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Abstract— An audio fingerprint is a content-based compact
signature that summarizes an audio recording. Audio Finger-
printing technologies have recently attracted attention since they
allow the monitoring of audio independently of its format and
without the need of meta-data or watermark embedding. The
different approaches to fingerprinting are usually described
with different rationales and terminology depending on the
background: Pattern matching, Multimedia (Music) Information
Retrieval or Cryptography (Robust Hashing). In this paper, we
review different techniques mapping functional parts to blocks
of a unified framework.

I. INTRODUCTION

Audio fingerprinting is best known for its ability to link
unlabeled audio to corresponding metadata (e.g. artist and song
name), regardless of the audio format. Although there are more
applications to audio fingerprinting, such us: Content-based
integrity verification or watermarking support, this review
focuses primarily on identification. Audio fingerprinting or
Content-based audio identification (CBID) systems extract a
perceptual digest of a piece of audio content, i.e. the fingerprint
and store it in a database. When presented with unlabeled
audio, its fingerprint is calculated and matched against those
stored in the database. Using fingerprints and matching algo-
rithms, distorted versions of a recording can be identified as
the same audio content.

A source of difficulty when automatically identifying audio
content derives from its high dimensionality and the significant
variance of the audio data for perceptually similar content.
The simplest approach that one may think of – the direct
comparison of the digitalized waveform – is neither efficient
not effective. An efficient implementation of this approach
could use a hash method, such as MD5 (Message Digest 5)
or CRC (Cyclic Redundancy Checking), to obtain a compact
representation of the binary file. In this setup, one compares
the hash values instead of the whole files. However, hash
values are fragile, a single bit flip is sufficient for the hash
to completely change. Of course this setup is not robust to
compression or minimal distorions of any kind and, in fact, it
cannot be considered as content-based identification since it
does not consider the content, understood as information, just
the bits.

An ideal fingerprinting system should fulfill several re-
quirements. It should be able to accurately identify an item,
regardless of the level of compression and distortion or
interference in the transmission channel. Depending on the
application, it should be able to identify whole titles from

excerpts a few seconds long (property known as granularity
or robustness to cropping), which requires methods for dealing
with shifting, that is lack of synchronization between the
extracted fingerprint and those stored in the database. It should
also be able to deal with other sources of degradation such
as pitching (playing audio faster or slower), equalization,
background noise, D/A-A/D conversion, speech and audio
coders (such as GSM or MP3), etc. The fingerprinting system
should also be computationally efficient. This is related to the
size of the fingerprints, the complexity of the search algorithm
and the complexity of the fingerprint extraction.

The design principles behind audio fingerprinting are recur-
rent in several research areas. Compact signatures that repre-
sent complex multimedia objects are employed in Information
Retrieval for fast indexing and retrieval. In order to index
complex multimedia objects it is necessary to reduce their
dimensionality (to avoid the “curse of dimensionality”) and
perform the indexing and searching in the reduced space [1]–
[3]. In analogy to the cryptographic hash value, content-based
digital signatures can be seen as evolved versions of hash val-
ues that are robust to content-preserving transformations [4],
[5]. Also from a pattern matching point of view, the idea
of extracting the essence of a class of objects retaining the
main its characteristics is at the heart of any classification
system [6]–[10].

II. GENERAL FRAMEWORK

In spite of the different rationales behind the identification
task, methods share certain aspects. As depicted in Fig.1, there
are two fundamental processes: the fingerprint extraction and
the matching algorithm. The fingerprint extraction derives a
set of relevant perceptual characteristics of a recording in a
concise and robust form. The fingerprint requirements include:

� Discrimination power over huge numbers of other finger-
prints,� Invariance to distortions,� Compactness,� Computational simplicity.

The solutions proposed to fulfill the above requirements imply
a trade-off between dimensionality reduction and information
loss. The fingerprint extraction consists of a front-end and a
fingerprint modeling block (see Fig.2). The front-end com-
putes a set of measurements from the signal (see Section
III). The fingerprint model block defines the final fingerprint
representation, e.g: a vector, a trace of vectors, a codebook,



Front-end Fingerprint 
modeling

Fingerprint extraction

Audio signal

Hypothesis
testing

Matching

Audio metadata

Fingerprints
+

Metadata
    DB   

Database
look-up Distance

Search 

Fig. 1. Content-based Audio Identification Framework.

a sequence of indexes to HMM sound classes, a sequence
of error correcting words or musically meaningful high-level
attributes (see Section IV).

