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Abstract. In this paper, we describe an approach to inducing an ex-
pressive music performance model from a set of audio recordings of XVIII
century bassoon pieces. We use a melodic transcription system which ex-
tracts a set of acoustic features from the recordings producing a melodic
representation of the expressive performance played by the musician. We
apply a machine learning techniques to this representation in order to
induce a model of expressive performance. We use the model for both
understanding and generating expressive music performances.

1 Introduction

Expressive performance is an important issue in music which has been studied
from different perspectives (e.g. [2]). The main approaches to empirically study
expressive performance have been based on statistical analysis (e.g. [11]), math-
ematical modelling (e.g. [13]), and analysis-by-synthesis (e.g. [1]). In all these
approaches, it is a person who is responsible for devising a theory or mathemat-
ical model which captures different aspects of musical expressive performance.
The theory or model is later tested on real performance data in order to deter-
mine its accuracy.

In this paper we describe an approach to investigate musical expressive perfor-
mance based on machine learning [7]. Instead of manually modelling expressive
performance and testing the model on real musical data, we let a computer use
an inductive logic programming algorithm to automatically discover regulari-
ties and performance principles from real performance data (i.e. bassoon audio
performances).

The rest of the paper is organized as follows: Section 2 describes how the
acoustic features are extracted from the monophonic recordings. In Section 3 our
approach for learning rules of expressive music performance is described. Section
4 reports on related work, and finally Section 5 presents some conclusions and
indicates some areas of future research.
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2 Melodic Description

In order to obtain a symbolic description of the expressive audio recordings we
compute descriptors related to two different temporal scopes: some of them re-
lated to an analysis frame, and some other features related to a note segment.
Firstly, we deivide the audio signal into analysis frames, and a set of low-level
descriptors are computed for each analysis frame. Then, we perform a note seg-
mentation using low-level descriptor values. Once the note boundaries are known,
the note descriptors are computed from the low-level and the fundamental fre-
quency values.

The main low-level descriptors we use to characterize expressive performance
are instantaneous energy and fundamental frequency. Energy is computed on the
spectral domain, using the values of the amplitude spectrum. For the estimation
of the instantaneous fundamental frequency we use a harmonic matching model,
the Two-Way Mismatch procedure (TWM) [5]. First of all, we perform a spectral
analysis of a portion of sound, called analysis frame. Secondly, the prominent
spectral peaks of the spectrum are detected from the spectrum magnitude. These
spectral peaks of the spectrum are defined as the local maxima of the spectrum
which magnitude is greater than a threshold. These spectral peaks are compared
to a harmonic series and an TWM error is computed for each fundamental
frequency candidates. The candidate with the minimum error is chosen to be
the fundamental frequency estimate.

Note segmentation is performed using a set of frame descriptors, which are
energy computation in different frequency bands and fundamental frequency.
Energy onsets are first detected following a band-wise algorithm that uses some
psycho-acoustical knowledge [3]. In a second step, fundamental frequency tran-
sitions are also detected. Finally, both results are merged to obtain the note
boundaries.

We compute note descriptors using the note boundaries and the low-level de-
scriptors values. The low-level descriptors associated to a note segment are com-
puted by averaging the frame values within this note segment. Pitch histograms
have been used to compute the pitch note and the fundamental frequency that
represents each note segment, as found in [6]. This is done to avoid taking into
account mistaken frames in the fundamental frequency mean computation.

3 Learning the Expressive Performance Model

In this section, we describe our inductive approach for learning an expressive
performance model from audio performances of bassoon pieces. Our aim is to
find note-level rules which predict, for a significant number of cases, how a par-
ticular note in a particular context should be played (e.g. longer than its nominal
duration). We are aware of the fact that not all the expressive transformations
regarding tempo (or any other aspect) performed by a musician can be predicted
at a local note level. Musicians perform music considering a number of abstract
structures (e.g. musical phrases) which makes of expressive performance a multi-
level phenomenon. In this context, our ultimate aim is to obtain an integrated
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model of expressive performance which combines note-level rules with structure-
level rules. Thus, the work presented in this paper may be seen as a starting
point towards this ultimate aim.

The training data used in our experimental investigations are monophonic
audio recordings of XVIII century bassoon pieces performed by a professional
musician. Each piece has been recorded at 3 different tempos: for pieces indicated
as adagio the recorded tempos are 50, 60, 100 ppm, for pieces indicated as allegro
moderato and affectuoso the recorded tempos are 60, 92, 120 ppm.

