
TurTan: a Tangible Programming Language for Creative Exploration

Daniel Gallardo, Carles F. Julià and Sergi Jordà
Music Technology Group, Universitat Pompeu Fabra

Ocata 1, 08003 Barcelona
{dgallardo,cfernandez,sjorda}@iua.upf.edu

Abstract

This paper introduces TurTan, a tangible programming
language for creative exploration inspired by Logo, which
uses a tabletop interface with tangible objects. The aim of
this project is to design a toy language for programming
entertainment and creative purposes. Along this paper we
also discuss some interesting technical issues we have found
during its implementation such as tangible linking and an-
gle mapping.

1 Introduction

In the last years many artist-oriented programming lan-
guages have arisen. Some of them are still text based,
like processing or actionscript,while others such as MAX
or Pure data use visual paradigms. All of them do still use
mouse and keyboard to program, and are more conceived
for the creation of interactive art pieces, that for the intrin-
sic exploration of programming creativity.

Meanwhile, other languages are starting to use tangibles
to program. This is the case of the tangible programming
systems Quetzal[5] and Bricks[11]: while the first uses ob-
jects to embody the meaning of the instructions (tangibles
are just representations), the second embeds electronics on
the objects that actually perform the commands themselves.
These languages lack however of direct real time control of
their parameters, which makes fluid interaction between the
programmer and the program difficult to reach.

A more creative-oriented real-time programming lan-
guage using tangibles is Task Blocks[13], which consists of
tangible instructions (named task blocks), physical controls
and physical connectors.Task Blocks is a language for data-
processing in which processing modules are programmed
connecting task blocks together, while its parameters are
controlled by physically wiring the controls to these blocks.
This structure allows to have real time control over the pro-
gram’s parameters and structure.

Figure 1. TurTan running

TurTan wants to go one step forward, implement-
ing a toy[10] but fully operational tangible program-
ming language, especially conceived for children and non-
programmers, that may help to introduce and explore basic
programming concepts in a playful, enjoyable and creative
way. It is inspired in Logo[4], and thus designed for per-
forming turtle geometry[1]. As the original Logo language,
one of the TurTan design goals was to use it for teaching
some programming concepts, mainly to children, although
no formal tests have been undertaken yet. Unlike the orig-
inal Logo, TurTan is totally controllable and manipulable
in real-time, meaning that there is no distinction between
coding and running the program, everything happening si-
multaneously. In that sense it could also be considered as a
Dynamic programming language

2 Why tangibles

Taking advantage of the increasingly popular tabletop in-
terfaces and the available fiducial optical tracking systems,
TurTan is a programming language that uses physical ob-
jects for data manipulation. TurTan’s ”tangibles” are physi-
cal representations of the virtual instructions of a program,
which brings a truly experimental approach to programming
where anything can be tried and experimented in real-time.
It has been frequently reported that the main difficulties
that children of 4-7 years deal with when programming, are



Figure 2. Scale, rotate and translate with fin-
gers

more related with the syntax, with the use of the keyboard
and with interpreting error messages, than with the pro-
gramming concepts themselves[2]. Tangibles have proved
on their side to be non intimidating and good promoters of
explorative, expressive and experimental activities[12]. In a
programming context, tangibles provide an analog-like con-
trol over the instructions with immediate real time feedback
capabilities, where direct parameter manipulation removes
the mediators in the communication process. Furthermore,
the social affordances associated with tangibles and table-
tops directly encourage concepts such as social interaction
and collaboration [6], thus converting programming into a
shared and collaborative activity [3].

3 Design and Concepts

TurTan runs on a tangible tabletop surface, which has
been built using a projector and a camera under the table.
The camera underneath captures all the activity on the sur-
face, identifying and detecting the positions of the objects
and the fingers, while the projector is in charge of the visual
feedback of the system. The whole system runs on a single
PC as two separated processes: one for the visual tracking,
which is done by reacTIVision[9], the open-source track-
ing software originally designed for the reactable[7], and
the other for the main TurTan application. The later is in
charge of the interaction design, the application logic, and
of the visual feedback drawn permanently on the table sur-
face.

TurTan starts with a black screen with the picture of a
little turtle in the middle of the surface, and a set of physical
objects of different shapes and showing different icons (but
all of an average size of about 7x7 cm) randomly disposed
around the table. At the beginning, users do not receive any
additional information other than the static turtle and the
icons displayed on each tangible. Interaction begins when
an instruction (a tangible) is placed on the table; some visual
feedback is displayed under this block telling the user that
the block has been recognized, and the turtle performs the
associated instruction accordingly. TurTan generates thus
two complementary visual outputs. The first is the virtual
program code that is graphically represented around the ob-
jects, and the second is the program output. As in Logo,

the turtle executes every instruction relative to its own posi-
tion, instantaneously creating an output vector graphic that
is plotted on a virtual canvas, and which is also manipula-
ble through touch gestures. By means of gesture recogni-
tion, any user can change the orientation, position or zoom
of this canvas, applying one finger for translating (Figure
2-a) and two fingers for scaling and rotating (Figure 2-b),
because TurTan interface does not have a preferred orien-
tation. For eliminating both the restrictions of up-down or
left-right, and the emergence of leading voices or privileged
points-of-view and control which could limit multi-user and
collaborative support the table was thought to be circular
like the reactable[7].

