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Abstract. We present an evolutionary approach for building regres-
sion tree based models in the context of expressive music perfor-
mance. We first review the benefits of using evolutionary computa-
tion techniques in this context. We then use the strongly-typed ge-
netic programming framework and define the types and constraints
that are needed for evolving efficiently multi-dimensional regres-
sion trees, and present two fitness functions for modelling expres-
sive performance local timing. While the first fitness measurement is
purely error-driven, the second also takes into account the balance of
the evolved tree in terms of input space representation. Finally, we
present the results of both learning and generalization experiments.
For these experiments, we use a database of saxophone performance
timing extracted from a set of acoustic recordings of jazz standards.
The whole system is built into the Open Beagle [5] evolutionary com-
putation framework.

1 Introduction

Modelling expressive music performance is a challenging aspect for
several research areas ranging from computer music to artificial intel-
ligence and behavioral psychology. The aim of this paper is to study
how skilled musicians (saxophone Jazz players in particular) express
and communicate their view of the musical and emotional content
of musical pieces by introducing deviations and changes of various
parameters. In this paper we focus on the influence of the melodic
context on the expressive gestures. The problem can be stated as fol-
lows: how do underlying patterns in the score account for expressive
transformations in a performance? Our approach is the following:
we extract a set of features describing the melodic context of a given
set of scores, e.g. the melodic and rhythmic intervals between notes,
their metrical position within the bar, or how they are perceptually
grouped. On the other hand, the corresponding pieces performed by
a human player are characterized with a set of expressive features
such as timing, loudness or microtonal information. The modelling
task lies in finding an appropriate mapping from melodic descriptors
to expressive features that reflects patterns appearing in a training
set. Moreover, we are interested in a mapping that shows good gen-
eralization capabilities i.e. that produces accurate predictions when
processing unseen data.

Evolutionary computation (EC) has been considered with grow-
ing interest in musical applications. Since [9], it has often been used
in a compositional perspective, either to generate melodies ([4]) or
rhythms ([15]). In [12] the harmonization subtask of composition
is addressed, and a comparison between a rule-based system and a

1 Pompeu Fabra University, Barcelona, Spain, email:
{ahazan,rramirez}@iua.upf.es

genetic algorithm is presented. EC has also been considered in im-
provisation applications such as [1], where a genetic algorithm-based
model of a novice jazz musician learning to improvise is developed.
On the other hand, despite the challenge it represents for pluridis-
ciplinary research, inductive expressive performance modelling has
motivated relatively few works. In [17, 16] the authors investigate
loudness and tempo variations of classical piano performances and
induce multi-level performance models. [7] presents a case based
reasoning system to model expressivity-aware tempo transforma-
tions and makes use of genetic algorithms to optimize the melodic
edit-distance involved in similarity computation.

This paper is an extension of [8], where we present the bases of
evolutionary regression trees. Here, we aim to use evolutionary com-
putation as the central framework for evolving music performance
models, in particular regression trees, because they provide fined-
grained multi dimensional predictions. Such predictions are used
to generate expressive performance transformations on new musical
material. In this paper, we focus on models generating with preci-
sion local note timing (namely note duration and onset deviation)
and loudness prediction.

1.1 Benefits of using evolutionary computation
techniques

We present in this section the motivations that led us to consider evo-
lutionary computation, and more specifically strongly-typed genetic
programming (STGP), as convenient methods for building expres-
sive performance models. Even if the aspects we present here are of
interest for applying EC to a whole range of domains [10], we fo-
cus our attention on how these techniques can benefit our particular
problem.

1.1.1 Population of transformation models

Human Performance is an inexact phenomenon: a musician could
hardly reproduce identically a given performance. This is particu-
larly true in jazz music, where the ”improvisational contribution”
to a performance is fundamental, whereas this kind of variability is
not accepted in classical music. At each new rendition, small alter-
ations in the timing and other expressive features of the musical piece
are introduced. Expressive performance models should take into ac-
count this aspect. In contrast, traditional decision tree models are es-
sentially deterministic. That is, once induced, a feature-based deci-
sion tree model will produce a constant prediction for transforming a
given fragment. EC techniques provide an elegant way to cope with
this limitation, with benefits for both end-users and researchers. First,
the result of an evolution is a population of transformation models



that will eventually produce different musical transformations. More-
over, each model is ranked according to its fitness. The end-user can
merely choose to keep the best-ranked model transformation. Alter-
natively he has the opportunity to navigate through the whole popu-
lation and select the transformation of other models on an aesthetic
basis. Conversely, by analyzing the whole population of models, and
especially the best and worst-ranked models, the researcher has to
opportunity to appreciate on several examples the results of specific
design decisions and to refine the fitness function.

