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Abstract. This paper compares the efficiency of different sets of tonal 
descriptors in music structural discovery. Herein, we analyze the use  of three 
different  pitch-class distribution features, i.e. Constant-Q Profile, Pitch Class 
Profile (PCP) and Harmonic Pitch Class Profile (HPCP), to perform structural 
analysis of a piece of music audio. We hypothesize that proper segmentation 
serves as an important basis to obtain music structure analyses of better quality. 
Thus, we compare the segmentation results produced by each feature to 
examine its efficiency. A database of 56 audio files (songs by The Beatles) is 
used for evaluation. In addition, we also show the validity of the descriptors in 
our structural description system by comparing its segmentation results with a 
present approach by Chai [1] using the same database. The experimental results 
show that the HPCP performs best yielding an average of 82% of accuracy in 
identifying structural boundaries in music audio signals.  

Keywords: automatic music structural analysis, automatic segmentation, pitch 
class distribution features. 

1   Introduction 

The generation of high-level metadata to describe audio content contributes to more 
efficient and better retrieval of digital music. Understanding musical form through 
analyzing structural transitions can be a primary step going towards generating useful 
descriptions from music audio data. Melody and harmony are important aspects in 
music perception and understanding. A substantial part of information about these 
two elements is contained in the pitch-related perspective of music. Hence, we 
employ descriptors, which subsume tonal information, to discover musical structure 
from audio signals.  

These descriptors capture most of the tonal information that is present in a song 
without requiring specific pitch detection or source separation. Here, we compare the 
efficiency of different low-level tonal descriptors, related to pitch class distributions, 
which could be useful for automatic   structural   analysis   and   discovery.  So   far, 
several studies in this area have made comparisons between various description 
aspects (i.e. tonal-related versus timbre-related features) [1] [2] for application in 



music structural analysis. However, there still exists no comparison of the 
performance on segment extraction of different approaches for computing pitch class 
distribution features. Thus, we evaluate the suitability of these low-level descriptors 
by examining the segmentation results obtained from our automatic structural analysis 
system. 

Our structural description system presented in this paper is based on Goto’s 
method [3] for detecting chorus sections in music. We have further improved upon 
the methodology towards accomplishing a more complete music structural description 
through providing different labelling, together with beginning and ending time 
information, to mark (dis)similar sections that appear in the music signal (i.e. verse, 
chorus, bridge, etc.). There are three main steps in our system: (1) feature extraction; 
(2) structural analysis; (3) repetitive segments compilation for structural description. 
Figure 1 illustrates the different processing stages in our structural description system. 

This paper is organized as follows. Section 2 presents the process of feature 
extraction from an audio signal. Section 3 gives a detailed description of our system. 
Section 4 describes the compilation process of the obtained repetitive segments. The 
evaluation is presented in Section 5. The last section concludes the paper with future 
research plans. 
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Fig. 1. Overview framework of the automatic structural descriptions system. 

2   Feature Extraction 

As a first step, our system requires the short-term description of the input audio 
signal. We segment the input signal into overlapped frames (4096-samples window 
length) with the hop size of 512 samples. It is then followed by extracting pitch class 
distribution features of each of these frames. Here, we use one of three different 



approaches for extracting low-level tonal features from input signals. The general 
block diagram for computing pitch class distribution features is shown in Figure 2. 

 

Preprocessing

Postprocessing Frequency to 
Pitch Class 
Mapping

Reference (Tuning) 
Frequency 

Computation
Preprocessing

Postprocessing Frequency to 
Pitch Class 
Mapping

Reference (Tuning) 
Frequency 

Computation

 

Fig. 2. General diagram for computing pitch class distribution features. 

 
Fig. 3. Self-similarity matrices of three notes, which include B4 played by the 

bassoon (B_B4), B4 by the clarinet (Cl_B4), and C5 by the bassoon (B_C5), using 
different Constant-Q feature vectors: (right) Constant-Q extracted directly from 5 

octaves of musical notes (left) Constant-Q extracted from 5 octaves of musical notes 
and mapped into 1 octave. 

Our approach in discovering music structure requires audio features with high 
sensitivity towards tonal similarities and independence with respect to timbre and 
instruments played to reveal repeated patterns in music. Thus, different from Lu et 
al.’s proposed features in music structural analysis [4], we use octave mapping for all 
our compared features. This is due to the reason that through octave mapping, the 
CQT features are more sensitive to tonal similarities compared to the non-octave 
mapping of the features. Figure 3 illustrates self-similarity matrices of three notes 
based on cosine distances among three notes, which includes B4 played by the 
bassoon (B_B4), B4 by the clarinet (Cl_B4), and C5 by the bassoon. The similarity 
plots are normalized to [0,1], and the brighter points represent high similarity. From 
the similarity plots, it is noted that the similarity score between B4 played by the 
bassoon (B_B4) and B4 played by the clarinet (Cl_B4) is higher for the octave-
mapped constant Q transformed features than the non-octave-mapped features. As the 
act of octave mapping produces audio descriptors with the feature properties very 
much fulfilling the requirement of our approach, we adopt the octave mapping 



procedure for all our used features. We focus here in describing the main differences 
between the three different approaches: Constant-Q profiles (CQP), based on [5], 
Pitch Class Profiles (PCP), as proposed in [6] and the Harmonic Pitch Class Profiles 
(HPCP), explained in [7]. 

2.1   Preprocessing  

CQP use the constant-Q transform as a preprocessing step before mapping 
frequencies to pitch class values, while PCP and HPCP use the DFT. The 
preprocessing step also includes a frequency filtering after DFT, so that only a 
frequency band between 100 and 5000 Hz is used. HPCP finally includes a peak 
detection procedure, so that only the local maxima of the spectrum are considered.  

