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ABSTRACT

We describe an approach to perform expressive transforma-
tion in monophonic Jazz melodies. The system consists of
three components: (a) a melodic transcription component
which extracts a set of acoustic features from monophonic
recordings, (b) a machine learning component which induce
expressive transformation models from the set of extracted
acoustic features, and (c) a melody synthesis component
which generates expressive monophonic output (MIDI or au-
dio) from inexpressive melody descriptions using the induced
expressive transformation model. We describe and compare
different machine learning methods for inducing the expres-
sive transformation models.

Categories and Subject Descriptors

J.5 [Computer Applications]|: Arts and Humanities Per-
forming Arts
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1. INTRODUCTION

Modeling expressive music performance is one of the most
challenging aspects of computer music. The focus of this pa-
per is the study of how skilled musicians (saxophone Jazz
players in particular) express and communicate their view
of the musical and emotional content of musical pieces by
introducing deviations and changes of various parameters
like timing, dynamics, etc. The deviations and changes we
consider in this paper are on note duration, note onset and
note energy. The study of these variations is the basis of
an inductive content-based transformation system for per-
forming expressive transformation on musical phrases. The
audio processing part of the system consists of a melodic
description component and a synthesis component based on

Spectral Modelling Analysis and Synthesis. For the induc-
tive part of the system, we have explored both regression
and classification machine learning techniques such as deci-
sion trees, model trees and support vector machines, among
others.

The rest of the paper is organized as follows: Section 2
describes the melodic description component of the system.
Section 3 describes the different approaches we have consid-
ered for the inductive part of the system and some results of
a comparison among them. Section 4 briefly describes how
we generate both MIDI and audio output. Section 5 reports
on some related work, and finally Section 6 presents some
conclusions and indicates some areas of future research.

2. MELODIC DESCRIPTION

In this section, we summarize how the melodic description
is extracted from the monophonic recordings. This melodic
description has already been used to characterize mono-
phonic recordings for expressive tempo transformations us-
ing CBR [11]. We refer to this paper for a more detailed
explanation.

We compute descriptors related to two different temporal
scopes: some of them related to an analysis frame, and some
other features related to a note segment. All the descriptors
are stored into a XML document. A detailed explanation
about the description scheme can be found in [10].

The procedure for description computation is the follow-
ing one. First, the audio signal is divided into analysis
frames, and a set of low-level descriptors are computed for
each analysis frame. Then, we perform a note segmentation
using low-level descriptor values. Once the note boundaries
are known, the note descriptors are computed from the low-
level and the fundamental frequency values. We refer to [9,
11] for details about the algorithms.

2.1 Low-level descriptorscomputation

The main low-level descriptors used to characterize ex-
pressive performance are instantaneous energy and funda-
mental frequency. Energy is computed on the spectral do-
main, using the values of the amplitude spectrum. For the
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sis of a portion of sound, called analysis frame. Secondly,
the prominent spectral peaks of the spectrum are detected
from the spectrum magnitude. These spectral peaks of the



spectrum are defined as the local maxima of the spectrum
which magnitude is greater than a threshold. These spectral
peaks are compared to a harmonic series and an TWM er-
ror is computed for each fundamental frequency candidates.
The candidate with the minimum error is chosen to be the
fundamental frequency estimate. After a first test of this im-
plementation, some improvements to the original algorithm
where implemented and reported in [9].

2.2 Note segmentation

Note segmentation is performed using a set of frame de-
scriptors, which are energy computation in different fre-
quency bands and fundamental frequency. Energy onsets
are first detected following a band-wise algorithm that uses
some psycho-acoustical knowledge [13]. In a second step,
fundamental frequency transitions are also detected. Fi-
nally, both results are merged to find the note boundaries.

2.3 Notedescriptor computation

We compute note descriptors using the note boundaries
and the low-level descriptors values. The low-level descrip-
tors associated to a note segment are computed by averaging
the frame values within this note segment. Pitch histograms
have been used to compute the pitch note and the fundamen-
tal frequency that represents each note segment, as found in
[15].

2.4 Implementation

All the algorithms for melodic description have been im-
plemented within the CLAM framework *. They have been
integrated within a tool for melodic description, Melodia.
This tool is available under GPL license.