1.1.2 Integrating domain-specific knowledge

The use of EC techniques provides a way of integrating in the system
elements of domain-specific knowledge. In the case of feature-based
tree modelling, one can define this knowledge at two different levels,
namely the tree structure, and the prior distribution of both model
features and outputs. We detail the former in Section 2. Concerning
the latter, one can easily handle the prior distribution of inputs and
outputs by defining the initialization operator for each primitive in
use in the genetic program. In our case, we refer to constant gen-
eration: on the one hand, features are compared to constants across
the successive tests, and these constants have to respect the statistical
distribution of the feature space. On the other hand, single or even
structured constant predictions (see next section) are generated inde-
pendently to where they will appear in the tree model. Consequently,
the role of the initialization operator is to provide a ”good guess” for
both features and prediction values.

1.1.3 Custom data types for structured modelling and
prediction

Although it is possible to use evolutionary computation in a straight-
forward way, i.e. using templates and well-defined data types, the
EC programmer has the freedom to design custom data types for the
model inputs and outputs. In the case of STGP, it is possible to re-
fine the input/output specifications for each primitive of the genetic
program. In the present work, we produce multi-dimensional predic-
tions by modifying the prediction data type of the genetic program,
that is, the data type returned by the root primitive. Our approach is
still scalable because STGP allows to define arbitrary data types (e.g.
vectors, lists and compound structures) which could represent a set
of expressive transformations. As a comparison, traditional greedy
techniques derived from C4.5 [13] mainly produce unidimensional
prediction models even if some more recent algorithms [2] feature
multi-dimensional prediction. With these techniques, building mod-
els for predicting structured data would involve the use of separate
and possibly inconsistent tree models.

We presented above several points for which we consider promis-
ing the use of evolutionary computation techniques for performance
modelling. We acknowledge that other techniques implement part of
these aspects. For instance, prior distributions are an important com-
ponent in the Bayesian theory, while Random Forest techniques al-
lows to produce a population of models. Nevertheless, to our knowl-
edge, no other machine learning technique integrate these aspects in
such a unified way.

The rest of the paper is organized as follows: Section 2 presents
the types, primitives, and operators of the tree model. We define the
evolutionary constraints necessary to produce consistent regression
tree models from both typing and logical point of view. Section 3
introduces considerations for representing the input space as well as

a suitable multi-dimensional error measurement. This leads us to de-
fine a pure transformation error-based fitness and another fitness that
considers both input space representation and transformation error.
In Section 4 we compare both learning and generalization accuracy
of these two fitness measurements using an expressive performance
database and we discuss the results. Finally, Section 6 presents our
conclusions as well as future extensions to this work.

2 Consistent Regression Trees

Regression tree models are a specific instance of tree programs, their
general structure is the following. Each node is a test comparing an
input with a numerical constant (e.g. a less than operator). Each leaf
represents a prediction. Our aim is to integrate these specificities in
the evolutionary process. First it is possible to ensure that the mod-
els will be structurally consistent by defining appropriate types and
primitives. We then address the issue of logical consistency and de-
fine a mechanism to ensure it by overriding the evolutionary opera-
tors.

2.1 Type Consistency

We define 4 different types, namely InputValue, FeatValue, Bool and
RegValue. The first two types represent floating-point values, the first
being used as terminal for the inputs of the model, the second one
encapsulating constants to be compared with the inputs. The third
type represents boolean values used as outcome of these tests. The
last type is used for encoding the model predictions. In this paper the
prediction is encoded as a triplet of float values, however we are free
to use any arbitrary data structure. We then define the corresponding
set of regression tree primitives, as presented below.

