
Perceptual Representations for Classification of Everyday Sounds

Elena Martinez Hernandez1,2, Kamil Adiloglu1, Robert Annies1,
Hendrik Purwins1,2, Klaus Obermayer1

,1 Neural Information Processing Group, Berlin University of Technology,
{kamil,robokopp,oby}@cs.tu-berlin.de

2 Music Technology Group, Pompeu Fabra University,
{emartinez,hpurwins}@iua.upf.edu

Abstract. In the recognition and classification of sounds, extracting perceptually and biologically relevant
features yields much better results than the standard low-level methods (e.g zero-crossings, roll-off, centroid,
energy, etc.). Gamma-tone filters are biologically relevant, as they simulate the motion of the basilar membrane.
The representation techniques that we propose in this paper make use of the gamma-tone filters, combined with
the Hilbert transform or hair cell models, to represent everyday sounds. Different combinations of these methods
have been evaluated and compared in perceptual classification tasks to classify everyday sounds like doors and
footsteps by using support vector classification. After calculating the features a feature integration technique
is applied, in order to reduce the high dimensionality of the features. The everyday sounds are obtained from
the commercial sound database “Sound Ideas”. However, perceptual labels assigned by human listeners are
considered rather than the labels delivered by the actual sound source. These perceptual classification tasks
are performed to classify the everyday sounds according to their function, like classifying the door sounds as
”opening” and ”closing” doors. In this paper, among the gamma-tone-based representation techniques, other
spectral and psycho-acoustical representation techniques are also evaluated. The experiments show that the
gamma-tone-based representation techniques are superior for perceptual classification tasks of everyday sounds.
The gamma-tone filters combined with a inner hair cell model and with the Hilbert transform yield the most
accurate results in classifying everyday sounds.

1 Introduction

Unlike music and speech, the audio analysis and recog-
nition of everyday sounds have not yet received so
much attention in the literature. Nonetheless, every-
day sounds play a significant role in communication,
localisation and interaction. In this paper, we focus on
the ability of machine learning algorithms to identify
and classify sounds by example to gain insight what
aspects of – mostly complex – sounds lead to a certain
categorisation by humans.

Everyday sounds in urban environments are emit-
ted from machines, human interaction with mechanical
devices, and natural phenoma. In a natural environ-
ment, sounds get modulated by the acoustical proper-
ties of the environment itself and get mixed with dif-
ferent sources of sounds. This shows the complexity of
everyday sounds. However, for analysis purpose, it is
necessary to reduce the complexity of the representa-
tion to meaningful features.

The question is whether and how it is possible to de-
tect properties of the sound generating process and/or
listeners perception, i.e. what is the sound source,
what materials are involved, and what impressions are
received by a listener. We investigate this question in

a classification framework. Several classification stud-
ies have been made to distinguish different kinds of
everyday sounds from other types of sounds such as
music, speech, etc. However, in our approach we clas-
sify only everyday sounds based on the function they
fulfil, their material or shape, or the objects they in-
teract with. Obviously, this task, classifying everyday
sounds is much more difficult then distinguishing ev-
eryday sounds from other sound classes, which have
totally different characteristics.
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2 Representation

Low level spectral features, like zero-crossings, cen-
troid, roll-off etc. of a given sound give useful infor-
mation about the sound. However this information is
not sufficient to understand sound perception. In order
to be able to understand how perception works, psy-
choacoustical facts should be considered, and psychoa-
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coustical features should be utilised to define efficient
representation schemes.

Mel Frequency Cepstrum Coefficients (MFCC’s) [7]
are well established representation scheme, which dom-
inate applications in speech recognition and music pro-
cessing. They have rarely been applied to environ-
mental sounds. MFCC’s are short-term spectral based
features, based on the Mel scale. The Mel scale is
a mapping between the actual frequency values and
the perceived pitch. This mapping is linear for the
low-frequency values. As the frequency increases, the
mapping becomes logarithmic. Generally the first 13
MFCC features are used as descriptors to represent a
given sound in different tasks, because as it has already
been shown, these first coefficients concentrate most of
the signal energy [17].