TurTan can therefore be thought as a dynamic program-
ming language, in which instructions are performed while
the user is modifying them, and showing the effects of any
instruction in real time, has proved to allow users to quickly
understand what they are doing and to easily explore the
functionality of each object.

3.1 Instructions

TurTan’s programs are composed by a sequence of
tangible instructions. Every instruction has one vari-
able parameter which is determined by the rotation
the user applies to the corresponding tangible. These
instructions do not need to be unique, meaning that
several tangibles of the same type can be used in a
single program. The instruction types are the following :

Move without painting (a) The turtle moves forward or
backward without painting a line.

Move painting (b) The turtle moves forward or back-
ward leaving a coloured line trace.

Rotate (c) The turtle turns right or left.
Scale (d) The turtle scales its body size and also paints

its following trace distances at a different scale.
Change colour (e) Changes the line colour.
Repeat (f) The turtle repeats all the actions since the first

instruction as many times as indicated.
Start (g) Brings the turtle back to the centre.

4 Tangible Linking

In order to create a tangible programming sequence,
users need to establish links between the physical objects
and to control the order of these instructions in the more
natural and intuitive way. During the project design phase
we considered several interaction methods for creating or-
dered links:



Figure 3. Static (i→ii) and dynamic (i→iii) link-
ing approaches.

4.1 Explicit vs. implicit linking

In an explicit linking situation, tangible objects are con-
nected by actively defining the link between two or more
objects, for example with a manual gesture involving them-
selves or establishing a physical link using wires. A clear
example would be Quetzal[5], where users have to link
physically the tangibles.

On the contrary, Implicit links are established by the
system itself with the help of an automatic self-provided
algorithm, such as using the relative distance of the neigh-
bouring tangibles or their own angle. An example of this
linking process can be extracted from the reactable[8],
where tangibles are linked between them using proximity
rules while the link feedback is given by a virtual wire de-
sign representation.

Explicit linking gives the full responsibility of linking
tangibles to the user. This makes the act of adding new tan-
gibles a tedious task but gives also a more direct control
that avoids computer decisions. Our objective was to find
an easy language on which the interaction would be natural
and easy. Explicit linking would not only increase the in-
teraction complexity by adding wires or by having to link
physically the objects; it would also introduce the idea of
wrong behaviour or forbidden gestures, when users would
try to make incompatible, syntactically incorrect or mean-
ingless connections. We finally choose implicit linking be-
cause of the need to have an intuitive and continuous in-
teraction. Implicit linking requires only the placement of a
tangible object on the table in order to link it to a related
object within its proximity.

4.2 Dynamic vs. static linking

In implicit linking, more choices have yet to be made.
When placing a new tangible instruction on the table, it
has to be determined where exactly it will enter into the
program sequence by defining its previous and next neigh-
bours. This decision, may depend for example, on a prox-
imity parameter.

Figure 4. Non-linear scaling of angle.

By using static links (Figure 3 (i→ii)) this decision is
applied only once, when the tangible is introduced. Any
later modification of the sorting parameter (moving or ma-
nipulating a linked object) will not affect its position within
the tangible programming sequence. On the contrary, with
dynamic linking, this order may be modified whenever this
sorting parameter is changed, so that moving and manipu-
lating any instruction object on the table might definitely
change its position within the program sequence (see Fig-
ure 3 (i→iii)).

Dynamic linking, which permits to swap positions eas-
ily between two elements, is a good choice for applications
where the order is not so relevant. Also when there is a
large number of objects present on the table, the resulting
sequence might be rather complex and the user may have
difficulties for anticipating where the tangible will be linked
at the moment of introducing it. Dynamic linking there-
fore allows for easier adjustments of the resulting sequence,
while static linking provides a better flexibility for manip-
ulating the tangibles on the table without the danger of de-
stroying the correct order. After some user tests, static link-
ing seemed to work better. Most users thought that the se-
quence order is essential in a program, and disliked when a
single swap would change the nature of the resulting graph-
ical output (Figure 3). However, we also found this swap-
ping behaviour quite intriguing and inspiring, so we have
kept both modes for further future user testing.

