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ABSTRACT

Speech-Music discriminators are usually designed under some rigid constrains. This paper deals with a more
general Speech-Music Discriminator successfully used in AIDA project. The system is based on a Hidden
Markov Model style classification process in which the styles are grouped into two major categories: Speech
or Music. The goals of this sub-system are (1)the expandible possibilities with the addition of some new
styles (like ”phone female voice”), (2)the use of new rhytmical descriptors in combination with other typical
ones and (3)the robustness of our speech/music discriminator in many different environments by using some
Mathematical Morphology and non-linear post-processing techniques. The techniques used in our system
allow a fast track in changes between styles and, thus, typical confusions in commercials can be easily cleaned.
The accuracy of this system can be up to a 94.3% in broadcast radio environment.

1. INTRODUCTION quite successful. But all these systems are designed
The Speech-Music discrimination problem is not under some rigid constrains (see Sec. 2). This is
new, and some of the developed systems have been the main goal of this paper: our environment has



GUAUS AND BATLLE

not any kind of constrains. Broadcast audio signals
(from radio stations, TV, GSM or Internet) are the
input of our system and, as one can imagine, the
content of this data is out of control. Mainly, we
have two different kind of problems:

Channel distortions: Since the sources of audio
can be very different, the system is not focused
on clean audio files. As we will see in Sec.4, the
used descriptors of audio are strategically cho-
sen to be, for instance, independent of the spec-
trum of the input signal. Then, MP3 or GSM
codifications for audio input will not produce a
failure to the system

Audio content Since the content of the system is
unknown, the system has to discriminate be-
tween speech and music in many different situ-
ations: radio interview, films, commercials, etc.

How do we design this system? The main idea is
to create a genre classification system in which the
musical genres are conceptually different with regard
to the typical ones. For instance, a “cellular male
voice” could be a genre for our system. Furthermore,
the representative features of the input signals are
not only based on the spectrum of the signal, but on
the rhythm.

This paper is organized as follows: In Sec. 2 we will
see an overview of the State of the Art. In Sec. 3 we
will see an overview of the overall project in which
the speech-music discriminator have to be included,
and the used technology will be shown too. In Sec.
4 we will explain the system in detail and, finally,
some experiments and results will be shown in Sec.
5.

2. STATE OF THE ART

The Speech-Music discrimination problem has be-
come quite important for last years due to the auto-
matic indexing or classification problem. Multime-
dia data identification and indexation has become
more and more important due to the fast growth
of electronic databases through Internet. Large
amount of data must be automatically analyzed, and
speech-music discrimination is only one step for the
whole process.

BROADCAST SPEECH-MUSIC DISCRIMINATION

2.1. Main characteristics

A lot of studies have been done in Speech-Music
Discrimination. The previous work can be summa-
rized in three different categories:

e Time domain based systems, such as zero-
crossing or energy-evolution.

e Frequency domain based systems, such as cep-
stral coefficients.

e Mixed time-frequency domain based systems,
such as 4Hz Modulation or harmonic coeffi-
cients.

This classification can be done just taking into ac-
count which kind of parameters are extracted from
the input signal. But we could think in other clas-
sification scheme just taking into account the signal
processing method performed to that data. Then,
the Speech-Music discrimination systems can be di-
vided in:

e Decision trees
e Neural Networks
o Gaussian Mixture Models

e Hidden Markov Models

All of the systems we will talk about in the next
section should be enclosed into one of the categories
of the first classification scheme as well as into one
of the categories of the second classification scheme
independently.

2.2. Related work

The first successful approach on the speech-music
discrimination was made by John Saunders in 1996
[1]. In this study, Saunders compare different fea-
tures like the Tonality, bandwidth, excitation pat-
terns, tonal duration and energy sequences. The
Zero-crossing rate is introduced as a significant pa-
rameter in the speech-music discrimination, and
some experiments and results are presented.

