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ABSTRACT

We address here the automatic description of percussive
events in real-world polyphonic music. By taking a pattern
recognition approach we evaluate more than 2,450 object-
level features. Three binary instrument-wise support vec-
tor machines (SVM) are built from a training set of more
that 100 songs and 10 genres. Then, we use these bi-
nary models to build a drum transcription system achieving
comparable results with state of the art algorithms. Finally,
we present 17 song-level percussion descriptors computed
from the imperfect output of the transcription algorithm.
We evaluate the usefulness of the proposed descriptors in
music information retrieval (MIR) tasks like genre clas-
sification, danceability estimation and Western vs. non-
Western music discrimination. We conclude that the pre-
sented song-level percussion descriptors provide comple-
mentary information to “classic” descriptors, that can help
in the previously mentioned MIR tasks.

1. INTRODUCTION

During the last decade the interest in the transcription of
percussive instruments has grown and most of the work has
focused on the problem of drum 1 transcription [1]. The
aim of such systems is to obtain, from an audio signal, a
representation of the type of percussion instrument played
(instrument recognition), and when it has been played (tem-
poral location).

The transcription of isolated or polyphonic drum sounds
(i.e. without concurrent pitched sounds) can be considered
a practically solved problem (e.g. see [2]). However, the
automatic transcription of percussive events in polyphonic
music is an open problem where there is still a lot of room
for improvement.

Instead of focusing on a full transcription system, we
consider that, when MIR of polyphonic music is addressed,
an automatic music “description” approach should be taken.

1 The word “drum” refers to a standard Rock/Pop drum kit found in
Western music.
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The main idea behind such an approach is to obtain “predi-
cates” or labels that apply to a given music excerpt and usu-
ally this information goes beyond traditional music scores.

In this paper we present and evaluate several song-level
percussion descriptors extracted from the output of an im-
perfect transcription system. The aim of these descrip-
tors is to semantically describe general characteristics of
within-song drum events such as drum-instrument degree
of presence, drum-instrument relationships (i.e. inter-ins-
trument ratios) and most-frequent inter-instrument inter-
vals. Finally, we explore the usefulness of the proposed
descriptors for some MIR tasks such as genre classifica-
tion, danceability estimation and Western vs. non-Western
music classification.

The paper is organized as follows: An overview on per-
cussion transcription of polyphonic music is presented in
section 2. In section 3 “full” and “relaxed” transcription
systems are described. Next, song-level percussion de-
scriptors are proposed and evaluated within several MIR
tasks (section 4). Finally, section 5 presents some conclu-
sions.

2. RELATED WORK

Most of the works on transcription of percussive events in
polyphonic music have focused on transcription of drum
kit sounds, specially on bass drum (BD), snare drum (SD)
and hi-hat (HH) sounds. In Table 1 a summary of the most
relevant works on drum transcription in polyphonic mu-
sic is presented. It is worth to notice here that the pre-
sented results can not be directly compared since they were
not evaluated on the same dataset. Sandvold et al. [3]
used a combination of general and localized sound mod-
els. The correct classified instances obtained from the gen-
eral model (C4.5 with AdaBoost) were manually parsed
to a localized training set. Yoshii et al. [4] achieved the
best results in the MIREX 2005 2 audio drum detection
contest by using matching template spectrograms. The
main idea here was to obtain a template spectrogram rep-
resentation of a particular percussion instrument from a
large training database of sounds. Thus, when analyzing a
song, a template-adaptation algorithm was applied on ev-
ery onset. A distance measure for template matching was
used to try to minimize the spectral overlapping of other
sounds. Dittmar’s [5] system was also evaluated within

2 See MIREX web site: http://www.music-ir.org/evaluation/mirex-
results/audio-drum/index.html for more information.



Authors # songs Approach Main Algorithms Overall BD SD HH
Sandvold et al. [3] 25 Patt-Rec local. model 0.924 0.951 0.931 –

Yoshii et al. [4] 50 Sp. Temp Temp. match. 0.670 0.728 0.702 0.574
Dittmar [5] 50 S. Sep+Sp. Temp NN ICA 0.588 0.606 0.581 0.585