Given a fingerprint derived from a recording, the matching
algorithm searches a database of fingerprints to find the best
match. A way of comparing fingeprints, that is a distance,
is therefore needed (see Section V-A). Since the number of
comparison is high and the distance can be expensive to
compute, we require methods that speed up the search. It is
common to see methods that use a simpler distance to quickly
discard candidates and the more correct but expensive distance
for the reduced set of candidates. There are also methods that
pre-compute some distances off-line and build a data structure
that allows reducing the number of computations to do on-line
(see Section V-B). According to [1], good searching methods
should be :

� Fast: Sequential scanning and distance calculation can be
too slow for huge databases.� Correct: Should return the qualifying objects, without
missing any – low False Rejection Rate (FRR).� Memory efficient: They should require small space over-
head.� Easily updatable: They should allow to easily insert,
delete and update objects.

The last block of the system – the hypothesis testing (see
Fig.1) – computes a reliability measure indicating how sure
the system is about an identification (see Section VI).

III. FRONT-END

The front-end converts an audio signal into a sequence
of relevant features to feed the fingerprint model block (see
Fig.2). Several driving forces co-exist in the design of the
front-end:

� Dimensionality reduction� Perceptually meaningful parameters (similar to those used
by the human auditory system)� Invariance or robustness (to channel distortions, back-
ground noise, etc.)
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Fig. 2. Fingerprint Extraction Framework: Front-end (top) and Fingerprint
modeling (bottom).

� Temporal correlation (systems that capture spectral dy-
namics).

In some applications, where the audio to identify is coded,
for instance in mp3, it is possible to by-pass some blocks and
extract the features from the audio coded representation.

A. Preprocessing

In a first step, the audio is digitalized (if necessary) and
converted to a general format: Often to raw format (16 bits
PCM), to mono averaging left and right channels, to a certain
sampling rate (ranging from 5 to 44.1 KHz). Sometimes the
audio is preprocessed to simulate the channel, e.g: band-
pass filtered in a telephone identification task. Other types
of processing are a GSM coder/decoder in a mobile phone
identification system, pre-emphasis, amplitude normalization
(bounding the dynamic range to (-1,1)).

B. Framing&Overlap

A key assumption in the measurement of characteristics is
that the signal can be regarded as stationary over an interval of
a few milliseconds. Therefore, the signal is divided into frames
of a size comparable to the variation velocity of the underlying
acoustic events. The number of frames computed per second
is called frame rate. A tapered window function is applied to
each block to minimize the discontinuities at the beginning and
end. Overlap must be applied to assure robustness to shifting
(i.e. when the input data is not perfectly aligned). There is
again a trade-off when choosing the above values between the
rate of change in the spectrum and system complexity.



C. Linear Transforms: Spectral Estimates

The idea behind linear transforms is the transformation
of the set of measurements to a new set of features. If the
transform is suitably chosen, the redundancy is significantly
reduced. There are optimal transforms in the sense of infor-
mation packing and decorrelation properties, like Karhunen-
Loève (KL) or Singular Value Decomposition (SVD) [9].
These transforms, however, are problem dependent and com-
putationally complex. For that reason, lower complexity trans-
forms using fixed basis vectors are common. Most CBID meth-
ods therefore use standard transforms from time to frequency
domain to facilitate efficient compression, noise removal and
subsequent processing. Lourens [11], (for computational sim-
plicity), and Kurth et al. [12], (to model highly distorted
sequences, where the time-frequency analysis exhibits dis-
tortions), use power measures. The power can still be seen
as a simplified time-frequency distribution, with only one
frequency bin.

The most common transformation is the Fast Fourier Trans-
form (FFT). Some other transforms have been proposed:
the Discrete Cosine Transform (DCT), the Haar Transform
or the Walsh-Hadamard Transform [2]. Richly et al. did a
comparison of the DFT and the Walsh-Hadamard Transform
that revealed that the DFT is generally less sensitive to
shifting [13]. The Modulated Complex Transform (MCLT)
used by Mihçak et al. [5] and also by Burges et al. [14]
exhibits approximate shift invariance properties [5].

D. Feature Extraction

Once on a time-frequency representation, additional trans-
formations are applied in order to generate the final acoustic
vectors. In this step, we find a great diversity of algorithms.
The objective is again to reduce the dimensionality and, at the
same time, to increase the invariance to distortions. It is very
common to include knowledge of the transduction stages of
the human auditory system to extract more perceptually mean-
ingful parameters. Therefore, many systems extract several
features performing a critical-band analysis of the spectrum
(see Fig.3). In [6], [15], Mel-Frequency Cepstrum Coefficients
(MFCC) are used. In [7], the choice is the Spectral Flatness
Measure (SFM), which is an estimation of the tone-like or
noise-like quality for a band in the spectrum. Papaodysseus et
al. [16] presented the “band representative vectors”, which are
an ordered list of indexes of bands with prominent tones (i.e.
with peaks with significant amplitude). Energy of each band
is used by Kimura et al. [3]. Haitsma et al. use the energies
of 33 bark-scaled bands to obtain their “hash string”, which is
the sign of the energy band differences (both in the time and
the frequency axis) [4].