Another important approach was made by Eric
Sheirer and Malcom Slaney in [2]. This work
presents a study of thirteen different features, de-
rived from 8 original ones (4HzModulation, Spectral
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Centroid, Cepstrum, Pulse Metric, etc.). Each one
of them is supposed to be a good discriminator at
once. Different sets of features have been trained
and tested by using Single Gaussian Mixture Mod-
els, but the results are not spectacular. The conclu-
sion of this work deals on more research: no signifi-
cant good results are found.

At this point, the basic features and procedures for
discrimination are presented, and future works will
only introduce new features or little deviations of
these main ideas. Wu Chow and Liang Gu present
us a set of features derived from Harmonic Coeffi-
cient and its 4Hz Modulation in [3]. This approach
is based on a two-level processing structure, one for
singing /non singing musical signals detection and
the other for the typical speech-music discrimina-
tion. After a rule-based post-filtering smoothing al-
gorithm, significant enhancements are obtained for
complex audio streams. Karnebck presents an ex-
haustive study on Low Frequency Modulations in
[4], and Berenzweig and Ellis present some new sta-
tistical features (defined in [5]) embedded in a simple
HMM for distinguishing between singing and instru-
mental music in [6]

Some comparisons on the methods mentioned above
have been made. M. J. Carey [7] has tested most of
those different features. The cepstral coefficients and
delta cepstral coefficients seem to be the most suc-
cessful parameters, while the zero-crossing and the
energy (mean and variance values across the time)
are not so important. Cepstra and delta cepstra can
give us an equal error rate of about 1.2%, slightly
far of the 6% of equal error rate by using the zero-
crossing coefficients.

Finally, a study of the State of the Art has been
made by the Audio Research Group in Tampere Uni-
versity of Technology.

3. ENVIRONMENT

The Speech-Music Discrimination system is one of
the requirements for the AIDA (Automatic IDen-
tification of Audio) project!. In the next sections,
we will see a brief overview of the AIDA project
and where the Speech-Music Discriminator is lo-

cated, and a brief description of the used technique
(AMADEUS)..

I The AIDA project is founded by SDAE (Sociedad Digital
de Autores y Editores)
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3.1. AIDA system overview

The major goal for the AIDA project is the auto-
matic recognition of broadcast audio. This process
could appear quite simple, but it becomes more and
more complicated when huge audio databases must
be managed. Some techniques are applied for reduc-
ing that large amount of data, but the complexity
of the system is increased as well. Furthermore, the
system must be robust to many different real sit-
uations: noise and other non-linear distortions are
always present. Then, the problem becomes quite
difficult to solve and a lot of considerations must be
taken into account.

Hidden Markov Model techniques are used for this
purpose. By using HMM, the system is not a
TRUE/FALSE identification process, but a non-
linear similarity measure is obtained. In this con-
text, we find the identified song as the most similar
song. When this most similar song is found under
some other constrains, it is considered as the iden-
tified song. This technique is quite useful for other
similarity applications such as rhythmical similar-
ity. The system must be robust to multiple dis-
tortions from the input signal as well. Is widely
known that almost radio-stations apply different dis-
tortions to the audio signal in order to increase the
listener’s attention. The most common radio distor-
tions are Compressor/Limiter, Stereo Base-width,
Exciter/Enhancer and Pitching. The system must
be source-independent. Different sampling frequen-
cies, bit depth or codification must not affect the ro-
bustness of the system. Signals from cellular phones
must be identified as well as MP3 files or direct real-
time streaming.

Our Speech-Music Discrimination system is the first
step in this automatic recognition process. If data
like news, interviews or films goes through AIDA, a
lot of data will be mark as unknown. Then, the
system can easily be saturated. The aim of our
Speech-Music Discriminator is let only the music
pass through AIDA.

3.2. AMADEUS system overview

Finally, the system is implemented by using the
AMADEUS technology. The AMADEUS technol-
ogy has been developed by the Music Technology
Group (MTG), at the Pompeu Fabra University
(UPF). It is just a set of classes implemented in C+-+
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style | description main group
mal | Male voice speech
fem | Female voice speech
cma | Cellular male voice speech
cfe Cellular female voice speech
cla Classical music music
cop | Copla & Author music | music
ele Electronic soft music music
jaz Jazz music music
pop | Pop music music
roc Hard rock music music
tec Tecno & Dance music | music
sil Silence speech

Table 1: Definition of different styles

with all the needed features for the HMMSs training
and calculations in real-time [8].