3. EXPRESSIVE PERFORMANCE KNOWL
EDGE INDUCTION

In this section, we describe different inductive approaches
to learning expressive performance models from monophonic
recordings by a skilled saxophone Jazz player. Our aim is
to apply and compare different machine learning techniques
in order to be able to predict, for a significant number of
cases, how a particular note in a particular context should
be played (e.g. longer or shorter than its nominal dura-
tion and by how much). We are aware of the fact that not
all the expressive transformations (e.g. tempo transforma-
tions) performed by a musician can be predicted at a local
note level. Musicians perform music considering a number
of abstract structures (e.g. musical phrases) which makes of
expressive performance a multi-level phenomenon. In this
context, our ultimate aim is to obtain an integrated model
of expressive performance which combines note-level rules
with structure-level rules. Thus, the work presented in this
paper may be seen as a starting point towards this ultimate
alm.

Data set. The training data used in our experimental inves-
tigations are monophonic recordings of three Jazz standards
(Body and Soul, Once I loved and Like Someone in Love)
performed by a professional musician at 11 different tem-
pos around the nominal tempo. For each piece, the nominal
tempo was determined by the musician as the most natu-
ral and confortable tempo to interpret the piece. Also for
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each piece, the musician identified the fastest and slowest
tempos at which a piece could be reasonably interpreted.
Interpretations were recorded at regular intevals around the
nominal tempo (5 faster and 5 slower) within the fastest-
slowest tempo limits. The resulting data set is composed of
1936 performed notes.

Descriptors. In this paper, we are concerned with note-
level (in particular note duration, note onset and note en-
ergy) expressive transformations. Each note in the train-
ing data is annotated with its corresponding deviation and
a number of attributes representing both properties of the
note itself and some aspects of the local context in which the
note appears. Information about intrinsic properties of the
note includes the note duration and the note metrical posi-
tion, while information about its context includes duration
of previous and following notes, extension and direction of
the intervals between the note and the previous and follow-
ing notes, and the note Narmour group(s) [18]. Narmour’s
Implication/Realization (I/R) model is a model of melodic
structure, based on principles akin to Gestalt Theory. An
I/R analysis consists of a grouping of notes and categoriz-
ing these groups into a set of predefined categories. In [11]
was developed a parser for melodies that automatically gen-
erates I/R analyses. It implements most of the basic ideas
from the I/R model. Fig. 1. shows the basic melodic units
used by our parser.

Machine learning techniques. In order to induce predic-
tive models for duration ratio, onset deviation and energy,
variation, we have applied two types of machine learning
techniques, namely regression techniques and classification
techniques. On the one hand, regression methods are con-
sidered to be black-boz in the sense that it is very difficult
(or impossible) to understand the predictions they produce.
Black-box statistical approaches may be good at deriving
predictions from data, but formulating understandable rules
from the analysis of data is something entirely different from
formulating predictive models from that data. On the other
hand, classification methods are good at ezplaining the pre-
dictions they provide but are restricted to a set of discrete
classes as prediction space. Our problem at hand is one that
requires the prediction precision of regression methods for
generating accurate solutions (i.e. expressive performances)
but at the same time it is highly desirable to be able to
explain the system predictions. Having this in mind, we
have not limited ourselves to anyone of the two techniques
and instead we have explored both approaches applying a
representative sample of both regression and classification
methods.

3.1 Regression methods

We have explored different regression methods to induce
predictive models for duration ratio, onset deviation and
energy variation. The methods we have included in our re-
search are:

e Linear regression is the simplest scheme for numeric
prediction which has been widely used in statistical ap-
plications. The idea is to express the predicted class
value as a linear combination of the attributes, with
predetermined weights that are calculated from the
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Figure 1: Basical Narmour I/R melodic units

training data, in order to minimize the overall devia-
tion between the training values and the model. Linear
regression is not the best choice to approximate non-
linear functions. As confirmed by the results (Section
4) expressive performance does not seem to be a linear
function on the attributes. However, we have decided
to include linear regression in our experiments as a
reference point to the other methods.