Sukittanon and Atlas claim that spectral estimates and
related features only are inadequate when audio channel distor-
tion occurs [8]. They propose modulation frequency analysis
to characterize the time-varying behavior of audio signals. In
this case, features correspond to the geometric mean of the
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Fig. 3. Feature Extraction Examples

modulation frequency estimation of the energy of 19 bark-
spaced band-filters.

Approaches from music information retrieval include fea-
tures that have proved valid for comparing sounds: harmonic-
ity, bandwidth, loudness [15], ZCR, etc.

Burges et al. point out that the features commonly used
are heuristic, and as such, may not be optimal [14]. For
that reason, they use a modified Karhunen-Love transform,
the Oriented Principal Component Analysis (OPCA), to find
the optimal features in an “unsupervised” way. If PCA (KL)
finds a set of orthogonal directions which maximize the signal
variance, OPCA obtains a set of possible non-orthogonal
directions which take some predefined distortions into account.

E. Post-processing

Most of the features described so far are absolute measure-
ments. In order to better characterize temporal variations in the
signal, higher order time derivatives are added to the signal
model. In [6] and [17], the feature vector is the concatenation
of MFCCs, their derivative (delta) and the acceleration (delta-
delta), as well as the delta and delta-delta of the energy.
Some systems only use the derivative of the features, not the
absolute features [7], [12]. Using the derivative of the signal
measurements tends to amplify noise [10] but, at the same
time, filters the distortions produced in linear time invariant,
or slowly varying channels (like an equalization). Cepstrum
Mean Normalization (CMN) is used to reduce linear slowly
varying channel distortions in [17]. If Euclidean distance is
used (see Section V-A), mean subtraction and component
wise variance normalization are advisable. Some systems
compact the feature vector representation using transforms
(e.g: PCA [6], [17]).

It is quite common to apply a very low resolution quan-
tization to the features: ternary [13] or binary [4], [12]. The



purpose of quantization is to gain robustness against distor-
tions [4], [12], normalize [13], ease hardware implementations,
reduce the memory requirements and for convenience in
subsequent parts of the system. Binary sequences are required
to extract error correcting words utilized in [5], [12]. In [5],
the discretization is designed to increase randomness in order
to minimize fingerprint collision probability.

IV. FINGERPRINT MODELS

The fingerprint modeling block usually receives a sequence
of feature vectors calculated on a frame by frame basis.
Exploiting redundancies in the frame time vicinity, inside a
recording and across the whole database, is useful to further
reduce the fingerprint size. The type of model chosen con-
ditions the distance metric and also the design of indexing
algorithms for fast retrieval (see Section V).

A very concise form of fingerprint is achieved by sum-
marizing the multidimensional vector sequences of a whole
song (or a fragment of it) in a single vector. Etantrum [18]
calculates the vector out of the means and variances of the 16
bank-filtered energies corresponding to 30 sec of audio ending
up with a signature of 512 bits. The signature along with
information on the original audio format is sent to a server for
identification. Musicbrainz’ TRM signature [19] includes in a
vector: the average zero crossing rate, the estimated beats per
minute (BPM), an average spectrum and some more features
to represent a piece of audio (corresponding to 26 sec). The
two examples above are computationally efficient and produce
a very compact fingerprint. They have been designed for
applications like linking mp3 files to metadata (title, artist,
etc.) and are more tuned for low complexity (both on the client
and the server side) than for robustness (cropping or broadcast
streaming audio).

Fingerprints can also be sequences (traces, trajectories) of
features. This fingerprint representation is found in [15], and
also in [4] as binary vector sequences. The fingerprint in [16],
which consists on a sequence of “band representative vectors”,
is binary encoded for memory efficiency.

Some systems, include high-level musically meaningful
attributes, like rhythm (BPM) or prominent pitch (see [19]
and [15]).

Following the reasoning on the possible sub-optimality of
heuristic features, Burges et al. [14] employ several layers of
OPCA to decrease the local statistical redundancy of feature
vectors with respect to time. Besides reducing dimensional-
ity, extra robustness requisites to shifting and pitching are
accounted in the transformation.

“Global redundancies” within a song are exploited in [7]. If
we assume that the features of a given audio item are similar
among them, a compact representation can be generated by
clustering the feature vectors. The sequence of vectors is thus
approximated by a much lower number of representative code
vectors, a codebook. The temporal evolution of audio is lost
with this approximation. Also in [7], short-time statistics are

collected over regions of time. This results in both higher
recognition, since some temporal dependencies are taken into
account, and a faster matching, since the length of each
sequence is also reduced.