4. DESCRIPTION

In few words, the systems is designed as a rough
musical genre classification. But the genres have
not any special musical meaning. A genre is, from
our point of view, a group of audio signals with
some common (spectral, timbrical or rhythmical)
features. The selected genres are grouped into two
main groups, Speech or Music, as shown in Table
1. The developing process is clearly divided in three
parts:

e Data acquisition

e Parametrization of both training and test audio
data.

e Training Process

e Real-time Recognition and graphical interface.

The training process is made by using the HTK soft-
ware and the whole process is oriented to the HTK
philosophy. The Wavesurfer software is also used for
creating labels.

4.1. Data Acquisition

A lot of audio data must be recorded and manually
labeled for a successful training process. As the sys-
tem will work in a real-time broadcast audio environ-
ment (from many different radio stations), many ex-
cerpts of radio broadcast audio have been recorded.
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Descriptor L | Value
MFCC

Energy

4Hz Modulation
Zero Crossing Rate
Spectral Centroid
Spectral Flatness

Voice2White

— = = e
* ¥ ¥ ¥ ¥ ¥

* % % % % x %<
S I S R

Table 2: List of available descriptors

Finally, this data have been edited and many differ-
ent audio files have been produced. All these audio
files are 1 minute long with f; = 22050H z, 16 bits
and mono. But the main characteristic of these au-
dio files is that they belong into one specific musical
genre, that is, each file belongs exclusively to an spe-
cific genre from the beginning to the end. Finally,
Different HMM models will be defined for different
genres, so the models will hold more accurate de-
scriptions of the music.

4.2. Parametrization

From now on, we have a lot of audio files, and each
one of them can be associated with a specific musical
genre.The parametrization process should transform
all these audio files into a set of description files. Ta-
ble 2 shows us the available descriptors we can use,
and we describe the right selection in Sec. 5. The
parametrization is made by an AMADEUS applica-
tion which generates an HTK-format file *.htk for
each audio file.

4.2.1. Voice2White

A part of the other well known descriptors, we define
a new one, the Voice2White ratio. The Voice2White
ratio is a measure of the energy inside the typical
speech band (300H z..4K Hz) respect the energy of
the whole audible margin (in case of fs = 44100H z)
or global band (in case of f; < 44100Hz). From a
mathematical point of view:

4500
Zfl:soo Bf'i
Zi B;

By using this descriptors, the accuracy of the system
can be incremented in a 4%.

4.2.2. Rhythm Transform
In order to make the system robust to multiple spec-

(1)

v2w = 10log1g
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Fig. 1: Block diagram for Rhythm Transformation
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Fig. 2: Example of data in rhythm domain

tral codifications such as GSM or MP3, a new rhyth-
mical descriptor is used [9]. The method is based
on the periodogram computation of the multi-band
pre-processed input data (See Fig. 1). The whole
process is what we call Rhythm Transformation and
it transforms audio data from time domain to a so
called rhythm domain. The goal of this method is
that data in rhythm domain can be interpreted as
frequency domain information (for BPM detection)
as well as time domain information (for meter de-
tection). In Fig. 2, an example of data in rhythm
domain is shown. Some musical information, such
as the meter (simple or compound, duple or triple,
swinged or non-swinged), can be extracted from in-
put audio too. In our case, the LPC coefficients
of data in rhythm domain are used. By using this
descriptor, the accuracy of the system is increased
specially when the input signal is Classical Music
(see Sec. 5).

4.3. Training
From now on, we have a set of *.wav, *.htk and
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Fig. 3: opening and closing operations
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*.1lab for each file (audio, parametrization and la-
bels). After some experimental tests, the best results
are obtained by using models as follows:

Number of means and vars per state: This
value is fixed by the descriptors’ selection (see
Sec. 5 for details).

Number of States: Our system will have 3 states,
that is, only one state plus the input state plus
the output state.

