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Abstract

In this study the classification performance of 2 machine learning methods
and 2 sound representations schemes are compared, having the focus on
short impact like sounds: Footsteps have been classified according to the
material of the floor and the shoe type. The gamma-tone auditory filter-
bank is a spectral analyser, that converts a given signal into a multi-channel
simulation of the basilar membrane motion. Combinations of the gamma-
tone auditory filter bank with the Hilbert transform and with the Meddis
Inner Hair-cell model have been evaluated and compared in classification
tasks. The experiments show that the gammatone based representation
techniques yield in general promising results in the classification tasks of
impact like everyday sounds. The support vector machines outperform the
hidden Markov models, where both in general perform equal or better using
the inner hair cell model representation.

1 Introduction

Everyday sounds play a significant role in communication, localisation and interaction in
everyday life. The question is whether and how it is possible to detect properties of the
sound generating process and/or listeners perception, i.e. what is the sound source, what
materials are involved, and what impressions are received by a listener. We investigate this
question in a classification framework. In our approach, we classify only everyday sounds
based on the function they fulfil, their material or shape, or the objects they interact with.

In this particular study we focused on impact like sounds emitted when objects of different
matetrials collide, here represented by a sound corpus of footsteps. The acoustics of footsteps
and walking have been extensively analysed [1]. Spectra of various floor types and the
resulting subjective loudness of foot steps have been compared [2]. In [3], it has been
shown that biologically inspired representations allow for better classification of step sounds
than widely used representations such as mel-frequency cepstrum coefficients (MFCCs) or
a combination of low-level features (such as zero crossings, spectral centroids, roll-off).

In this paper, we investigate the biologically motivated sound descriptors, starting with
gammatone filter banks followed by analysis of the temporal modulation envelopes or the
application of a inner hair cell model.

1



We compare how two classifiers, namely support vector machines (SVM) and hidden Markov
models (HMM), perform on sperating sounds of footsteps with different materials. The
results of each descriptor-classifier pair are compared with the other descriptor-classifier
pairs, in order to find the optimal representation and the classification model for this corpus.

Organisation of the paper: The following section describes the methods of preprocessing the
audio signals with the aim to reduce their dimensionality without loosing classification rele-
vant information. Section 3 gives information about the applied machine learning methods,
section 4 shows details about the collection of sounds that were used followed by section
5 that presents the expriments and their results. The discussion and conclusions close the
paper.

2 Representation

In order to perform classfication on audio signals an appropriate method has to be chosen
to represent the signal such that the dimensionality of the signal is reduced without loosing
class relevant information. In this study we compare 2 algorithms – SVM and HMM – using
2 ways of representation – spectrum oriented and time series oriented.. This leads to 4 cases:

SVM HMM
time 1) one vector encodes

temporal structure of
whole signal

2) one vector per time
frame encodes (micro-)
temporal content of this
frame

spectrum 3) one vector encodes
spectral content

4) vector per time frame
encodes spectral content
of this frame

HMM has, in opposite to SVM, inherently the ability to analyse a sequence of time frames.
A preprocessing is therefore done on a windowed signal. In case 2) this leads to a 2 level
temporal analysis, whereas in case 3) there is no temporal content at all1.

Mel Frequency Cepstrum Coefficients (MFCC’s) [4] are well established representation
scheme, which dominate applications in speech recognition and music processing. However,
for everyday sounds it has been shown [3, 5, 6, 7] that gamma-tone auditory filter-banks
yield better classification results than MFCC’s.

Figure 1 describes the 2 paths of preprocessing the input signal. Common is the beginning
with a gammatone filter bank and the last step to compress a sequence of values into 4
values by using the Mean-Variance feature intergration scheme.

