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Abstract—In this paper we present a method to model Il. DATA ACQUISITION AND ANALYSIS
and compare expressivity for different Moods in violin
performances. Models are based on analysis of audio and  The training data used in our experimental investiga-

bowing control gestures of real performances and they tions consist of short melodies performed by a profes-
predict expressive scores from non expressive ones. sional violinist in four Moods: Sadness, Happiness, Fear

Audio and control data is captured by means of a violin d A Pi | d twi ith and without
pickup and a 3D motion tracking system and aligned with an nger. Fieces were played twice with and withou

the performed score. metronome.

We make use of machine learning techniques in order A set of audio and control features is extracted from
to extract expressivity rules from score-performance devia-  the recordings and stored in a structured format. The
tions. The induced rules conform a generative model that performances are then compared to their corresponding

can transform an inexpressive score into an expressive one. cores in order to automatically compute the performed
The paper is structured as follows: First, the procedure of S S u Ically pu P

performance data acquisition is introduced, followed by the ~ transformations.
automatic performance-score alignment method. Then the The main characteristic of our data acquisition system

process of model induction is described, and we conclude s that of providing also motion information. This infor-

‘évggezncg‘:‘ilgf;&?i \E’jssiﬂtﬁgsl'éﬁn'”g test by using a sample  a4i0n s used for learning the model as well as for the
' alignment and segmentation of the performances with the

I. INTRODUCTION Scores.

Diffgrent approa_ches are found in the Iiteratu_re fora. scores

modeling expressive performances: Fryden[4] tries an . )

analysis-by-synthesis approach, consisting of a set of Scor'es are'represented as a series of notes Wlth onset,

proposed expressive rules that are validated by synthesRitch (in semitones) and duration. No extra indications

In [3] mathematical formulae is proposed to model certairre given to the performer except for the Mood. They are

use of machine learning in order to extract expressivéitributes of the melody.

patterns from musical performances. In [7] they use Case

Based Reasoning, that is, a database of performanc& Audio acquisition

that conform the knowledge of the system. In this work Audio is captured by means of a violin bridge pickup.

we follow the work done by [8], also using machine This way we obtain a signal not influenced by the

learning techniques and more specifically inductive logic . .
. resonances of the violin acoustic box and the room,
programming (ILP from now on), that has the advantage . . ; : )
which makes segmentation much easier than if using a

of automatically finding expressive patterns without themicrophone. From the captured audio stream we extract

need of an expert n musical gxpressmty. Regardm he audio perceptual features: frame-by-frame energy, fun-
research in generative models, in [5] a computationa L o .
S . . damental frequency estimation and aperiodicity function.
model of expression in music performance is proposed. : 4 .
. . nergy is used as input for learning the model.
In general this techniques try to model perceptualE
features such as timing deviations, dynamics or pitch. In _ q lculati
addition, we also inform the model with control gestures,C: G€StUre acquisition and parameter calculation
more specifically bow direction and finger position. Bowing motion data is acquired by means of two 3d-
Apart from calculating prediction errors, models aremotion tracker sensors, one mounted on the violin and
also evaluated by listening with the help of a sampledhe other on the bow as we already described in [6]. We
based concatenative synthesizer under development. are able to estimate with great precision and accuracy the
Four moods are analyzed: Sadness, Happiness, Fear anokition of the strings, the bridge and the bow. With the
Anger. Expressive features analyzed are: tempo and a sebllected data we compute, among others, the following
note level descriptors: onset, note duration, energy, bowowing performance parameters: bow distance to the
direction and string being played. bridge, bow transversal position, velocity and accelera-
In the following sections we introduce the data acqui-tion, bow force and string being played. Bow direction
sition procedure, we detail how the model is induced andhange and playing string are used for the segmentation
how is it performing. and as input for learning the model.
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Fig. 2. Induction and Prediction predicates.

Fig. 1. Contextual predicates.

and dynamicsspecifies the mean energy of a given note.
These 4 predicates are also used for model prediction.
The use of first order logic for specifying the musical
Performances are represented with the same symbolsbntext of each note is much more convenient than using
description as the score so that they can be aligned and deaditional attribute-value (propositional) representations.
viations from the score obtained. An automatic alignmenEncoding both the notion of successor notes and Narmour
is carried out following P]. It uses score information, group membership would be cumbersome using a propo-
bowing controls, and audio descriptors: A bow-directionsitional representation. In order to mine the structured data
change or a playing-string change indicates a note onsaie used Tilde's top-down decision tree induction algo-
In legato, notes segmentation is based on pitch and energythm ([1]). Tilde can be considered as a first order logic
Offsets are calculated by using energy levels. Automati@xtension of the C4.5 decision tree algorithm: instead of

D. Score-Performance Alignment

segmentation is finally manually corrected. testing attribute values at the nodes of the tree, Tilde
tests logical predicates. This provides the advantages
lll. EXPRESSIVE PERFORMANCE MODEL of both propositional decision trees (i.e. efficiency and

In this section we describe our inductive approach foPruning techniques) and the use of first order logic (i.e.
learning the model by applying ILP techniques and wdncreased expressiveness). The increased expressiveness

describe the evaluation results. of first order logic not only provides a more elegant and
efficient specification of the musical context of a note, but
A. Data Description it provides a more accurate predictive model.

After the alignment and segmentation, scores and ex8. Model Evaluation
pressive deviations of the performance are defined in \ye gptained correlation coefficients of 0.80 and 0.83

a structured way using first order logic predicates. Th§q the duration transformation and note onset prediction
musical context of each note is defined with the followingiagks respectively and we obtained a correctly classified
predicates (Figure 1)_conteanote specifies |nforrT_1at|oq instances percentage of 82% and 86% for the bow di-
both about the note itself and the local context in whichigction and string played prediction. These numbers were

it appears. Information about intrinsic properties of thegpiained by performing 10-fold cross-validation on the
note includes note duration and note’s metrical pOSitiontraining data.

while information about its context includes the duration Additionally to the model performance error coeffi-

of previous and following notes, extension and directionciems, listening tests are also carried as a perceptual
of the intervals between the note and both the previoug,gjuation of the models. For this we make use of a

and the subsequent note, and tempo of the piece in whicly 1h1e-hased spectral concatenative synthesizer.
the note appeargontext narmour specifies the Narmour

groups to which a particular note belongs, along with its IV. CONCLUSIONS

position within a particular group. The temporal aspect of e presented a model for expressive performances
music is encoded via the predicatesed and succ For  pased not only on perceptual features but also informed
instance succ(A,B,C,D)ndicates that note in position D with bowing. We introduced the procedure to acquire the
in the excerpt indexed by the tuple (A,B) follows note C. data, learn the model and synthesize its predictions. The
Expressive deviations in the performances are encodea@sults seem to capture the expressive features performed.
using 4 predicates (Figure Ztretchspecifies the stretch We obtained high prediction correlation coefficients and

factor of a given note with regard to its duration in therealistic synthesis of predicted performances.
score; bowdirchangeidentifies points of change in bow

direction; stringPlayedspecifies in which string a note V. ACKNOWLEDGMENTS
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