e Model trees build an induction tree containing at
each leave a different linear model. Model trees behave
well as each linear model at their leaves approximates
a set of more specific cases than with a global linear
model, i.e. model trees approximate continuous func-
tions by linear “patches”, a more sophisticated repre-
sentation than simple linear regression.

e Support Vector Machines take great advantage of
using a non linear attribute mapping that leads them
to be able to predict non-linear models (thought they
remain linear in a higher dimension space). Thus, they
provide a more flexible prediction, but with a higher
computational cost necessary to perform all the com-
putations in the higher dimensional space. Training a
Support Vector Machine requires the solution of a very
large quadratic programming (QP) optimization prob-
lem. The QP resolution has been optimized in terms of
speed and memory usage with the Sequential Minimal
Optimization algorithm [27]. They have been applied
to numerical prediction [28]. The results largely de-
pend of the tuning of the algorithm, e.g. the choice
of the kernel evaluation function, and the parameters
which control the amount up to which deviations are
tolerated (denoted by epsilon). The kernel function
defines implicitly the higher dimensional mapping ap-
plied to the training vector. With an appropriate tun-
ing one can control the number of support vectors that
define a boundary between two classes. We were in-
terested in having a model with a relatively reduced
number of support vectors (i.e. less than a third of
the training instances) in order to avoid overfitting
and thus have tuned empirically 4 support vector ma-
chine with the following parameters: (1) Linear kernel,
C=1, epsilon=0.05; (2) 2nd order polynomial kernel,
C=1, epsilon=0.05; (3) 3rd order polynomial kernel,
C=1, epsilon=0.05; (4) Radial Basis Function kernel,
gamma exponent=0.95, C=10, epsilon=0.05.

3.2 Clasdsification methods

We have also explored different classification methods. We
discretized the input values into classes, and used classifi-
cation techniques in order to induce predictive models for
duration ratio, onset deviation and energy variation. The
number of classes was determined by the distribution of the
input values. We applied a fix-width discretization for du-
ration ratio and onset deviation with 9 and 7 classes, re-
spectively. The case of energy variation is quite different as

there is no information about note energy in the score and
we have to characterize each note energy in relation to the
note average energy in the recordings. Thus we performed
a frequency discretization i.e. each target class contains the
same number of cases, and characterize soft, normal, and
loud notes. Consequently the classification results presented
later have to be compared with the accuracy of a random
classification i.e. 11.11% for duration ratio, 14.28% for onset
deviation, and 33.33% for energy variation. The methods we
have included in our research are:

e The naive Bayes classifier is based on Bayes rule
on conditional probability propagation. It is called
"naive” because this rule assumes that each attribute
of an instance are completely independent. This can
lead to weak results when attributes have a strong
correlation. The algorithm implements redundant at-
tributes filtering as preprocess [26]. Despite being one
of the simplest ML algorithm, it has outperformed
more complex techniques in a significant number of
cases.

e Lazy Methods. The notion of lazy learning sub-
sumes a family of algorithms that store the complete
set of given (classified) examples of an underlying ex-
ample language and delay all further calculations un-
til requests for classifying yet unseen instances are
received. The K-Nearest Neighbor algorithm, is one
of the most popular instanced-based algorithm, which
handles well noisy data if the training set has an ac-
ceptable size. The main idea of this algorithm is to
compare a test set with its nearest neighbors (the num-
ber is determined by the user and the computational
cost largely depends of it). A major problem of the
simple approach of K-NN is that the vector distance
will not necessarily be suited for finding intuitively
similar examples, especially if irrelevant attributes are
present. We empirically found the best number of
neighbors: 5 for the duration ratio model, 11 for the
onset deviation model, and 1 for the energy variation
model. KStar algorithms proceeds in an similar fash-
ion as K-NN, but use an entropy similarity measure
distance to find the neighbors of a test vector.

e Tree induction algorithms build a tree model by
selecting at each node the most relevant attribute. We
compare the results of C4.5 [19, 20], C4.5 with boost-
ing, and the random forest algorithm. Boosting refers
to a meta-algorithm that can improve the results of
any classification algorithm by giving to each instance
of the training set a particular weight proportional
with the difficulty to classify such instance. That is, a
first classification model is proposed giving the same
weight to all the training instances. Misclassified in-
stances with the model are then given a greater weight,
and so on. After a user defined number of iterations



(in our case 10 iterations) the resulting model is able
to deal with ”difficult” training instances. This boost-
ing method can drastically improve the results of an
inaccurate model, thought overfitting can occur. The
random forest algorithm uses a bagging technique: it
combines the decision of different models amalgamat-
ing the various outputs in a single prediction. The de-
cision can be seen as a vote between the models. Each
tree is built using random features selection. We used
20 random trees in our test with the random forest
algorithm.