2.1 Spectral content

2.1.1 Gamma-tone Auditory Filter-bank

A gamma-tone auditory filter-bank [8] is the first step of the cochlea simulation, where the
basilar membrane motion is simulated in a filter bank. The impulse response of a gamma-
tone filter is highly similar to the magnitude characteristics of a human auditory filter,
which makes the gamma-tone auditory filter bank a biologically plausible representation.
With increasing centre frequency, the spacing and the bandwidth of the gamma-tone fil-
ters increase, however the overlapping of each consecutive filter stays the same (equivalent
rectangular bandwidth or shortly ERB [9]). ERBs are similar to the Bark or the Mel scale.

As a pre-processing of the everyday sounds, we use the gamma-tone filter implementation in
Malcolm Slaney’s Auditory Toolbox [10]. We use 18 gamma-tone filters in total. Therefore,
for each given sound, we obtain 18 filter responses from the gamma-tone filter bank. A
frequency of flow = 3 lies in the audible frequency range captured by the Basilar membrane.

1temporal information was encoded by using very low frequencies of the spectrum (< 20Hz) as
’rythmic’ content. Depending on the point of view this might be seen as spectral and/or temporal
content
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Figure 1: Steps of preprocessing. The left side shows the representation that emphasises
the spectral features of the signal. The right one shows the steps using the time domain
analysis with the inner hair cell model. In the SVM experiments the whole sound example
was used as signal s(t) in opposite to the HMM, for which the signal was windowed and the
procedures were applied on each frame resulting in a series of vectors vt

i .

But it captures in addition also features that refer to frequencies in the range of roughness
or ’rhythmical’ content.

The Gamma-tone filters can be combined with other representations, in order to obtain a
more complete representation scheme.

2.1.2 Hilbert Transform

The first method with which we combine the gamma-tone filters is the Hilbert Transform [3].
The Hilbert transform of a signal is the convolution of the time domain signal with 1

πt .
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Combining the Hilbert transformed signal with the original signal, we obtain the analytic
signal. This process deletes the negative components of the signal in the frequency domain,
and doubles the amplitudes on the positive side. Furthermore the analytic signal is a base
band signal. The power spectrum of the analytic signal is the modulation spectrum of the
temporal envelope. In many roughness estimations, this step is the very first step of the
roughness estimation procedure [11].

2.1.3 Grouping in 4 bands

However, the huge dimensionality of the power spectrum of each filter output should be
reduced, in order to be able to create a feature vector for a sound. Therefore we summarise
these values in four frequency bands [6] [7] by simply taking the average of the power values
corresponding to these frequency bands. These frequency bands are the DC values, the
frequency interval 3-15 Hz (syllable rate in speech, or rythms), 20-150 Hz (roughness), and
150-1000Hz (low pass).

2.2 Temporal content

2.2.1 Inner Hair Cell Model

To analyse the signal in time, we directed the output of the gamma-tone filters into the
inner hair cell model of Meddis [12]. In this model, the firing rate of the inner hair cells,
connected to the basilar membrane, is modelled. The inner hair cells fire, when a stimulus
arrives. This happens when the basilar membrane is deflected at the point of a resonance
frequency, where the hair cell sits. This firing is simulated by the dynamics of production
and flow of transmitter substance. A certain amount of transmitter substance is released
into the synaptic cleft between the hair cell and another neuron, depending on the strength
of the stimulus. For each arriving stimulus, the Meddis inner hair cell model calculates
these amounts iteratively. In our representation, we use the rate of transmitted part of the
transmitter substance [5].

2.3 Feature Integration

In both analyseses (2.1 and 2.2) we end up with a number of serieses of values that have to
be compressed into one final feature vector. We applied a feature integration scheme that
calculates the mean and variance of the sequence as well as the mean and variance of the
first derivative (difference of two consecutive values).

In the spectral content case these are 4 sequences (4 bands) of 18 energy values of the filters,
which are compressed each to the 4 values described above. This makes a features vector of
16 values. Note, that the derivatives (deltas) were taken over the the filter outputs, i.e. in
frequency domain.