Tanghe et al. [6] 50 Patt-Rec SVM 0.615 0.688 0.555 0.601
Gillet and Richard [7] 20 Patt-Rec SVM+local. model 0.840 0.824 0.842 –
Paulus and Klapuri [8] 45 Patt-Rec HMM 0.697 0.795 0.655 0.660
Gillet and Richard [9] 28 S. Sep+Patt-Rec SVM 0.678 0.695 0.583 0.755

Table 1. Summary of drum transcription systems in polyphonic music. Almost all works classify bass drum (BD), snare drum (SD) and
hi-hat (HH) sounds, except for Gillet and Richard [7] (where only BD and SD were detected) and Sandvold et al. [3] (where BD, SD and
Cymbal were computed).“Approach” considers Pattern Recognition (Patt-Rec), Source Separation (S. Sep), and Spectral Template (Sp.
Temp). F-measures results (except for Sandvold et al. where accuracy was measured). Since different datasets were used, results can not
be directly compared.

the MIREX contest. It combined source separation (Non-
Negative ICA) with template matching algorithms. Tanghe
et al. [6], another MIREX participant, presented an onset-
based classification system using N -binary SVM as recog-
nition algorithm (being N the number of instruments to
detect). Gillet and Richard [7] also used N -binary SVM
as classification algorithm. This system performed a band-
wise harmonic/noise decomposition as pre-processing step
to enhance the presence of unpitched instruments. A lo-
calized adapted model like the one presented in [3] was
also evaluated. Paulus and Klapuri [8] presented an evalu-
ation using Hidden Markov Models with a combination of
spectral features and temporal descriptors calculated from
long narrow-band frames. In a recent work by Gillet and
Richard [9] a combination of source-separation and pattern-
recognition algorithms was proposed. Two set of features
were computed, one from the original audio signal and the
other from a “drum enhanced” track obtained by source
separation. These feature vectors were then classified by
three binary SVM.

As can be seen from the literature review, there is still a
lot of room for improvement in the problem of drum tran-
scription in polyphonic music. But, instead of pursuing
a perfect transcription system, we decided to explore the
potential of song-level percussion descriptors to describe
real-world music. In order to achieve that we implemented
a simple drum transcription system. This system could be
used later as a baseline for more complex implementations
(e.g. based on source separation or harmonic/noise decom-
position). Thus, we chose to follow a standard pattern-
recognition approach, trained on a large set of sounds and
audio features. The potential of this kind of basic system
to describe percussive events in polyphonic music was not
previously assessed.

3. TRANSCRIPTION EXPERIMENTS

3.1 Datasets

We used three song collections with proper annotations of
percussive events. Two of them are publicly available and
were used in previous studies on drum transcription.

ENST-Drums database [10]: This is the largest pub-
licly available drum database. Since we wanted to detect

drum events in “real” music, we decided to mix the pro-
vided “wet” drums and their accompaniment tracks with-
out further changes on amplitude (-6dB drum level). From
the obtained collection of 64 songs we randomly selected
30 seconds excerpts of each song and their labels.

MAMI database [11]: This database is a collection of
52 music fragments (30 seconds length) extracted from
commercial CDs. We managed to gather 48 songs and
aligned them with the provided annotations. This database
was one of the three databases used in the MIREX 2005
audio drum detection contest.

In-house database [12]: This is a database of 30 anno-
tated music excerpts (20 seconds length), extracted from
commercial CDs. Since HH events were not specifically
annotated, we only used the BD and SD labels.

Due to the number of instances and the musical impor-
tance of each instrument within the drum kit we decided to
work with the following instruments classes: BD, SD and
HH (including open and closed HH sounds). Finally, we
obtained a large set of polyphonic music excerpts adding
up a total of 142 songs labeled with three, possibly con-
current, tags. The final number of instances per instrument
was: 6,407 for BD, 5,655 for SD and 8,400 for HH.

3.2 Descriptors

First, we computed a set of frame-level descriptors (frame-
size of 46 ms, hop-size of 12 ms) namely: temporal de-
scriptors (zero-crossing rate and lpc coefficients), spectral
descriptors (e.g. centroid, complexity, crest, decrease, dis-
sonance, energy, flatness, flux, kurtosis, pitch, rms, rolloff,
skewness, spread, strong-peak), perceptual descriptors
(MFCCs, Bark-bands and Bark-bands kurtosis, skewness
and spread) and tonal descriptors (Harmonic Pitch Class
Profile). See [13] and [14, p. 20] for an overview on these
descriptors.