[6] and [17] use a fingerprint model that further exploits
global redundancy. The rationale is very much inspired on
speech research. In speech, an alphabet of sound classes, i.e.
phones can be used to segment a collection of raw speech
data into text achieving a great redundancy reduction without
“much” information loss. Similarly, we can view a corpus of
music, as sentences constructed concatenating sound classes
of a finite alphabet. “Perceptually equivalent” drum sounds,
for instance, occur in a great number of pop songs. This
approximation yields a fingerprint which consists in sequences
of indexes to a set of sound classes representative of a
collection of audio items. The sound classes are estimated
via unsupervised clustering and modeled with Hidden Markov
Models (HMMs). Statistical modeling of the signal’s time
course allows local redundancy reduction. The fingerprint
representation as sequences of indexes to the sound classes
retains the information on the evolution of audio through time.

In [5], discrete sequences are mapped to a dictionary of
error correcting words. In [12], the error correcting codes are
at the basis of their indexing method.

V. DISTANCES AND SEARCHING METHODS

A. Distances

Distance metrics are very much related to the type of model
chosen. When comparing vector sequences, a correlation is
common. The Euclidean distance, or slightly modified versions
that deal sequences of different lengths, are used for instance
in [15]. In [8], the classification is Nearest Neighbor using
a cross entropy estimation. In the systems where the vector
feature sequences are quantized, a Manhattan distance (or
Hamming when the quantization is binary) is common [4],
[13]. Mihçak et al. [5] suggest that another error metric, which
they call “Exponential Pseudo Norm” (EPN), could be more
appropriate to better distinguish between close and distant
values with an emphasis stronger than linear.

So far we have presented an identification framework that
follows a template matching paradigm [9]: both the reference
patterns – the fingerprints stored in the database – and the test
pattern – the fingerprint extracted from the unknown audio
– are in the same format and are compared according to
some distance metric, e.g: hamming distance, a correlation
and son on. In some systems, only the reference items are
actually “fingerprints” – compactly modeled as a codebook or
a sequence of indexes to HMMs [7], [17]. In these cases, the
distances are computed directly between the feature sequence
extracted from the unknown audio and the reference audio
fingerprints stored in the repository. In [7], the feature vector
sequence is matched to the different codebooks using a dis-
tance metric. For each codebook, the errors are accumulated.
The unknown item is assigned to the class which yields the



lowest accumulated error. In [17], the feature sequence is run
against the fingerprints (a concatenation of indexes pointing
at HMM sound classes) using the Viterbi algorithm. The most
likely passage in the database is selected.

B. Searching methods

Besides the definition of a distance metric for fingerprint
comparison, a fundamental issue for the usability of a system
is how to efficiently do the comparisons of the unknown audio
against the possibly million fingerprints. The method depends
on the fingerprint represention. Vector spaces allow the use of
efficient existing spatial access methods [1]. The general goal
is to build a data structure, an index, to reduce the number of
distance evaluations when a query is presented. As stated by
Chávez et al., most indexing algorithms for proximity search-
ing build sets of equivalence classes, discard some classes
and search exhaustively the rest [20] (see for example [3]).
The idea of using a simpler distance to quickly eliminate
many hypothesis and the use of indexing methods to overcome
the brute-force exhaustive matching with a more expensive
distance is found in the CBID literature, e.g: in [21]. Haitsma
et al. proposed an index of possible pieces of a fingerprint
that points to the positions in the songs. Provided that a piece
of a query’s fingerprint is free of errors (exact match), a list
of candidate songs and positions can be efficiently generated
to exhaustively search through [4]. In [6], heuristics similar
to those used in computational biology for the comparison
of DNA are used to speed up a search in a system where
the fingerprints are sequences of symbols. Kurth et al. [12]
present an index that use code words extracted from binary
sequences representing the audio. These approaches, although
very fast, make assumptions on the errors permitted in the
words used to build the index which could result in false
dismissals. As demonstrated in [22], in order to guarantee
no false dismissals, the simple (coarse) distance used for
discarding unpromising hypothesis must lower bound the more
expensive (fine) distance.

VI. HYPOTHESIS TESTING

This last step aims to answer whether the query is present
or not in the repository of items to identify. During the
comparison of the extracted fingerprint to the database of
fingerprints, scores (resulting from distances) are obtained. In
order to decide that there is a correct identification, the score
needs to be beyond a certain threshold. It is not easy to choose
a threshold since it depends on: the used fingerprint model,
the discriminative information of the query, the similarity of
the fingerprints in the database, and the database size. The
bigger the database, the higher the probability of wrongly
indicating a match by chance, that is a false positive. The
false positive rate is also named false acceptance rate (FAR)
or false alarm rate. The false negative rate appears also under
the name of false rejected rate (FRR). The nomenclature is
related to the Information Retrieval performance evaluation
measures: Precision and Recall [1].

VII. SUMMARY

We have presented a review of current trends of research in
the recent area of audio fingerprinting. The different tasks in-
volved in an audio fingerprinting system have been described.
The purpose of each block has been commented along with
some hints of the proposed solutions.
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