In the temporal case we used the same schema in the time domain. Here we had 18 time
serieses from the Inner Hair Cell model, which were compressed each to 4 mean/variance
values resulting in a 72 dimensional vector.

3 Learning Methods

3.1 SVM Settings

In these experiments, we used c-support vector machines, a classification tool based on the
maximisation of the margin of the classification boundary between two classes. The c-SVM
has two parameters (c and g), which should be determined beforehand. In order to find
the optimal values for these two parameters, we performed a grid search, where we changed
these two parameters slightly to find optimal parameter settings. As grid values we use all
combinations of c = 212, 213, 214, . . . , 216, g = 2−16, 2−15, 2−14, . . . , 2−4.
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Figure 2: Hidden Markov Model Architecture

3.2 HMM Settings

A Hidden Markov model with a feed forward architecture was used, as it is common in
speech recognition. The model assumes that the sound is constructed of segments of steady
states in time. How many segments appear is not known. Thus, HMMs with different state
numbers were used in the evaluation. Each state models the sound as a single multivariate
normal distribution with parameters Σ and mean µ, which are estimated while training
for each segment. The covariance matrix Σ was approximated by its diagonal to keep the
number of (scalar) parameters small.

The transition matrix allows only state changes to the next or to next but one, as depicted
in figure 2. It is a model with 3 emitting states (Gaussian bi(Σ, µ)) and transition matrix
a(ij).

A grid search was performed to find the best architecture. The number of states from 2 to
10 and the window size of the preprocessing step was varied: 512, 102 and 2048 samples.
Smaller windows increase the time resolution and more states increase the number of steady
state segments.

4 Data Sets

For the experiments, recordings of footsteps are selected from the sound collection “Sound
Ideas” [14].

The footsteps are a subset of the Foley collection. It consists of recordings of different kinds
of shoes (heels, boots, barefoot, sneakers, leather) on various grounds (concrete, wood, dirt,
metal, snow, sand). We picked the following movement modes: walking, running, jogging
from male and female subjects. The recordings are cut, when necessary, such that exactly
one step is contained in one sample.

For the experiments on concrete and wood floor (table 1, 2 we used 44 files per class and in
the last 6-class experiment we used 40 files per class (table 3.

We performed experiments on different sole types, namely barefoot, sneakers, leather, heels
and boots. These sole types were classified on two different floor types, namely on concrete
and wood floor. Furthermore, we performed an experiment to classify six floor types ignoring
the sole types. These floor types were snow, sand, metal, dirt, wood, concrete.

The labels of these data-sets are mostly psycho-acoustically validated. We did not perform
detailed psycho-acoustical experiments, but we checked the sounds by listening to them by
ourselves. We discarded sounds whose class cannot be identified while listening to them.
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5 Experiments and Results

In order to evaluate the results of our experiments we used leave-one-out cross validation,
where all sounds but one are incorporated into the training set. Then the trained algorithms
are tested on the remaining single sample that previously had been excluded from the
training set. This procedure is repeated for all possible partitions into training/test sets.

We performed multi-class experiments for footstep sounds, where we used five different sole
types on concrete floor, performing five separate binary classification runs. In each run,
one class is classified against the rest, which consisted of the other 4 classes. Therefore the
rest-class constituted a heterogeneous mixture of sounds. We took the average of these five
binary classifications. Table 1 shows not only the overall average of the separate classification
experiments, but also the results of the separate binary classification experiments.

The percentages are 100% - BER (balanced errors rate), thats weights the two class errors
equally.

SVM HMM
GT Hil GT Med GT Hil GT Med

Barefoot 97.7% 99.7% 85.2% 94.0%
Sneakers 90.1% 83.0% 73.2% 74.6%
Leather 90.1% 92.6% 90.0% 92.0%
Heels 95.9% 97.1% 88.0% 89.4%
Boots 94.3% 92.1% 89.9% 84.6%

Average 93.6% 92.9% 85.3% 86.9%

Table 1: Experiment 1: Classification of the sole types on concrete floor

The same sole types hitting a wooden floor were classified in experiment 2. Following the
same criteria as explained before. The results for this experiment are shown in Table 2.

