.

Table 2: Parameter Set for the SRN

Parameters Values
learning rate | 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9
hidden units | 2, 5, 10, 15, 30

Simulating the forced-choice task

In order to model the forced-choice task we compare, word
tone or interval (depending on the selected coding schema),
the model predictions with the actual next tone or interval.
The word from which the lowest mismatch is observed is se-
lected as the chosen word. Figure 2 shows how the forced-
choice task is simulated for either interval-based encodings
or tone-based encodings.

Interval-based representation

\\ \\

Tone-based representation

>

Figure 2: Forced-choice task simulation. The horizontal axis
indicates time. Bottom: tone-based encoding, circles repre-
sent successive tones. Top: interval-based encoding, circles
represent successive intervals. Plain diagonal arrows show
models producing expectations of the next event. Only the
events which are involved in the mismatch computation are
labelled. Vertical bidirectional arrows show from which pre-
diction the mismatch is measured. Dashed vertical lines show
word boundaries.

Experimental loop

We run our simulations using the following general loop.

1. Create, for each language, a random sequence of tones
by concatenating words from the corresponding language.
Following Saffran et al. (1999), we create for each lan-
guage 6 blocks of 18 words each by randomly picking
words from this language. Words never appear twice in
arow. Then, the blocks are concatenated randomly to form
sequences equivalent to a 21 minutes auditory stream.

2. Create two network instances for simulating an individual

from Group 1 and another from Group 2. Both networks
have initially random weights and activations



3. For each network, perform the forced-choice categoriza-
tion task on all possible combinations of L1-L2 words.
Store the recognition accuracy before exposure. During
this task, the order of presentation of each stimulus pair is
random. Moreover, when each pair is presented, the words
from the two languages are presented in random order.

4. Present to each network its corresponding sequence. This
is the exposure step.

5. For each network, perform again the forced-choice catego-
rization task. The settings are similar to those presented in
step 3. Store the recognition accuracy after exposure.

We repeat this loop 100 times for each experiment in order
to extract a recognition accuracy score for each instance of
the network.

Results and discussion

In Figure 4 (Figure 5 respectively) we show the results of our
experiments involving the SRN (respectively FNN) model.
For both models, the best results were obtained using the fol-
lowing parameters: 2 hidden units and a learning rate of 0.01.

Influence of prediction model

The first observation to be made concerns the similarity be-
tween the results obtained in Figure 4 using the SRN model,
and in 5 using the FNN model, independently of the encoding
used. Our results suggest that the SRN model can not take
advantage of a longer context when providing a prediction,
which may confirm that the task presented in (Saffran et al.,
1999) can only be solved by means of computing transition
probabilities between successive events.

Pre-exposure bias

The pre-exposure scores average and standard deviation can
reveal some initial bias towards one initial language, depend-
ing of the encoding used. When using the Pitch Class en-
coding, the pre-exposure accuracy is consistently close to
the 50% baseline, which would be the outcome of a random
guess for an unbiased model. However, interval-based en-
codings seem to exhibit a slightly higher bias, in which the
pre-exposure accuracies may give preference to a particular
language. This bias is statistically significant with respect to
the Contour-based encoding. In this case, the pre-exposure
forced-choice accuracies for Language L1 and L2 consis-
tently belong to different distributions (p < 0.05), and have a
bias in favor of Language 1 for Experiment 1, and Language
2 for Experiment 2. In (Saffran et al., 1999) there was no
pre-exposure forced-choice task, so the information regard-
ing a possible pre-exposure bias is not available. This is the
reason why we have carried out an additional behavioral ex-
periment (Knast, Durrant, Miranda, & Denham, 2008). This
experiment reproduced the experimental setup and tone word
alphabet of (Saffran et al., 1999) Experiment 1, but a pre-
exposure forced-choice task was introduced. There were 24
individuals, aged 23-44 (average: 31 years old). In Figure 3,

we show the distribution of selected tone words during the
pre-exposure forced-choice task. The distribution presented
in Figure 3 shows that words from Language L2 are more
frequently choosen (54.9% in average) than words from lan-
guage (45.1% in average). Furthermore, some words are af-
fected by a strong negative (e.g. word 4) or a positive bias
(e.g.words 10 and 12).
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Figure 3: Pre-exposure distribution of selected tone words
among Language 1 and Language 2 listeners. Tone words
1-6 belong to Language L1 and 7-12 to Language L2.