In this paper, we are concerned with expressive transformations of note dura-
tion, onset, energy and trills. The note-level performance classes which interest
us are: lengthen, samedur and shorten for note duration, advance, ontime and
delay for note onset, louder, medium and softer for note energy, and few, average
and many for a trilled note. A note is considered to belong to class lengthen if
its performed duration is 20% or more longer that its nominal duration, e.g. its
duration according to the score. Class shorten is defined analogously. A note is
considered to be in class advance if its performed onset is 5% of a bar earlier (or
more) than its nominal onset. Class delay is defined analogously. A note is con-
sidered to be in class louder if it is played louder than its predecesor and louder
then the average level of the piece. Class softer is defined analogously. Finally,
a note is considered to be in class few, average or many if the number of trills
is less tan 4, between 5 and 9, or more than 10, respectively. For synthesizing
trills, we apply a nearest neighbor algorithm which selects the most similar trill
(in terms of musical context) in the training examples and adapts it to the new
musical context (e.g. the key of the piece).

Each note in the training data is annotated with its corresponding class and a
number of attributes representing both properties of the note itself and some as-
pects of the local context in which the note appears. Information about intrinsic
properties of the note includes the note’s duration, pitch and metrical position,
while information about its context includes the duration of previous and fol-
lowing notes, extension and direction of the intervals between the note and both
the previous and the subsequent note, the note Narmour groups [8], and tempo
of the performance.

Using this data, we apply a greedy set covering algorithm in order to induce an
expressive performance model. We obtain an ordered set of first-order rules each
of which chharacterises a subset of the training data. We define four predicates
to be learned: duration/4, onset/4, energy/4, and trills/4. For each note of
our training set, each predicate corresponds to a particular type of transforma-
tion: duration/4 refers to duration transformation, onset/4 to onset deviation,
energy/4 to energy transformation, and alteration/4 refers to note alteration.
For each predicate we use the complete training set and consider a background
knowledge containing the note’s local information (context/6 predicate) and
the Narmour structures (narmour/2 predicate), as well as predicates for speci-
fying an arbitrary-size context (i.e. any number of successors and predecessors)
of a note (succ/2 predicate), and auxiliary predicates (e.g. member/3). Once we
obtain a set of rules for a particular concept, e.g. duration, we collect the ex-
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amples correctly covered by each rule and apply a linear regression on the their
numerical values. The numerical values of the covered examples are aproximated
by a linear regerssion in the same way as a model tree approximates examples
at its leaves. The difference with a model tree is that the induced rules do not
form a tree as it is the case in model trees. The algorithm is as follows:

SEQ-COVERING(Target_attribute,Attributes,Examples,Threshold)
Learned_classification_rules := {}
Learned_regression_rules := {}
Rule := LEARN-ONE-RULE(Target_attribute, Attributes, Examples)
while PERFORMANCE(Rule, Examples) > Threshold do

Learned_classification_rules := Learned_classification_rules + Rule
Examples := Examples - {examples correctly classified by Rule}
Rule := LEARN-ONE-RULE(Target_attribute, Attributes, Examples)

For each Rule in Learned_classification_rules do
collect correctly covered examples by the Rule
approximate the examples’ numerical value by linear regression LR
Construct Rule_1 as:

body(Rule_1) := body(Rule)
head(Rule_1) := LR

Learned_regression_rules := Learned_regression_rules + Rule_1
Return Learned_regression_rules

SEQ-COVERING learns rules until it can no longer learn a rule whose perfor-
mance is above the given Threshold. The LEARN-ONE-RULE subroutine generates
one rule by performing a general-to-specific search through the space of possible
rules in search of a rule with high accuracy. It organises the hypothesis space
search in the same general fashion as the CN2 algorithm mantaining a list of k
best candidates at each step. In order to handle three classes (e.g. in the case of
note duration, lengthen, shorten and same) we have forced the LEARN-ONE-RULE
subroutine to learn rules that cover positive examples of one class only. Ini-
tially, it learns rules that cover positive examples of one of the classes (e.g.
lengthen) and considers the examples of the other two classes (e.g. shorten and
same) as negative examples. Once the rules for the first class have been learned,
LEARN-ONE-RULE learns rules that cover only positive examples of a second class
(e.g. shorten) in the same way it did for the first class, and similarly for the third
class. The PERFORMANCE procedure computes the function tpα/(tp + fp) where
tp is the number of true positives, fp is the number of false positives and α is a
parameter which provides a trade-off between the rule’s accuracy and coverage.
For each type of rule, depending on the exact number of positive examples, we
tuned both the parameter α and the Threshold to constrain the minimum num-
ber of positive examples as well as the ratio of positive and negative examples
covered by the rule. This is, using α and Threshold we restrict the area in the
coverage space 1 in which the induced rules must lie.