SVM HMM
GT Hil GT Med GT Hil GT Med

Barefoot 95.6% 95.9% 88.0% 84.3%
Sneakers 87.5% 75.9% 69.8% 67.2%
Leather 98.5% 94.8% 91.6% 89.8%
Heels 98.5% 100% 98.8% 99.4%
Boots 96.2% 92.7% 88.1% 92.7%

Average 95.3% 91.9% 87.3% 86.7%

Table 2: Experiment 2: Classification of the sole types on wood floor

The third experiment we classified different floor types: snow, sand, metal, dirt, wood,
concrete.

SVM HMM
GT Hil GT Med GT Hil GT Med

Snow 90.0% 99.5% 94.0% 89.9%
Sand 86.4% 91.0% 88.2% 92.8%
Metal 86.2% 98.8% 89.2% 92.9%
Dirt 77.7% 90.0% 77.5% 83.1%

Wood 98.3% 100.0% 89.4% 94.8%
Concrete 91.5% 98.0% 92.5% 89.3%
Average 88.4% 96.2% 88.5% 90.5%

Table 3: Experiment 3: Classification accuracy of the floor types

Except in one case SVM performed better than HMM. For shoe type, on average the power
specturm based method (left in Figure 1) performed better than the Meddis based right
method. However for the floor types the Meddis based method clearly performs better.
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6 Discussion

From the theoretical view point, support vector machines try to optimise the classification
boundary between two classes, by maximising the margin between the two classes. In order
to do this, the method tries to find the optimal input vectors, called support vectors, which
maximise the margin. On the other hand, using a multi-variate Gassian for approximation
of the observation density, the hidden Markov models try to predict the state transition
probabilities and the mean-variance pair for each dimension in the input parameter space.
Hence, the search space of the hidden Markov models is much bigger than the support vector
machines. Therefore the hidden Markov models need much more input samples to improve
the prediction quality. Considering this fact, the results, which we obtained with the hidden
Markov models are satisfactory.

Conclusions from these experiments for classification capabilities in a real world scenario
have to be drawn with care. In this work we have listed one class against the rest balanced
prediction rates2. For a more suggestive error measure of multi-class classification, a sim-
ple measure would be the sum of the precision: the normalized diagonal of the confusion
matrix. All sounds used here stem from the same database, implying that they may have
been recorded under similar conditions (same microphone, same person, same ground, one
particular pair of shoes). So the classification accuracy would have to be investigated for
sounds outside this data base.

7 Conclusion

We have investigated the potential of two gamma-tone based representations, and two clas-
sification methods, which have been used in combination with these representations for
classifying impact like everyday sounds.

As perprocessing we used energy and spikerate from an auditory model calculated based on
the output of a bank of gamma-tone filters. These two representation methods were tested
with support vector machines and hidden Markov models to find out the best representation
and classifier pair for this corpus. For simple classification tasks they classified the sounds
perfectly.

The comparison of these experiments showed that, in the case of the step sounds, gamma-
tone based representation methods performed well for the classification of the sounds no
matter which classification method has been used. However, support vector machines per-
formed in general better than hidden Markov models.

Further experiments are needed. For example, the hidden Markov models should be applied
to sounds that have been analyzed by a filterbank with biologically plausible lower frequency
that is higher than the lowest audible frequency. In addition, the preprocessing in the hidden
Markov model should be consistent with the preprocessing for the support vector machine.
Also it would be informative to compare the gammatone filter with MFCC coefficients with
the same lowest frequency and the same number of filters. Experiments in [3] point in
the direction that the Gammatone filter bank yields significantly better results than the
MFCCs. Experiments should be extended to capture the classification scheme of everyday
sounds introduced by Gaver [15], guided by the physical properties of the interaction between
objects that produce the sound.
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