Number of Gaussian Mixtures: The model will
be created, initially, with only 1 Gaussian mix-
ture. After the initialization, we will increase
the number of Gaussian Mixtures up to 16.

Left to right model: The Transition matrix will
not allow backward paths.

Finally, the training process is started and the
trained models are saved for a future use in our real-
time application.

4.4. Mathematical Morphology

As we have discussed before, the use of HMM
does not give us a digital output, that is, a Speech
or Music label. Then, some post-processing tech-
niques are needed. After some tests and discus-
sions, some Mathematical Morphology techniques
are used. Mathematical Morphology[10] is a set of
non-linear techniques based on mazimum and mini-
mum operators. The basic operations of mathemat-
ical morphology are: dilation, erosion, opening and
closing.

In Fig. 3 there is a comparison between the opening
and closing operations applied to an input signal.
Low values are assigned to Speech and high values
are assigned to Music. In the context of the AIDA
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Fig. 4: Graphical User Interface

project, we have to assume that not false positive
values are allowed. Let’s define a “false positive hit”
when the label Speech is the output of the system for
a musical signal at the input. On the other hand, as
we can see in Fig. 3, the opening operation gives re-
sults below the original points, while the closing op-
eration gives results above the original points. Then,
the input signal can be cataloged as Speech under
two conditions:

—_

. The result of the opening operation is exactly

0%.

2. The result of the closing operation is under a
threshold, manually selected (5% in our case).

4.5. Graphical User Interface

As the system is implemented by wusing the
AMADEUS technology, some graphical results can
be shown (see Fig. 4). This monitoring tool is a
real-time implementation in a Pentium IV, 2.5MHz,
512Mb RAM and Red-Hat 9 operating system.

5. EXPERIMENTS AND RESULTS
5.1. First approach

The first tests we made were based on all the de-
scriptors shown in Table 2. This is a really large
amount of data and, of course, the process could
not be executed in real-time. Then, some tests were
made in order to select only the representative de-
scriptors and get an optimized version. The param-
eters used in each test are shown in Table 3, and
the results of the tests for all the configurations and
all the audio files are shown in Table 4. The tests
are made against a set of 11 real audio recordings.
Each audio file is 10 minutes long and manually la-
beled for this purpose. All these preliminary tests

MFCC

Energy

A Energy

A Energy

4Hz Modulation

A4Hz Modulation

A4Hz Modulation

Spectral Centroid
ASpectral Centroid
ASpectral Centroid
Spectral Flatness
ASpectral Flatness
ASpectral Flatness

Zero Crossing

AZero Crossing

AZero Crossing

Voice to White

AVoice to White

AVoice to White
A+B+C+...+8
AJE,H,K,N,Q,AMFCC,AMFCC
N+O

U+0

H+1

K+L

Q+R

E+F
U+C+F+I14+L+0+R
AB with frame = 1000[ms]

NLHS<GHPFOTOZZE TS "TIOQHEEU QW >
a

Table 3: Descriptors used for initial tests

(except for the last one) have been made with the
next properties: fs = 22050[H z], Frame = 200[ms],
hopsize = 50[ms|, 3 state model (1 state + input
state + output state) and 16 mixture models. The
best results are obtained with the AB descriptors
combination, getting an accuracy of 83.0% (The AC
set of descriptors combination has been discarded
for computational problems).

These are not really good results. Some short-time
false positive hits makes the accuracy go down. This
problem will be arranged with the post-processing
techniques.