Inductive logic programming has proved to be an extremely well suited tech-
nique for learning expressive performance rules. This is mainly due to three
reasons: Firstly, inductive logic programming allows the induction of first order
logic rules. First order logic rules are substantially more expressive than the tra-
ditional propositional rules used in most rule learning algorithms (e.g. the widely
used C4.5 algorithm [9]) which allows specifying musical knowledge in a more
1 Coverage spaces are ROC spaces based on absolute numbers of covered examples.
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natural manner. Secondly, Inductive logic programming allows considering an
arbitrary-size note context without explicitly defining extra attributes. Finally,
the possibility of introducing background knowledge into the learning task pro-
vides great advantages in learning musical concepts where often there is a great
amount of available background information (i.e. music theory knowledge).

Synthesis Tool. We have implemented a tool which transforms an inexpressive
melody input into an expressive one following the induced model tree. The tool
can either generate an expressive MIDI performance from an inexpressive MIDI
description of a melody, or generate an expressive audio file from an inexpressive
audio file.

4 Related Work

Widmer [14,15] reported on the task of discovering general rules of expressive
classical piano performance from real performance data via inductive machine
learning. The performance data used for the study are MIDI recordings of 13
piano sonatas by W.A. Mozart performed by a skilled pianist. In addition to these
data, the music score was also coded. The resulting substantial data consists of
information about the nominal note onsets, duration, metrical information and
annotations. When trained on the data an inductive rule learning algorithm
discovered a small set of quite simple classification rules [14] that predict a large
number of the note-level choices of the pianist.

Tobudic et al. [12] describe a relational instance-based approach to the prob-
lem of learning to apply expressive tempo and dynamics variations to a piece of
classical music, at different levels of the phrase hierarchy. The different phrases
of a piece and the relations among them are represented in first-order logic. The
description of the musical scores through predicates (e.g. contains(ph1,ph2)) pro-
vides the background knowledge. The training examples are encoded by another
predicate whose arguments encode information about the way the phrase was
played by the musician. Their learning algorithm recognizes similar phrases from
the training set and applies their expressive patterns to a new piece.

Ramirez [10] et al report on a system capable of generating audio expressive
saxophone performances of Jazz standards. The system is based on a similar
approach to the one presented here, where different acoustic features of real
saxophone Jazz performances are extracted and used to induce an expressive
performance model.

Lopez de Mantaras et al report on SaxEx [4], a performance system capable of
generating expressive solo performances in jazz. Their system is based on case-
based reasoning, a type of analogical reasoning where problems are solved by
reusing the solutions of similar, previously solved problems. In order to generate
expressive solo performances, the case-based reasoning system retrieve, from a
memory containing expressive interpretations, those notes that are similar to the
input inexpressive notes. The case memory contains information about metrical
strength, note duration, and so on, and uses this information to retrieve the
appropriate notes.
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5 Conclusion

This paper describes an inductive logic programming approach for learning an
expressive performance model from recordings of XVIII century bassoon pieces
by a professional musician. With this aim, we have extracted a set of acoustic
features from the recordings resulting in a symbolic representation of the per-
formed pieces and then applied a rule-based algorithm to the symbolic data and
information about the context in which the data appeared. In this context, the
algorithm has proved to be an extremely well suited technique for learning an
expressive performance model. It naturally allows background knowledge (i.e.
musical theory knowledge) to play an important role in the learning process,
and permits considering an arbitrary-size note context without explicitly defin-
ing extra attributes for each context extension. Currently, we are in the process
of increasing the amount of training data as well as experiment with different
information encoded in it. Increasing the training data, extending the informa-
tion in it and combining it with background musical knowledge will certainly
generate a more complete set of rules.
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