3.3 Reaults

We have a comparative table for each of the expressive
transformation aspects we are dealing with, namely note du-
ration (Table 1), onset (Table 2) and energy (Table 3). We
performed a 10-fold cross validation for all the algorithms
and all the tests were performed using the Waikato Environ-
ment for Knowledge Analisis [29]. In Table 1, 2 and 3, C.C.I
refers to the correctly classified instances rate, C.C to the
correlation coefficient, and R.A.E to the relative absolute
error and R.R.S.E the root relative squared error.

Among the regression methods, model tree regression is
consistently the most accurate method, while C4.5 (C4.5
with boosting in the case of energy variation) is the most
accurate classification method. Most of the misclassified in-
stances by C4.5 are classified into neighbor classes to the
correct class. As mentioned before, linear regression per-
forms poorly since, as expected, expressive performance is a
complex and multi-level phenomenon which cannot be han-
dled accurately by a linear model. Also as expected, support
vector machines perform well only with a radial function
kernel, or a 3rd order polynomial kernel or higher.

4. SYNTHESIS

We generate an expressive MIDI performance from an
inexpressive description of the melody (i.e. the score de-
scription). We compute the expressive duration of a note
by multiplying the predicted duration ratio and the inex-
pressive note duration. The expressive note onset is ob-
tained adding the predicted onset deviation and the inex-
pressive onset value. The case of the energy is different as
the relation between note energy and corresponding MIDI
velocity (an integer between 0 and 127) is quite arbitrary.
We defined the audio energy to MIDI velocity mapping as
velocity = 63 xlogio (energy) + 64 where the audio energy is
normalized to 1 < energy < 10. We also generate an expres-
sive audio from an source audio file. The process is indepen-
dent of the nature of the audio source (which can either be
generated by a synthesizer or be given as an audio record-
ing). The system needs a melodic description (note onsets,
durations and energies) in addition to the audio source. We
use SMSTools [23] to transform the audio source (e.g. by
applying a time-stretch transformation) into an expressive
audio file without affecting any other perceptual feature, like
pitch or spectral shape.

5. RELATED WORK

Widmer [30, 31]. Widmer has focused on the task of
discovering general rules of expressive classical piano per-
formance from real performance data via inductive machine

learning. The performance data used for the study are MIDI
recordings of 13 piano sonatas by W.A. Mozart performed by
a skilled pianist. In addition to these data, the music score
was also coded. The resulting substantial data consists of
information about the nominal note onsets, duration, metri-
cal information and annotations. When trained on the data
the inductive rule learning algorithm named PLCG [32] dis-
covered a small set of 17 quite simple classification rules [30]
that predict a large number of the note-level choices of the
pianist. In the recordings the tempo of a performed piece
is not constant (as it is in our case). In fact, of special in-
terest to them are the tempo transformations throughout a
musical piece.

Tobudic et al. [24] describe a relational instance-based ap-
proach to the problem of learning to apply expressive tempo
and dynamics variations to a piece of classical music, at dif-
ferent levels of the phrase hierarchy. The different phrases
of a piece and the relations among them are represented
in first-order logic. The description of the musical scores
through predicates (e.g. contains(phl,ph2)) provides the
background knowledge. The training examples are encoded
by another predicate whose arguments encode information
about the way the phrase was played by the musician. Their
learning algorithm recognizes similar phrases from the train-
ing set and applies their expressive patterns to a new piece.