Name Nb args Arg. Type Return Type
LT 2 1st: InputValue, 2nd Feat-

Value
Bool

IF 3 1st: Bool, 2nd and 3rd:
RegValue

RegValue

EFV 0 - FeatValue
ERV 0 - RegValue

Table 1. STGP primitives used for this work. Each primitive is presented
along with the number of arguments it handles, the type of each argument,
and its return type. Note that primitives EFV and ERV, which are used for

constant generation, take no argument as input.

We now summarize the primitives presented in Table 1 and show
how they correspond to the structure of a regression tree. First, LT
primitive tests whether an input of type InputValue is less than a Feat-
Value typed constant generated by the EFV primitive. A LT primitive
returns a Bool that is used as first argument of the IF primitive. This
latter performs a test on this boolean value and returns a RegValue.
If the test succeeds, the second argument is returned, otherwise, the
third argument is returned. Both of these arguments are RegValue
typed. Finally ERV primitive generates an RegValue prediction con-
stant. As a result, the second and third arguments of an IF primitive
can either be linked to an ERV primitive, or to another IF primitive,
chaining successive tests until an ERV primitive is reached.

2.2 Logical Consistency

Based on these ideas we show in Figure 1 two prototypical mod-
els that are type consistent. Both models perform 2 successive tests



Figure 1. Two type-consistent regression trees. (Top) Logically consistent
tree, (Bottom) Logically inconsistent tree

involving the InputValue primitive labelled IN0. The root of both
trees, indicated by an arrow, first tests whether IN0 is lower than a
constant equal to 0. If the test succeeds, an ERV primitive connected
to the second argument of the root is returned. Otherwise, a new test
is performed via the right-most IF primitive, checking whether IN0
is either lower than 1 (upper model), or -1 (lower model). We can
see that the upper model is logically consistent: its tests are plausi-
bly structured and can possibly represent the feature space. Oppo-
sitely, the lower model is logically inconsistent: because the right-
most test is not logically consistent with the left-most one, all the
primitives marked in gray turn to be useless. This leads to a situa-
tion of code bloat [14] where the evolved tree may contain useless
branches, called introns. The influence of code bloat in the results of
an evolutionary system is still debated and may depend of the model
application domain. However, in this paper, because our work is pre-
liminary, we decided to discard individuals containing such introns
by introducing a logical consistency check mechanism. As a future
extension, we plan to study thoroughly the influence of such introns
in the evolutionary process for our particular domain.

2.3 Genetic Operators

In order to implement the logical consistency check presented
above, we slightly modified the operators provided in [5], which
are a refinement of the strongly typed operators proposed in [11].
We modified the base class of each of these operators to imple-
ment a logical consistency check. For this, we take advantage of
the prefix order indexing used in Open Beagle framework. In-
deed, if a logically consistent tree (and any of its subtrees) built
with the primitives presented in 1 is searched in prefix ordering
(PO), the EFV primitives associated to a particular input appear
sorted. We present the logical consistency check pseudo-code below:

INPUT: Tree S
OUTPUT: Boolean
REPEAT for i=1..n-inputs
Collect INi indexes in S into L1
WHILE L1 not empty

REPEATfor each subtree s with INi in s:
Collect in PO EFV values..
..compared to INi

if (L2 not sorted): return false
else: remove indexes referencing..
..INi in s from L1

END
END

END
return true

As a consequence, we obtained a modified version of the follow-
ing operators: the main operators are Tree Crossover, where two in-
dividuals can swap subtree and Standard Mutation, where a subtree
is replaced by a newly generated one. Additionally, Shrink mutation
replaces a branch with one of its child nodes, and Swap mutation
swaps two subtrees of an individual.
Constant generation: ERV and EFV initialization operators are
used to integrate the distribution of the both inputs and outputs in
the training data. The distribution of the three expressive features
we want to predict is shown in Figure 2. We approximate the ex-
pressive transformation features distribution with gaussians, and use
these distributions when generating random constants (with the ERV
primitive). This is a first step towards using a larger repertoire of pos-
sible statistical distributions. For example, the relative energy varia-
tion distribution is rather asymmetric, and could be better modelled
with a Gamma distribution.