After this first step we computed a set of object-level
descriptors 3 from the time series of each frame-level de-
scriptor (about 12 frames per object). The computed object-
level descriptors were:

3 The term “object” is considered here as: every sound event starting
from an onset and finishing 150 ms after (or in the next onset if this new
onset falls within the 150 ms interval).



a) Amplitude-related object descriptors: mean, variance,
minimum, maximum, skewness and kurtosis.

b) Time-related object descriptors: temporal skewness,
temporal kurtosis, temporal centroid, max. and min. nor-
malized position (normalized temporal position of the max-
imum, or minimum, value of the time series), slope (arct-
angent of the slope of the linear regression of the data), at-
tack and decay (slope descriptor from initial, or end, point
to the maximum point) and amplitude-normalized attack
and decay.

At the end of this process we obtained about 2,400 de-
scriptors for every sound object. See [14, p. 46] for a de-
tailed explanation on the computed descriptors.

3.3 Model training

Since we were working with three drum categories that
can occur at the same time, we decided to train N -binary
(SVM) classifiers instead of one model with 2N possible
classes. In this context we have each trained model in
charge of detecting the presence or absence of one partic-
ular instrument (e.g. SD or not-SD).

In order to have a more representative database for train-
ing purposes we mixed the ENST and the MAMI databases.
Taking into account that the final system has to label pre-
detected onsets we decided to train our models with la-
beled onsets. Thus, we performed an onset detection (by
using an implementation of the onset algorithm proposed
by Brossier in [15]) and we assigned the corresponding la-
bels to every detected onset. Finally we split the database
leaving 90% for training and reserving 10% to be used as
independent test set. We called these databases 90%MIX
and 10%MIX. The In-House database was also reserved as
second independent testing set.

To build the SVM models we first used the correla-
tion based feature selection (CFS) [16] algorithm in 10-
fold cross-validation (CV) to identify the most informa-
tive object-level descriptors from the 90%MIX database.
We chose only those descriptors selected in all CVs (i.e.
10 times) obtaining 56 relevant descriptors for BD (e.g.
low Bark-bands, MFCCs, spectral-energy low and spec-
tral flux), 77 for SD (e.g. mid Bark-bands, temporal lpc,
MFCCs and spectral flatness ) and 38 for HH (e.g. high
Bark-bands, temporal lpc, MFCCs, spectral spread and
spectral flatness). Then, we trained the SVM models with
the selected descriptors of the 90%MIX database and eval-
uated their performance using 10-fold CV. We also ap-
plied these models to the testing sets (i.e. 10%MIX and
In-House). The classification results for every labeled in-
stance and every model (after a grid search of SVM pa-
rameters) can be seen in Table 2. We obtained averaged
F-measure results of 0.806 and 0.782 for the training and
testing sets respectively.

3.4 Full transcription

Since up to this step we had worked only with labeled
onsets, the next step was to evaluate the learned models
against all the ground truth labels in the datasets. In order
to do that we implemented a complete drum transcription

Instrument Model 90%MIX In-House 10%MIX

bass drum 0.834 0.812 0.835

snare 0.778 0.687 0.773

hi-hat 0.806 — 0.802

Table 2. F-measure classification results after grid search of
SVM parameters. Models were trained with 90%MIX database.
Results were evaluated using 10-fold CV on each dataset.

system. The three previously described databases were an-
alyzed (ENST, MAMI and In-house) adding up a total of
142 songs (20 to 30 seconds length).

The experiment set-up for evaluating the transcription
capabilities of our system was as follows: a) Perform an
onset detection on the audio excerpts (we used the same
onset detector as in the model training step). b) Compute
the descriptors used by each model on every onset plus
150 ms (or until the next onset). c) Apply the models to
every set of descriptors to obtain the predicted labels. d)
Evaluate the predicted results against the ground truth an-
notations (as in the MIREX 2005 contest, a range of ±30
ms from the true times was allowed). After evaluating all
142 song excerpts, we obtained an overall result of 0.659
(F-measure) and per instrument F-measure results of 0.699
for BD, 0.652 for SD and 0.626 for HH. If we compare our
system with the fully automatic systems described in sec-
tion 2 (i.e. [4, 6, 8, 9]) we can see that our system obtained
near state-of-the-art drum transcription performance with a
quite simple pattern recognition algorithm. Nevertheless,
these performances are still far from reliable transcriptions.