However, there are other psychoacoustically or bi-
ologically motivated methods, which take the critical
bands into account, where inputs whose frequency dif-
ference is smaller than the critical bandwidth cause the
so-called beats. Another methods aim to simulate the
cochlea in the inner-ear. In our representation method,
we introduce the gamma-tone filters, which are consid-
ered to be biologically motivated as well.

2.1 Gamma-tone Filterbank

A gamma-tone auditory filterbank [11, 12] incorporates
two insights into auditory physiology: 1) the higher
frequency resolution for low frequencies, 2) the higher
temporal resolution for high frequencies. With increas-
ing centre frequency the spacing of the gamma-tone
filters increases and the length of the filter decreases.
Mimicking the basilar membrane, spacing and band-
width of the filter is based on the equivalent rectan-
gular bandwidth (ERB) [4]. Roughly, the centre fre-
quencies are spaced linearly for low frequencies and
logarithmically for high frequencies. ERBs are similar
to the Bark or the Mel scale. Due to its properties, the
ERB scale is a highly biologically plausible representa-
tion.

As a pre-processing of the everyday sounds, we
use the gamma-tone filter implementation in Malcolm
Slaney’s Auditory Toolbox [13, 14]. Starting with the
lowest centre frequency of 3 Hz, we use 18 gamma-tone
filters in total. Therefore, for each given sound, we
obtain 18 filter responses from the gamma-tone filter
bank.

The gamma-tone filters can be combined with other
representations, in order to obtain a more complete
representation scheme.

2.2 Hilbert Transform

The first method, which we can combine the gamma-
tone filters with is the Hilbert Transform. The Hilbert
Transform is mainly used to explain the relationships
between the real and imaginary parts of a signal. The
Hilbert transform of a signal is nothing but the convo-
lution of the time domain signal with 1

πt
. Combining

the Hilbert transformed signal with the original signal,
we obtain the analytic signal. This process deletes the
negative components of the signal in the frequency do-
main, and doubles the amplitudes on the positive side.
Furthermore the analytic signal is a base band signal.

In our representation scheme, the Hilbert Transform
is applied to each gamma-tone filter response. After
applying the gamma-tone filterbank the Hilbert trans-
form is calculated for each filter response. Then the
power spectral density is calculated for each of the
Hilbert transformed filter responses [15]. The power
spectral density is the Fourier Transform of the auto-
correlation of the signal. The periodogram method
is generally used to calculate the power spectral den-
sity. In the standard case, the power per unit fre-
quency is calculated, where the results have the unit

power
frequency

. However, we calculate the mean-squared
spectrum. The mean-squared spectrum is calculated
for each frequency value depending on the sampling
rate. Therefore, the unit of the mean-squared spec-
trum values are power. Figure 1 shows an example
mean-squared spectrum gamma-tone filter. In this fig-
ure, a closing door sound has been taken. After ap-
plying gamma-tone filters onto the sound, we obtained
18 filter responses, one for each filter in the filterbank.
Then a single filter response was taken, in order to ap-
ply the Hilbert Transform onto the filter response. As
the last step, the mean-squared spectrum was calcu-
lated for the Hilbert transformed filter response.

After these steps, we obtain the mean-squared spec-
trum for each Hilbert transformed filter response which
can be considered as a matrix. However, we should
reduce the dimensionality of this matrix, in order to
be able to use them as a representation of the sound.
Therefore we sum up these values within each of four
groups of adjacent centre frequencies [1]. We take the
average of the calculated values for each group. These
groups are the DC values, the frequency interval 3-15
Hz, 20-150 Hz, and the rest. The interval 3-15 Hz em-
phasises the speech syllabic rates. The interval 20-150
Hz is the perceptual roughness [18]. After this step, we
obtain four values for each filter response.