Other inductive machine learning approaches to rule learn-
ing in music and musical analysis include [6], [3], [17] and
[12]. In [6], Dovey analyzes piano performances of Rach-
maniloff pieces using inductive logic programming and ex-
tracts rules underlying them. In [3], Van Baelen extended
Dovey’s work and attempted to discover regularities that
could be used to generate MIDI information derived from
the musical analysis of the piece. In [17], Morales reports
research on learning counterpoint rules. The goal of the
reported system is to obtain standard counterpoint rules
from examples of counterpoint music pieces and basic musi-
cal knowledge from traditional music. In [12], Igarashi et al.
describe the analysis of respiration during musical perfor-
mance by inductive logic programming. Using a respiration
sensor, respiration during cello performance was measured
and rules were extracted from the data together with mu-
sical/performance knowledge such as harmonic progression
and bowing direction.

6. CONCLUSION

We have described an approach to perform expressive
transformation in monophonic Jazz melodies (the deviations
and changes we consider are on note duration, note onset
and note energy). Our approach consists of (a) a melodic
transcription component which extracts a set of acoustic fea-
tures from monophonic recordings, (b) a machine learning
component which induce expressive transformation models
from the set of extracted acoustic features, and (c) a melody
synthesis component which generates expressive monophonic
phrases from inexpressive phrases using the induced expres-
sive transformation model. For the machine learning com-
ponent, we considered both classification and regression ma-
chine learning techniques. Of particular interest are the
models obtained using C4.5 and model trees which are among
the most accurate.

Future work: This paper presents work in progress so there
is future work in different directions. We plan to increase



Algorithm [C.CI(%) | C.C [ R.A.E(%) | R-R.S.E(%) |

C4.5 74.59 - 68.07 86.84

C4.5 with Boosting 72.99 - 72.87 87.35
RandomForest 70.51 - 62.74 89.85
KStar 73.71 - 63.04 86.65

KNN 67.15 - 72.77 95.57

Naive Bayes 59.97 - 98.18 103.07
Linear Regression - 0.33 98.69 94.39
Least Med Square Regression - 0.29 95.22 96.60
Model Tree Regression - 0.72 74.89 69.14
SVM Regression (1) - 0.29 95.30 96.15
SVM Regression (2) - 0.48 89.01 88.24
SVM Regression (3) - 0.66 76.65 75.47
SVM Regression (4) - 0.70 81.11 71.23

Table 1: Cross validation results for duration ratio

Algorithm | C.CI(%) | C.C | R.A.E(%) | R.R.S.E(%) |
C4.5 78.61 - 68.47 88.12
C4.5 with Boosting 78.56 - 57.72 87.72
RandomForest 78.09 - 59.22 85.73
KStar 76.49 - 66.34 88.63
KNN 74.27 - 82.46 94.87
Naive Bayes 68.85 - 104.87 104.03
Linear Regression - 0.17 101.12 98.41
Least Med Square Regression - 0.01 92.50 101.32
Model Tree Regression - 0.43 91.51 90.16
SVM Regression (1) - 0.14 99.92 98.88
SVM Regression (2) - 0.24 89.34 98.18
SVM Regression (3) - 0.38 95.41 92.50
SVM Regression (4) - 0.44 94.56 90.34

Table 2: Cross validation results for onset deviation

Algorithm | C.CI(%) | C.C | R.A.E(%) | R.R.S.E(%) |
C4.5 72.83 - 55.38 76.25
C4.5 with Boosting 73.3 - 44.56 74.1
RandomForest 70.3 - 51.7 78.04
KStar 70.92 - 52.42 75.5
KNN 58.01 - 61.91 102.67
Naive Bayes 54.8 - 80.17 91.16
Linear Regression - 0.27 95.69 96.13
Least Med Square Regression - 0.22 87.92 108.01
Model Tree Regression - 0.67 66.31 74.31
SVM Regression (1) - 0.25 89.28 98.57
SVM Regression (2) - 0.47 82.53 89.4
SVM Regression (3) - 0.56 75.47 82.95
SVM Regression (4) - 0.64 69.28 77.23

Table 3: Cross validation

results for energy variation



the amount of training data, the amount of descriptors to be
extracted from it (e.g. vibrato) and combine this two with
background musical knowledge. This will certainly generate
a more complete model of expressive performance. As men-
tioned earlier, we intend to incorporate structure-level infor-
mation to obtain an integrated model of expressive perfor-
mance which combines note-level knowledge with structure-
level knowledge.
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