3.5 Relaxed Transcription

Taking into account that state-of-the-art algorithms are still
far from yielding perfect transcriptions and that our final
goal was to derive song-level percussion descriptors, we
decided to evaluate the capacity of our transcription sys-
tem to estimate the total number of drum events in a song
(e.g. how many BD, SD or HH strikes a particular song
has). These descriptors could be used to characterize a
song as having, for example, a lot of SD, no HH, etc.,
hence they contribute to bridge the semantic gap [17]. In
this experiment we considered as a “correct” decision the
total number of instrument instances (e.g. HH events) in
the whole audio file discarding time-information 4 . Using
the same datasets as in the full transcription experiments
we obtained, as expected, better classification performance
(F-measure) for all classes (BD = 0.822, HH = 0.794 and
SD = 0.698). The overall performance of this “relaxed”
transcription system was 0.771 (F-measure). These results
encouraged us to investigate if useful song-wise percussion
descriptors could be computed.

4 We define correct transcription (CTR) as the arg min(TR, GT ), be-
ing TR = transcription and GT = ground truth labels per instrument.
Then, we compute P = CTR/TR and R = CTR/GT and finally
F = 2PR/(P + R).



4. SONG-LEVEL PERCUSSION DESCRIPTORS

4.1 Computed Descriptors

In [12] and [18] two percussion-related descriptors were
presented and evaluated with promising results namely:
Percussion Index (a ratio between the total number of de-
tected percussion events and the number of detected on-
sets) and Percussion Profile (the relative amount of BD,
SD, cymbals, and non-percussion events normalized by the
total number of onsets). Following this idea of percussion
related descriptors we decided to compute and evaluate the
following song-level percussion descriptors (some of these
descriptors appeared as suggested future work in [12] but,
up to our knowledge, they have not been implemented nor
evaluated yet).

Computed song-level percussion descriptors:

• Percussion Profile: The ratio between the number
of detected percussion events and the number of de-
tected onsets [18]. Computed for BD, SD, HH and
drum (D) 5 (e.g. BD/total, SD/total).

• Inter-Instrument Ratio: The ratio among all per-
cussive instrument events namely: BD/SD, BD/HH
and SD/HH.

• Instrument Per Minute: The number of detected
events per minute for BD, SD, HH and D.

• Inter-Instrument Interval (iii): The first and sec-
ond peak values of the histogram of the differences
between successive events. Thus, we computed: first
and second-iii-peak for BD, SD and HH.

At the end of this process we obtained 17 song-level per-
cussion descriptors for each song.

4.2 Evaluation

To investigate the correlation between the proposed per-
cussion descriptors and the ground truth values we com-
puted the percussion descriptors both from the ground truth
labels (labeled onsets) and from the output of our tran-
scription system. Then, we built a fractional ranking 6 for
each descriptor (for every song) and computed the Pear-
son’s correlation coefficient between both rankings. The
correlation results showed large correlation values (i.e. >
0.5) for 12 out of 17 proposed descriptors (only: BD/SD,
second-iii-peak for the three instruments and first-iii-peak
for HH presented correlation values below 0.5). These
highly correlated values between our descriptors and de-
scriptors computed from the ground truth labels were spe-
cially strong (i.e. > 0.7) for D/total, D/min, HH/total and
HH/min. These results suggest that the proposed descrip-
tors have potential to describe the percussive content of a
song.

5 In this context “drum” means the number of detected onsets labeled
by the system as BD, SD or HH.

6 If the ordered vector to rank is A,B,C,D and B is equal to C (i.e. tie)
the fractional ranking assigns the same mean position value in both cases,
i.e. 1,2.5,2.5,4.

Figure 1. Genre classification results per genre and descriptor
set. F-measure after 10-fold CV.