5 Angle mapping

As we mentioned before, the orientation of the objects
determines the parameter value of its associated instruction.
An interesting issue that we found during the building pro-
cess of TurTan, was the precision needed for the tangible
rotation. When using a linear mapping we had to trade be-
tween precision (which implies wasting time spinning the
figure to get a higher value) or rudeness (when the angle
is multiplied by a higher constant value). In order to solve
this issue, we finally applied a nonlinear mapping based on



a parabola (Figure 4), which involves the object rotation
speed; slower angular speed convey precise movements,
while higher angular speed increases the parameter quicker.

6 Program examples

A brief TurTan program example is explained using
four tangibles (draw, rotate, scale and repeat). The
following figure shows a snapshot of the table surface
which combines the instructions (top) and the output
results (down). This corresponds to a very simple
program as explained with the following pseudocode:
(a)Draw a line, (b)Rotate 90°, (c)Scale 0.75, (d)Repeat.

The following example uses almost the same instruc-
tions, but repeating some of them to create a more
complex fractal-like output: (a)Draw a line, (b) Rotate
120°, (c)Scale 0.9, (d)Repeat, (e)Draw a line, (f)Repeat.

For more examples you can see some TurTan videos on
youtube:

http://www.youtube.com/watch?v=XK-GNEvQb6Q
http://www.youtube.com/watch?v=QQTZsKBMre4

7 Conclusions and Future work

We oriented TurTan to young children but we still have
not made any serious user testing to verify its value as a
learning and creative tool. Only several informal tests have
been yet undertaken, mainly for identifying conflictive is-
sues in the design and the implementation. We have seen

however that TurTan is very easily understood and that users
enjoy interacting with it, and we therefore believe that it
could constitute a good platform for learning some basic
programming language skills.

References

[1] H. Abelson and A. diSessa. Turtle Geometry, The Computer
as a medium for Exploring Mathematics. The MIT Press,
Cambridge, Massachusetts/ London, England, 1980.

[2] Y. E. Alexandrov k., Soprunov S. Logo for the illiterate
programmers 20-23. In Eurologo97, 1997.

[3] Fernaeus, Ylva and Tholander, Jakob. Finding design qual-
ities in a tangible programming space. In Proceedings of
ACM CHI 2006 Conference on Human Factors in Comput-
ing Systems, volume 1 of Designing for tangible interac-
tions, pages 447–456, 2006.

[4] W. Feurzeig, S. Papert, M. Bloom, R. Grant, and
C. Solomon. Programming-languages as a conceptual
framework for teaching mathematics. In the National Sci-
ence Foundation, 1969.

[5] M. S. Horn and R. J. K. Jacob. Designing tangible pro-
gramming languages for classroom use. In B. Ullmer and
A. Schmidt, editors, Tangible and Embedded Interaction,
pages 159–162. ACM, 2007.

[6] Hornecker, Eva and Buur, Jacob. Getting a grip on tangible
interaction: a framework on physical space and social inter-
action. In Proceedings of ACM CHI 2006 Conference on
Human Factors in Computing Systems, volume 1 of Design-
ing for tangible interactions, pages 437–446, 2006.

[7] S. Jordà, G. Geiger, M. Alonso, and M. Kaltenbrunner. The
reactable: exploring the synergy between live music perfor-
mance and tabletop tangible interfaces. In B. Ullmer and
A. Schmidt, editors, Tangible and Embedded Interaction,
pages 139–146. ACM, 2007.

[8] S. Jordà, M. Kaltenbrunner, G. Geiger, and R. Bencina. The
reactable*. In Proceedings of the International Computer
Music Conference (ICMC 2005), Barcelona, Spain, 2005.

[9] M. Kaltenbrunner and R. Bencina. reactivision: a computer-
vision framework for table-based tangible interaction. In
TEI ’07: Proceedings of the 1st international conference
on Tangible and embedded interaction, pages 69–74, New
York, NY, USA, 2007. ACM.

[10] H. F. Ledgard. Ten mini-languages: A study of topical issues
in programming languages. ACM Comput. Surv., 3(3):115–
146, 1971.

[11] T. S. McNerney. Tangible programming bricks: An ap-
proach to making programming accesible to everyone. Mas-
ter’s thesis, MIT, February 2000.

[12] Y. R. Paul Marshall and E. Hornecker. Are tangible inter-
faces really any better than other kinds of interfaces? In Per-
vasive Interaction Labthe, Open University, Milton Keynes,
MK7 6AA, UK, 2007.

[13] M. Terry. Task blocks: tangible interfaces for creative explo-
ration. In CHI ’01: CHI ’01 extended abstracts on Human
factors in computing systems, pages 463–464, New York,
NY, USA, 2001. ACM.