Figure 2. Distribution of expressive transformation features. (a) Duration
ratio, (b) Onset deviation, (c) Energy Relative Variation

Concerning the constants used for comparison with the model in-
puts (EFV primitives), we use a somewhat simpler scheme: we col-
lect the set of possible values for each input in the training set. During
the EFV constant generation, we select one of the possible values of
the corresponding input using a random uniform distribution. We de-
fined in this section a framework for evolving regression trees that
takes into account both typing and logical consistency constraints.
Additionally, we use a mechanism for constant generation that re-
flects both input and output distribution of the training data. What
we need now is a fitness measure in the context of performance mod-
elling.



3 Model accuracy for performance modelling:
Fitness evaluation

In this section, we investigate how to devise a fitness function able to
guide the model search. We first introduce an unsupervised compo-
nent promoting a balanced input space representation. Furthermore,
we present an error-driven component suitable for multi-dimensional
regression. In Section 4, we will compare a fitness function that takes
both components into account with a pure error-driven measurement.
Note that the formulas we introduce below apply to the fitness com-
putation a given musical fragment. We then compute an average over
the distinct fragments of the training database.

3.1 Balanced representation of the input space

We first describe a mechanism for promoting an accurate and bal-
anced representation of the input space in the context of multi-
dimensional regression. As pointed out in [6], pure error-driven fit-
ness measurements in GP may lead to overfitting. Several papers
have introduced the notion of parsimony pressure as a way to reduce
the complexity of the models while improving the generalization per-
formances. This is relevant in the case of e.g. binary classification
problems, however in some situations (we believe our application do-
main is one of these) a bias toward low-complexity does not improve
the generalization performance of the model ([3]). In our particular
case, where the expressive transformations of musical excerpts result
in delicate modifications in the timing, the simplest models would es-
sentially let the score timing unaffected. Here, what we are interested
in is a model that does not collapse rather dissimilar input vectors into
the same leaf. In our case, this would mean that notes in very differ-
ent contexts would be transformed equally. We take an alternative
approach, where we promote a more complete representation of the
input space. That is, different input vectors should produce different
predictions, even if the corresponding predictions produce similar re-
sults. Thus, we enforce the model to reach as much leaves as possible
when processing the set of input vectors of a fragment. We argue that
this constraint provides a way of keeping the tree model balanced
by giving in increased weight to the input space representation. We
are aware that this criterion might affect the compactness of the tree
model, however one has to consider this structural measure used in
combination with the error-driven measure presented below.

To achieve this, we define a balance coefficient cbal:

cbal =
ndpr

ndi

(1)

where ndpr is the number of distinct prediction leaves that were
reached as a consequence of successive tests, and ndi is the total
number of inputs vectors that differ in at least one feature.

3.2 Transformation-based error

Having in mind the structural considerations presented above, we
are ultimately interested in how good the model has learned to
predict expressive transformations. We define in this section the
transformation-based error. As we mentionned earlier, we focus in
this paper on duration, onset, and loudness deviations measured in
the performed notes. From the transformation point of view, these
values correspond to duration ratio, onset deviation, and loudness rel-
ative variation regarding the mean fragment loudness, averaged over
all the fragment performed notes. We must design an error measure-
ment that takes into account with equal weight each of these three
dimensions. Typically, onset deviation and energy relative variation

values lie around 0, while the duration ratio value lies around 1. We
think an appropriate way to give the same relative weight to these
three dimensions is to use the average of the mean relative error. Con-
sequently, we define a fragment transformation error as the mean of
duration ratio, onset deviation, and energy variation mean relative er-
rors over the training fragment. We call the average of this latter error
over all the training fragments Global Relative Error (GRE).

3.3 Comparing two fitness measurements

First, we compute the error-driven fitness function by applying the
following formula:

ferror =
1

1 + GBE
(2)

Based on the ideas presented in this section, we then introduce two
fitness measurements:

• Fitness 1: This is the error-driven fitness function ferror.
• Fitness 2: This is the hybrid fitness function that integrates both

error-driven and unsupervised components. We obtain it by com-
puting the geometric mean between cbal averaged over the training
fragments and ferror.