Next, we evaluated the usefulness of the percussion de-
scriptors as features in several MIR tasks such as genre
and sub-genre classification, danceability 7 and Western
vs. non-Western music estimation. We decided to set-up
a general methodology for evaluating the song-level per-
cussion descriptors on every selected MIR task. Firstly,
we computed, for each song in the dataset, the mean value
of a set of “standard” descriptors to be used as baseline
for the evaluation. Secondly, we computed the proposed
song-level percussion descriptors on the same database.
Thirdly, we selected a classification algorithm and we de-
termined the “best” classification values for the “standard”,
“percussion” and “standard + percussion” descriptor sets.
Finally, we evaluated the classification results by compar-
ing F-measures and performing a Binomial test [20, p. 37]
with 5% significance level (i.e. α = 0.05). This Binomial
test determines if the difference between correctly classi-
fied songs for each descriptor set is statistically significant
or not. It is worth to notice that none of the songs used
for training the SVM models were used in these evaluation
experiments.

4.2.1 Genre

For genre classification we used an in-house database of
30 seconds excerpts extracted from 350 songs equally dis-
tributed among 7 genres: classic, dance, hip-hop, jazz, pop,
r&b and rock. The computed “standard” descriptors were:
Bark-bands, Bark-bands kurtosis, Bark-bands skewness,
Bark-bands spread, spectral centroid, spectral crest, spec-
tral decrease, spectral dissonance, spectral energy, spec-
tral energy-band high, spectral energy-band low, spectral
energy-band middle high, spectral energy-band middle low,
spectral flatness, spectral flux, spectral hfc, spectral kurto-
sis, MFCCs, spectral skewness, spectral spread and tempo-
ral zero-crossing rate. We called “timbral” descriptors this
set of 60 features. We used multi-class SVM as classifica-
tion algorithm.

The genre classification results can be seen in Figure 1.
From these results it is interesting to notice that by using
the percussion descriptors only, good discrimination rates

7 The easiness with which one can dance to a musical track [19].



Genre T P T+P

ambient 0.531 0.433 0.588

drum’n bass 0.475 0.619 0.576

house 0.200 0.500 0.427

techno 0.369 0.269 0.380

trance 0.438 0.566 0.427

Average 0.403 0.478 0.480

Table 3. Electronic sub-genre classification. T = timbral, P
= percussion and T+P = timbral+percussion. C4.5 classification
algorithm. Results in F-measure after 10-fold CV.

can be achieved for classic (F = 0.818), rock, dance and
hip-hop (F ≈ 0.600) genres. The overall classification
for the percussion-only data set was about 12 percentage
points (pp) below “timbral” descriptors. When combining
“timbral” and “percussion” descriptors a small improve-
ment in the overall result was observed (+2.1 pp). It is
worth to notice that big improvements were produced in
dance (+12.7 pp) and pop (+15 pp) results, whereas results
for rock and r&b decreased 5.6 and 4.4 pp respectively.

The Binomial test showed no statistically significant dif-
ference between “timbral + percussion” and “timbral” de-
scriptors (p = 0.1932), but both sets evidenced signifi-
cant differences with the “percussion” descriptor set (p <
0.0001 in both cases).

4.2.2 Electronic

For electronic sub-genre classification we performed our
experiments on an in-house database of 270 songs (30 sec-
onds length each) equally distributed among the following
genres: ambient, drum’n bass, house, techno and trance.
The computed descriptors were the same as in the genre
experiment. Given that sub-genre and genre classification
could be considered as very related tasks, we decided to try
a different algorithm to gain some insight on the descrip-
tors. Therefore, we used in this case the C4.5 decision tree
algorithm for classification, since its output can be easily
summarized into interpretable trees of descriptors.

Results for electronic sub-genre classification are de-
picted in Table 3. In this experiment we observed that clas-
sification results obtained by the “percussion” set outper-
formed “timbral” descriptors by 7.5 pp. The combination
of “timbral” and “percussion” descriptors showed no sig-
nificant difference with results from percussion-only de-
scriptors in the overall classification result (although this
combination seems to output more balanced classification
rates among categories). In both “percussive” and “tim-
bral + percussive” models the D/total and first and second
iii-peak BD were the most informative descriptors.

The significance test corroborates the conclusions ex-
tracted from the F-measure results where “percussion” de-
scriptors performed significatively better than “timbral” de-
scriptors (p = 0.0028), “timbral + percussion” performed
better than “timbral” (p = 0.0058) and no statistical dif-
ference between “percussion” and “percussion + timbral”
descriptor sets was appreciated (p = 0.4273).