2.3 Inner Hair Cell Model

Another method, which can be combined with the
gamma-tone filters is the inner hair cell model of Med-
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Figure 1: A single gamma-tone filter output trans-
formed by Hilbert transform. The mean-squared
spectrum of the signal is shown.

dis [8] [9] [10]. In this model, the firing rate of the
inner hair cells, connected to the basilar membrane, is
modelled. Hence, the gamma-tone filters and the inner
hair cell model complement each other [16]. The inner
hair cells fire, when a stimulus arrives and the basilar
membrane is deflected at a point of a resonance fre-
quency where the hair cell sits. This firing is simulated
by the dynamics of production and flow of transmitter
substance. A certain amount of transmitter substance
is released into the synaptic cleft between the hair cell
and another neuron, depending on the strength of the
stimulus. For each arriving stimulus, the Meddis in-
ner hair cell model calculates these amounts iteratively.
In our representation, we use the rate of transmitted
part of the transmitter substance. Figure 2 shows a
closing door sound represented by gamma-tone filters
combined with the inner hair cell model.

3 Feature Integration for SVM
3.1 Mean, Variance, Derivatives

The gamma-tone filter bank yields a multi-channel re-
sponse for a single sound. Besides, the filter bank
does not decrease the length of a given sound. Sum-
ming up the filter outputs reduces the dimensionality
of the representation from 18 to 4 bands. The details
of this method are given in the corresponding represen-
tation section. However, we compress the outputs of
the bands across the entire length of the sound into a
single representation vector. In order to integrate the
responses of individual filters, we take the mean and
variance of each of the values in the four bands. In
order to be able to track the change in those values

Figure 2: An example representation of gamma-
tone filters combined with the inner hair cell model
is shown. The sound of a closing door is analysed.

between different filters, we also calculate the mean
and the variance of the first derivative of these filter
responses [2]. After these calculations we obtain a 16
dimensional feature vectors for each sound.

3.2 SVM Settings

In these experiments, we used support vector ma-
chines [5], which are known to be one of the best clas-
sification tools, based on the maximisation of the mar-
gin of the classification boundary between two classes,
c-SVM, which is implemented in the libsvm software
library [3]. The c-SVM has two parameters (c and g),
which should be determined beforehand. In order to
find the optimal parameter values for these two param-
eters, we performed a grid search, where we changed
these two parameters slightly to find optimal parame-
ter settings. As grid values we use all combinations of
c = 28, 29, 210, . . . , 212, g = 2−16, 2−15, 2−14, . . . , 2−4.
For the final experiment in Table 5 we use a wider step
size for the g parameter: g = 2−16, 2−14, 2−12, . . . , 2−4

In the results, we will present the best results, which
have been obtained by the optimal values of these two
parameters.

4 Data Sets

Recordings are taken from the sound collection ”Sound
Ideas” [6]. For the experiments, recordings of foot-
steps and opening/closing doors are selected. The door
sounds have a complex temporal structure whereas the
steps are short and only consist of a few onsets. In
both cases a mixture of temporal patterns and spec-
tral properties can reveal information about material
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or function of the sound.

The doors dataset includes a series of recordings of
wooden doors being closed or opened. A single sample
contains either an opening or a closing door sound,
not both one after another. 74 closing and 38 opening
doors in total are used as input for the experiments.

The footstep dataset consists of recordings of differ-
ent kind of shoes (heels, boots, barefoot) on various
grounds (concrete, gravel, wood, dirt). They are taken
from CD 16 and 17 from [6]. The recordings are cut,
when necessary, such that exactly one step in contained
in one sample. The limit of steps taken from the same
recording is 10 to avoid overfitting effects. This leads
to a dataset with 125 footsteps per class.

The datasets that we use in our experiments are
listed out in the following:

• doors

– opening - closing

• footsteps

– high heels - boots

– high heels - non high heels

– barefoot - sneakers

– on wood - on dirt

Besides performing binary classification experiments
on these data sets, we evaluate our representation
schemes on a multi-class classification experiment as
well. In this experiment, we use five different types
of footstep sounds (barefoot, sneakers, leather, heels,
boots), all on concrete or marble.