4 Experimental results and discussion

4.1 Data

In this paper we use an expressive performance database that comes
from annotations of acoustic saxophone recordings. We consider 4
jazz excerpts included in the New Real Book. The excerpts are the
following: Body And soul, Once I loved, Up Jumped Spring, Like
Someone In Love. We characterize the score melodic context of this
data using, for each note, the following features: note duration, met-
rical strength within the bar, previous and next note relative dura-
tion and finally previous and next note relative interval. We extracted
after an analysis of the acoustic recordings and an alignment with
the score melodies the following expressive features: duration ratio
of the performed note, onset deviation (expressed as a fraction of a
quarter note) and relative note energy regarding the mean energy of
the considered fragment.

4.2 Method

The training and generalization experiments we present here are
completed as follows: we include in the training data (used for calcu-
lating the fitness) the musical data that comes from the first two thirds
of each of the four musical fragments presented above. The material
of the last third of each fragment is used as test data. That is, we train
the model to predict the expressive transformations that take place
during the beginning of each fragment. During the test phase, we
evaluate how accurately the model is able to predict the expressive
transformation that take place at the end of these fragments, which
we refer as unseen data. Note that we carefully checked that the test
fragments do not contain melodic information present in the test set.

4.3 Results

Figure 3 shows the Global Relative Error measurements of the best-
so-far tree model during the evolution. The results we present are
obtained by averaging 5 different runs for each fitness setting. The
legend of the figure is the following: Plain (respectively dashed) grey



plot corresponds to the results of the best-so-far model evolved with
the fitness 1 and tested on the training (respectively test) cases. Plain
(respectively dotted) black plot corresponds to the results of the best-
so-far model evolved with fitness 2 and tested on the training (respec-
tively test) cases.

First, we can notice an overall decrease of the GRE measured on
the training data for both fitness measures. This shows that, for both
fitness measures, the system is able to evolve models that minimize
the error on the training data. We also notice that the models evolved
with fitness 2 exhibit an error that spans a considerably larger range
that the error measured on models evolved with fitness 1. Fitness 2
best-so-far model error turns to be the smallest after 70 generations,
which shows that the hybrid fitness function produces a better fit on
the training data. Secondly, we focus on the test error exhibited by
the best-so-far models evolved with both fitness measurements. For
both families of models, we identify an overfitting point in which
the test error gets larger than the training error, this point is reached
later in the case of models evolved with fitness 2 (generation 45) than
with models evolved with fitness 1 (generation 20). Finally, even if
the final test GRE is slightly larger for models evolved with fitness
2, both test errors are comparable. Obviously, these are preliminary
results that should be confirmed with larger-scale experiments in-
volving cross-validation.

Figure 3. Global Relative Error of the best-so-far model during the
evolution in four settings. Plain grey: fitness 1, training data. Dashed grey:

fitness 1, test data. Plain black: fitness 2, training data. Dotted black : fitness
2, test data.

5 Conclusion

We presented in this paper an approach for building evolutionary
regression trees for modelling expressive music performance. We
first presented the benefits of evolutionary computation and strongly
typed genetic programming, which can be summarized as follows:
evolution of a population of models, prior knowledge integration,
and flexibility regarding the model structure and data types. Then,
we defined the basis of a multi-dimensional regression tree for mod-
elling expressive music performance. We specified the types, prim-
itives, operators and fitness function used in the STGP framework.
We finally presented preliminary results for both learning and gen-
eralization experiments, using an expressive performance database
annotated from monophonic recordings of jazz standards.

We plan to extend our work in the following directions: first we
plan to increase the size of the annotated performance database we
are using in order to assess more robustly the training and gener-
alization accuracy of the evolved models. Also, we plan to extend
the set of possible transformations to ornamentations, consolidations
and fragmentations that are characteristic of Jazz performances. Fi-
nally, in our actual approach we achieve score-driven performance
prediction. In the context of sequential processing, an exciting work
direction is studying the contribution of both score context and for-
mer expressive gestures in music performance.
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[6] C. Gagné, M. Schoenauer, M. Parizeau, and M. Tomassini, ‘Genetic
programming, validation sets, and parsimony pressure’, in EuroGP
2006, LNCS 3905, ed., P.Collet et al., pp. 109–120, (2006).

[7] M. Grachten, J.L. Arcos, and R. López de Mantaras, ‘A case based ap-
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