Figure 2. Danceability classification results after 10-fold CV.

4.2.3 Danceability

For danceability tests we used an in-house database of 374
song excerpts of 30 seconds equally distributed into three
classes (i.e. non-dance., mid-dance. and high-dance.). We
computed the same descriptors as in the genre experiment
plus an estimation on the beats per minute (bpm) of the
song 8 , we called this descriptor set as “timbral + bpm”.
As in the genre experiments we decided to use the SVM
algorithm (multi-class).

Results for Danceability tests are shown in Figure 2.
From these results we can conclude that “percussion” de-
scriptors performed better than both “timbral + bpm” and
“timbral + bpm + percussion”. Percussion-only descrip-
tors outperformed by 8.9 pp and 7.4 pp “timbral + bpm”
and “timbral + bpm + percussion” respectively, obtaining
better results in all three categories. It is interesting to no-
tice that percussion descriptors also outperformed obtained
results by [19] which achieved an accuracy of 61.78% in
classifying 225 songs into the same three categories by us-
ing a different and more complex approach.

The Binomial test on danceability results showed that
“percussion” descriptors provided significatively better per-
formance than the other two sets (p = 0.0025 for “timbral
+ bpm” and p = 0.0074 for “timbral + bpm + percus-
sion”). The test also showed no statistical difference be-
tween “timbral + bpm” and “timbral + bpm + percussion”
descriptor sets (p = 0.3793).

4.2.4 Western vs. non-Western music classification

For Western vs. non-Western experiments we used an in-
house database of 139 Western songs from 16 genres in-
cluding classical, jazz, rock, pop, religious and hip-hop,
and 139 non-Western songs including songs from Africa,
Arab States, Asia and the Pacific. The computed descrip-
tors and classification algorithm were the same as in genre
experiments.

The results for these experiments are shown in Table
4. Here we observed an almost linear increment in the
classification rates starting by “timbral” descriptors with

8 Since bpm is an important descriptor for danceability estimation we
included it into the “standard” set. Otherwise, it would be too easy for
our descriptors to outperform.



Class T P T+P

Western 0,817 0,803 0,856

non-Western 0,747 0,828 0,833

Average 0,782 0,816 0,844

Table 4. Western vs. non-Western music classification. T =
timbral, P = percussion and T+P = timbral+percussion. SVM
classification algorithm, F-measure results after 10-fold CV.

F = 0.782 followed by “percussion” descriptors with F =
0.816 (+3.4 pp) and “timbral + percussion” with F = 0.844
(+2.8 pp from “percussion”). It seems clear that adding
percussion descriptors helped in the process of Western
vs. non-Western song discrimination. Is is also interesting
to notice that classification results for non-Western music
were much better when percussion descriptors were used
(more than 8 pp above “timbral”).

The significance test showed no statistically significant
difference between “percussion + timbral” and “percus-
sion” descriptors (p = 0.1212) and between “percussion”
and “timbral” descriptors (p = 0.1349). The test also
depicted statistical difference between “percussion + tim-
bral” and “timbral” descriptors (p = 0.0096). See [21]
for an in-depth study on Western vs. non-Western music
classification.

5. CONCLUSIONS

Within the present work we have conducted several exper-
iments in order to detect and describe percussive events in
polyphonic music. Firstly, we built, by combining three
databases, a large set of percussion-labeled songs. Sec-
ondly, we evaluated the capacity of an automatic drum
transcription system, based on object-level features and
three binary SVM models, to transcribe percussion events
in polyphonic music. From the transcription results we
extrapolated that our relatively simple algorithm can be
placed among the top ranked ones, even though all these
systems leave a lot of room for improvement. After per-
forming “relaxed” transcription experiments we observed
that our system can detect the total number of drum events
in a song with an overall F-measure of 0.771. Finally,
we presented 17 song-level percussion descriptors and we
evaluated their usefulness among several MIR tasks. These
preliminary results suggest that song-level percussion (i.e.
“semantic”) descriptors, even though they are based on im-
perfect transcriptions, can help in MIR tasks such as genre
and sub-genre classification, danceability and Western vs.
non-Western music estimation. It also seems clear that
song-level percussion descriptors offer useful information
that complements the one provided by classic “spectral”
and “timbral” descriptors. This new information could also
be exploited in music similarity tasks.
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