The main rationale of the original work was to investigate
whether statistical learning is a domain-general mode of ac-
quiring knowledge about environment or it is only limited to
linguistics. An assumption was made that unfamiliar words
build on the basis of three syllables are comparable to tone-
words consisting of three notes. Here, our pre-exposure data,
available either as simulations or behavioral data, suggests
that there might be additional qualities of tone-word types
which may have an impact on the process of learning.

Acquisition of statistical regularities

Inspecting the post-exposure results reveals distinct outcomes
depending on the tone sequence encoding used. Using the
Pitch Class Interval representation, the post-exposure recog-
nition scores are higher than the baseline for Experiment 1 for
both languages (p < 0.001). However, both SRN and FNN
models fail in reproducing the results of the second experi-
ment, because the Language L2 post-exposure score is lower
than the baseline.

The Contour-based representation can not account for the
results of Experiment 1, because models exposed to Lan-
guage L2 exhibit a post-exposure accuracy which is lower
than the baseline (p < 0.05). Experiment 2 is not reproduced
either: in this case the model population exposed to the Lan-
guage L1 exhibits a strong negative post-exposure bias to-
wards this language (p < 0.001). The fact that Experiment 2
involves the comparison of words versus part-words explains
well the failure in obtaining a good fit using a melodic contour



representation: indeed, the words to be discriminated during
the forced-choice task are very similar when projected into a
contour representation.

Overall, the most consistent improvement of the post-
exposure forced-choice task accuracy for all experiments and
languages (p < 0.05 in all cases) is obtained using a Pitch
Class representation, that is, a representation where pitch is
not defined with intervals. However, we were not able to
reproduce the fact than Experiment 1, because it involves a
comparison of words versus non-words, led to a higher dis-
crimination accuracy than Experiment 2. In our simulations,
the average post-exposure accuracy for Experiment 1 is 65%
for Language L1 and 61% for Language L.2. For Experiment
2, the average post exposure accuracy is 77% for Language
L1 and 63% for Language L2.

Conclusion and future work

We have proposed in this paper an attempt towards model-
ing the acquisition of statistical regularities in tone sequences.
We have used two Artificial Neural Network architectures to
simulate the general learning trend observed by (Saffran et
al., 1999). Our results show that the choice of the Artificial
Neural Network architecture has little effect on the post ex-
posure accuracy, which suggests that an extended temporal
context is not necessary to model this task.

We have extended the original experiment with a pre-
exposure forced-choice task and observed the outcome of
this task with both simulations and a behavioral experiment.
We have found that a bias towards a given language can ap-
pear, which may depend on the tone sequence representation
used and enculturation effects. Therefore, we suggest that
further studies aimed at investigating tone sequence learning
should take into account different representations of the tone
sequences and the possible initial bias listeners may exhibit.

The simulations based on interval representations such as
Pitch Class Interval or Contour did not consistently account
for the experimental results. However, using a tone sequence
encoding based on Pitch Class, we observe, for all experi-
ments and languages, an increase of the categorization accu-
racy of words versus non-words and words versus part-words
in a population of prediction models after they have been ex-
posed to tone sequences containing statistical regularities.

However, because of the specific settings and tone material
used in (Saffran et al., 1999), we need to investigate further
tasks to assess to which extent and in which context a given
tone sequence representation is suitable. To explore further
this issue, we will investigate the impact of enculturation and
representation in further tone sequence learning tasks using
either artificially generated material (Loui et al., 2006), and
real world tone sequences (Schellenberg, 1996; Dalla Bella,
Peretz, & Aronoff, 2003).
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Figure 4: Forced-choice accuracy obtained with SRN predictor for distinct tone sequence encodings, compared with the sub-
jects’ response in (Saffran et al., 1999). The simulation of both Experiment 1 (left: words versus non-words) and Experiment
2 (right: words versus part-words). For each experiments and model, the results are shown for Language L1 on the left and
for Language L2 on the right. For each encoding, the pre-exposure (light bars) and post-exposure (medium dark bars) mean
score is plotted, along with its standard deviation over the 100 runs. Contour encoding is denoted C, Pitch Class Interval en-
coding is denoted PCI, and pitch class encoding is denoted PC. For each language, the right-most bar shows the ground truth
post-exposure accuracy obtained by Saffran et al. (1999), denoted GT. The horizontal dashed line indicates the 50% baseline.
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