5.2. Rhythm Transform
The inclusion of the rhythm transform descriptor
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#1d 1 2 3 4 5 6 7 8 9 10 11 z T

A 72.3 | 68.5 | 69.1 | 81.6 | 65.7 | 66.5 | 60.3 | 71.9 | 70.7 | 74.6 | 76.4 || 70.69 | 5.46
B 46.8 | 54.2 | 55.2 | 51.0 | 60.6 | 53.6 | 63.8 | 53.0 | 54.3 | 65.0 | 54.8 || 55.66 | 5.17
C 40.7 | 49.0 | 52.2 | 45.7 | 51.9 | 44.7 | 58.3 | 50.5 | 50.3 | 60.7 | 48.7 || 50.06 | 5.17
D 40.7 | 49.0 | 52.2 | 45.7 | 51.9 | 44.7 | 58.3 | 50.5 | 50.3 | 60.7 | 48.7 || 50.20 | 5.38
E 40.7 | 48.9 | 50.7 | 45.7 | 51.9 | 44.7 | 58.1 | 50.5 | 50.3 | 60.7 | 48.6 || 50.08 | 5.39
F 40.8 | 49.1 | 52.2 | 45.8 | 52.0 | 44.8 | 58.2 | 50.6 | 50.1 | 60.6 | 48.6 || 50.20 | 5.39
G 42.3 | 48.7 | 49.5 | 47.5 | 49.5 | 45.7 | 54.8 | 47.9 | 49.4 | 56.2 | 48.4 || 49.08 | 3.64
H 50.3 | 55.2 | 74.7 | 58.2 | 72.2 | 57.8 | 65.0 | 65.1 | 51.7 | 75.5 | 66.3 || 62.90 | 8.51
I 40.7 | 49.0 | 49.1 | 45.7 | 51.7 | 44.7 | 58.3 | 50.5 | 50.3 | 60.7 | 48.7 || 49.94 | 5.42
J 40.7 | 49.0 | 44.8 | 45.7 | 45.7 | 44.7 | 58.3 | 50.5 | 49.1 | 60.7 | 48.7 || 48.90 | 5.66
K 63.7 | 50.8 | 66.3 | 83.3 | 67.4 | 67.7 | 70.4 | 77.5 | 55.9 | 80.8 | 76.9 || 69.10 | 9.67
L 53.2 | 49.2 | 52.1 | 52.9 | 51.7 | 52.0 | 48.5 | 49.3 | 51.5 | 52.4 | 52.3 || 51.37 | 1.53
M 44.7 1 50.5 | 52.0 | 49.1 | 51.8 | 50.8 | 57.4 | 54.2 | 54.0 | 56.8 | 52.7 || 52.18 | 3.39
N 60.4 | 56.0 | 63.4 | 52.6 | 66.6 | 43.3 | 68.9 | 66.9 | 51.9 | 76.9 | 61.6 || 60.77 | 8.93
0 56.4 | 60.4 | 54.0 | 61.9 | 56.2 | 57.7 | 63.8 | 54.5 | 62.3 | 59.9 | 57.8 || 58.62 | 3.10
P 41.3 | 49.0 | 52.1 | 46.2 | 51.9 | 44.8 | 58.3 | 50.9 | 50.3 | 60.7 | 48.7 || 50.38 | 5.31
Q 67.4 | 42.7 | 56.5 | 52.6 | 56.0 | 56.0 | 53.6 | 67.9 | 43.8 | 63.1 | 61.4 || 56.45 | 7.93
R 54.6 | 42.9 | 56.2 | 50.7 | 47.9 | 42.5 | 50.3 | 48.0 | 53.1 | 55.0 | 47.0 || 49.80 | 4.45
S 43.0 | 50.9 | 52.9 | 46.3 | 52.6 | 45.3 | 59.6 | 49.3 | 50.1 | 59.4 | 48.2 || 50.68 | 5.04
T 89.0 | 82.5 | 83.9 | 946 | 75.5 | 74.3 | 79.7 | 88.3 | 88.2 | 93.2 | 91.4 || 84.63 | 6.80
U 87.7 1804|825 |943 | 724|714 | 711|835 | 786 |89.3 926 || 82.16 | 7.91
v 73.3 | 71.0 | 76.0 | 66.6 | 81.6 | 45.6 | 79.2 | 74.6 | 66.9 | 81.7 | 69.9 || 71.49 | 9.61
W 89.4 | 81.6 | 81.4 | 94.8 | 73.0 | 7T1.3 | 72.9 | 84.9 | 78.0 | 89.9 | 92.7 || 82.70 | 7.93
X 57.7 1610 | 774 | 61.0 | 749 | 61.2 | 69.0 | 67.2 | 50.5 | 81.7 | 68.5 || 66.37 | 8.80
Y 63.8 | 50.8 | 66.3 | 83.6 | 67.4 | 70.4 | 77.6 | 55.9 | 80.8 | 76.9 | 69.1 || 69.10 | 9.60
7z 67.6 | 42.5 | 55.9 | 52.6 | 53.7 | 56.2 | 44.0 | 68.3 | 48.9 | 62.8 | 61.6 || 55.82 | 8.29
AA | 40.7 | 48.8 | 50.7 | 45.7 | 51.9 | 44.7 | 58.1 | 50.5 | 50.3 | 60.7 | 48.7 | 50.07 | 5.39
AB | 87.1|81.6|82.0 937|752 | 705|769 |843 | 78.0 |91.8 |92.0 | 83.00 | 7.22
AC | 869|863 832|932 |843| 743 |81.4|91.0| 781|951 |88.9 | 85.69 | 6.03