The labels of these datasets are all psycoacoustically
validated. We did not perform detailed psycoacousti-
cal experiments, but we checked the sounds by listen-
ing them by ourselves. We discard sounds whose class
cannot be identified while listening to them.

5 Experiments and Results

In order to evaluate the results of our experiments in a
reliable way we use cross validation to calculate the av-
erage accuracy. In particular, we use the leave-one-out
cross validation method. In leave-one-out cross vali-
dation experiments, all sounds but one are put into
the training set. Then the trained algorithm is tested
on the remaining single sample, that had been previ-
ously excluded from the training set. This procedure
is repeated for all possible partitions into training/test
set. The total accuracy of the system is the average
accuracy of all tests.

The experiments that we perform are all binary clas-
sification experiments. The door sounds are classified

as opening and closing sounds. Table 1 shows the re-
sults of SVM classification using four different repre-
sentations: 1) gamma-tone filters combined with the
Hilbert transform (GT Hil), 2) gamma-tone filters com-
bined with the inner hair cell model (GT Med), 3)
MFCC’s, and 4) MFCC’s combined with the low-level
spectral features (SLL), which contain zero-crossings,
roll-off and centroid.

GT Hil GT Med MFCC SLL
84.0% 63.2% 60.4% 67.1%

Table 1: Classification of opening/closing door
sounds by SVMs using various representations (cf.
text).

The footstep sounds were classified based on the sole
types (high-heels vs. boots, high-heels vs. not high-
heels), and the floor (concrete vs. gravel, wood vs.
dirt). Furthermore, we also designed a multi-class ex-
periment based on the sole types as well. In the latter,
we use five different sole type classes (barefoot, sneak-
ers, leathers, heels, combat boots) on concrete floor.

In Table 2 the results of the binary classification
experiment heels vs. combat boots are shown. All
representation methods work almost perfect for this
classification task. Only the MFCC’s do not yield
100% accuracy for the task heels vs. combat boots,
but 98.3% accuracy is still good. Based on these re-
sults, this task can be considered as the conceptual
proof that our representation methods work at least
as well as traditional methods. In order to make this
task a little bit more complicated, so that we can ob-
serve differences between the accuracy rates of differ-
ent representations, we perform another experiments,
where we classify heels vs. non-heels. The results of
this second experiment are shown in Table 3. Here,
the gamma-tone based methods outperform the MFCC
based methods.

GT Hil GT Med MFCC SLL
100.0% 100.0% 98.3% 100.0%

Table 2: Classification results of the footstep
sounds heels vs. boots are shown.

GT Hil GT Med MFCC SLL
91.6% 100.0% 80.9% 89.2%

Table 3: Classification results of the footstep
sounds heels vs. not heels are shown.

We also perform binary classification experiments by
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using different sole types on two different floor types,
namely wood floor vs. dirt, leaves, sand and gravel.
The second class of sounds contain four different floor
types. However, all these floor types are perceived al-
most equal to the human listener. Therefore, creating
a single class out of these sounds does not any harm to
the experiment from a psychoacoustical point of view.
Table 4 shows the classification results of this experi-
ment. Again the accuracy is 100% for all different rep-
resentation methods. Hence, these results prove that
the representation methods we propose work well for
general binary classification tasks.

GT Hil GT Med MFCC SLL
100.0% 100.0% 100.0% 100.0%

Table 4: Classification results of the footstep
sounds wood floor vs. dirt are shown.