Table 4: Evaluation results for all the combinations

in our experiment is to make both the system ro-
bust against frequency manipulations and increase
the accuracy for Classical Music. Previous audio
test files have no excerpts of Classical Music. In fact,
the system labels as Speech the classical music files.
The test is configured with the descriptors shown in
Table. 5. The used files are the same than those
defined for precious experiments, but with some ex-
cerpts of classical music included. Then, the length
of the files is now about 15 minutes. Results are
shown in Table 6. Although results are less impres-
sive than the previous ones, classical music can be
included in our system. On the other hand, the er-
ror is basically introduced for the short-time false

positive hits.

5.3. Mathematical Morphology

As mentioned before, non-linear mathematical
morphology techniques are applied in the post-
processing part of the system. With the inclusion of
these techniques, we can avoid the system fails for
short-time false positive hits. The “short-time” pe-
riod is selected according to the length of the struc-
tural element for the opening and closing operators.
Furthermore, with mathematical morphology tech-
niques applied, we can exactly define the point in
which the system labels the input audio as Speech.
We won’t consider as an error all those audio parts
with speech, music or both speech and music (news,

AES 116™ CONVENTION, BERLIN, GERMANY, 2004 MAY 811

7



GUAUS AND BATLLE

BROADCAST SPEECH-MUSIC DISCRIMINATION

7

8 9 10 11 T

Hd | 1 2 3 4 5 6
A | 827|750 | 81.3 | 86.4 | 80.1 | 71.2

81.6

82.9 | 78.1 | 87.9 | 81.9 4.43

Table 6: Evaluation results for rhythm tests

Descriptor Value &
4Hz Modulation
Spectral Centroid
Spectral Flatness
Zero Crossing
Voice to White
MFCC

Rhythm Transform

* % % % % ¥

* X X X X X X

— =
Mw»—\n—\»—t»—t»—lr‘

Table 5: Descriptors used for rhythm tests

commercials, films, etc.) labeled as Music.

Taking into account all the considerations, we can
assure that the accuracy of the system, with post-
processing techniques applied, can be up to 94.3%.

Finally, some GSM audio files have been tested in
our system. It is really difficult to give an exact
number for the accuracy in this case. As the input
audio files are obtained just recording audio with a
cellular phone near a loudspeaker, the quality of the
GSM codification is unknown. We have seen that
better results are obtained when we use the Rhythm
Transform descriptors: the accuracy is near 85%.
Results are right, but more efforts have to be made
in that sense.

6. CONCLUSIONS

Some new techniques for the speech-music discrim-
ination problem have been presented in this paper.
The inclusion of these techniques allows the system
to be independent of the audio source and codifi-
cation. Then, no restrictions are assumed. Our
research has been focused on the rhythmic aspects
of audio, due to the typical compression algorithms
are frequency-based: the frequency and the timbre
of audio are usually modified but, from now on,
we have never heard a compression technique that
modifies the rhythm of the audio. Non-linear tech-
niques such as Mathematical Morphology are pre-
sented, and interesting results are shown too. Al-

though these results are quite good, more research
is needed in this field.
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