Beside these binary classification tasks, we also per-
form a multi-class experiment. In this experiment, we
use five different sole types, and classified each of those
classes against the others. Each class consists of 40 in-
stances. We perform five separate binary classification
runs. In each, one class is classified against the rest,
the other four classes. As a result, we obtain five bi-
nary classification results. In order to calculate the
overall accuracy of the experiment, we take the aver-
age of these five separate classifications. Table 5 shows
not only the overall average of the separate classifica-
tion experiments, but also the results of the separate
binary classification experiments themselves. In con-
trast to Table 3, the classification heels vs. non-heels
in Table 5 uses a different set of samples. In the latter
only steps on concrete are used.

GT Hil GT Med MFCC SLL
Barefoot 94.4% 100.0% 94.4% 94.4%
Sneakers 94.4% 83.3% 76.6% 82.1%
Leather 86.3% 100.0% 100.0% 100.0%
Heels 85.7% 92.8% 98.3% 100.0%
Boots 85.0% 85.7% 78.7% 79.3%

Average 92.2% 94.2% 88.8% 89.3%

Table 5: Classification accuracy of sole types
in step sounds. Altogether, the gamma-tone
based representations outperform the MFCC based
methods.

6 Conclusion
We have investigated the potential of four represen-
tations for classifying everyday sounds, in particular

opening/closing doors and the sole and floor material
in footsteps. In each experiment, the best method per-
forms with at least 84% accuracy, in several instances
even with 100%.

In contrast to low-level descriptors (such as zero-
crossing rate, spectral centroid, roll-off), sound can
be pre-processed by models physiologically inspired by
the basilar membrane. MFCC’s and gamma-tone filter
banks are prominent examples, both modelling the de-
creasing frequency resolution for high frequencies. In
addition, gamma-tone filterbanks also model the low
temporal resolution for low frequency signals and their
impulse response closely resembles physiological mea-
surements in the basilar membrane.

The experiments show that in general more phys-
iologically relevant models, gamma-tone based repre-
sentations, outperform other pre-processing methods.
We combined the gamma-tone filters with the Hilbert
transform and with Meddis’ inner hair cell model.
In order to reduce the dimensionality firstly we sum-
marised the filter responses in four different frequency
bands, and then applied a feature integration method
to these representations. In the end, we obtained fea-
ture vectors, which can be used to perform classifica-
tion experiments with support vector machines. Beside
these two representation schemes, we performed classi-
fication experiments with MFCC’s, and MFCC’s com-
bined with low-level spectral features. For the simple
classification tasks they classified the sounds perfectly.
These simple tasks are considered to be the proof of
concept in general for these representation schemes.

However, we performed more complicated experi-
ments, in order to observe the classification accuracy of
the gamma-tone based representation compared to the
MFCC based methods. Comparison of these experi-
ments showed that, in general, gamma-tone based rep-
resentation methods outperformed MFCC based repre-
sentation methods. Although there are several special
cases, where the MFCC’s performed better than the
gamma-tone based methods, gamma-tone representa-
tions yielded better results.

Interestingly, on the most complex data set, the door
sounds, the gamma-tone / Hilbert transform method
performed significantly better then the other methods
(17% better than the second best method). On the
other hand, the inner hair cell combination yielded
slightly better results for the footstep sounds than the
Hilbert transform.

The representations used here are basically station-
ary and include only little information about the tem-
poral dynamics of the sounds. The MFCC’s used here
include variance, discrete first derivation, and the vari-
ance of the latter. Thereby, MFCC’s momentarily
capture some temporal behaviour. The gamma-tone
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filterbank gives better temporal resolution for higher
frequencies than for lower frequencies. The Meddis
hair cell model essentially emphasises on- and off-
sets. This feature may be the reason why a gamma-
tone filterbank with subsequent Meddis hair cell model
sometimes performs better than the Hilbert transform.
Combining the Hilbert transform based representation
with delta coefficients like the MFCC’s or an onset de-
tection feature like the Meddis hair cell could improve
this representation. For a more complex consideration
of the time course of the events a higher level anal-
ysis would be useful. Promising approaches include
dynamic time warping, hidden Markov models, some
sort of analysis of the rhythm (regularity, acceleration,
deceleration) generated by the onsets of the signal.
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