A reference frequency computation procedure is used before computing HPCP, in 
order to estimate the deviation with respect to 440 Hz of the frequency used to tune 
the piece. This is done by analyzing the deviation of the peaks frequencies with 
respect to the perfect tuning. PCP and CQP use a fixed frequency grid with a 440 Hz 
reference. 

2.2   Frequency to pitch class mapping 

Once the reference frequency is known and the signal is converted into a spectrogram 
by means of DFT or constant-Q analysis, there is a procedure for determining the 
pitch class values from frequency values. In CQPs, the weight of each frequency to its 
corresponding pitch class is given by the spectral amplitude whereas the PCPs use the 
squared value. The HPCP introduces a weighting scheme using a cosine function 
(described in [7]), and considers the presence of harmonic frequencies, taking into 
account a total of 8 harmonics for each frequency. In the three compared approaches, 
the interval resolution is set to one-third of a semitone, so that the size of the pitch 
class distribution vectors is equal to 36. 

2.3   Post-processing 

Finally, the features are normalized frame-by-frame dividing through the maximum 
value to eliminate dependency on global loudness. 

3   Structural Analysis 

3.1   Similarity Measurement  

As a first step towards structural analysis, the system computes the average of each 10 
extracted feature frames (as described in Section 2) to represent the tonal distributions 
of the original input signal of every 116 ms, approximately. This is to prevent the 
system from having high computational load by processing the complete set of feature 



vectors. The amount of possible reduction is limited by the loss of detail introduced 
by the averaging operation. With the computed mean feature values, we measure the 
(dis)similarity distance between each 116 ms of the tonal descriptors using the cosine 
distance measure [8]. 

3.2   Pre-processing 

To ease the process of identifying repetitive segments in music, we compute the time-
lag matrix of the similarity representation, SD, computed from the previous 
processing, by orientating the diagonal of the computed similarity matrix towards the 
vertical axis. The rotated time-lag matrix, L(l,t) between chroma vectors v(t) and  v(t-
l) is defined as  

( , ) ( , )L l t SD v vt t l= −  (1) 

 
For detecting repetitions or vertical lines in the time-lag matrix, we only want to 

consider line segments that show a sufficiently high degree of similarity. For dealing 
with broad categories of audio input signals, we perform a binarization process on the 
time lag matrix based on an adaptive threshold. The implementation of the 
binarization procedure is based on an iterative procedure. For initialization, our 
adaptive threshold holds a default value of Th. We first binarize the similarity values 
in the time-lag matrix by setting all values smaller than Th to 0 and the rest to 1. Then 
we computer a P value from the binarized matrix to evaluate the sufficiency of 
information it retains. The P value is defined as:  

total number of 1 in time-lag matrix
0.5 (time-lag matrix)P Area= ×  

(2) 

 
Based on the computed P value, we consider three cases as listed below:  

(1) If P>Pmax, increase the threshold, Th, by 0.01 and return to the beginning of 
the procedure; 

(2) Else if P<Pmin, reduce the threshold Th, by 0.01 and return to the beginning 
of the procedure; 

(3) Else, quit the iterative process and output the binarized time-lag matrix 

where Pmax and Pmin denote the empirical upper bound and lower bound of the P value. 
The last operation of the pre-processing section consists of applying the opening 
operation of a morphological filter [9] to the binarized time-lag matrix. The purpose 
of applying the opening operation is to remove line segments, which are too short to 
contain any significant repetition of music (see Figure 4). 

 



 

Fig. 4. General diagram for computing pitch class distribution features. 

3.3   Repetition Detection 

For detecting repetitive segments in music, we adapted Goto’s methods from [3]. The 
main goal of this process is to detect repetitive segments for structure discovery. This 
process requires the output data, Lp(l,t), from the morphological filtering process as an 
input signal. As mentioned earlier, vertical line segments in the time-lag matrix 
represent the occurrence of repetition in music. Thus, for finding the possibility of 
each lag for containing a line segment, Pr(l,t), we sum up the corresponding column 
of the time-lag matrix and normalize it with the total number of elements in the lag. 
The calculation of the posibility of containing line segments, Pr(l,t), of each lag is 
defined as:  

( , )
( , )

t p
r l

L l
P l t d

t l
τ

τ=
−∫  

(3) 

 
For finding line segments, we select all peaks in Pr(l,t) and store their lag information 
in a descending sorted list  as lPeakSort. We then evaluate the occurrence of line 
segments in Lp(l,t) alternately for each element in lPeakSort. We comptue Lp(lPeakSort. t) 
for each lPeakSort and search for the occurrence of vertical line segments. Here, we 
assume that short repetitions (which hold less than 4 seconds) do not carry much 
significant musical information. Thus, for detecting repetition segments in music, we 
only consider those line segments with duration longer than 4 seconds. For each 



detected line segment, we store the beginning and ending time of the original segment 
together with the repeated segment based on the information from lPeakSort. 

3.4   Integrating the repeated sections 

In this section, we organize the detected repetition pairs obtained from the previous 
steps into groups. Apparently, line segments that share a common line segment are the 
repetitions of one another as shown in Figure 5. Thus, if these segments are to be 
labeled, they should be given the same labeling. Based on this observation, we 
integrate those line segments, which share a common line, into one group with the 
same label. From this, we generate a set of repetition groups with different labels 
marking the different repetition segments that appear in the music. That is 

{ }, , ...,1 2Group Group Group Groupnrepetitions =  (4) 

 
where n is the number of repetition groups. In each repetition group, we sort repeated 
line segments in an ascending order based on their time information: 

{ }[ , ];[ , ];...;[ , ]1 1 2 2Group Tbegin Tend Tbegin Tend Tbegin TendA m m=  (5) 

 
where Tbegin and Tend denote the beginning time and ending time of the repetitive 
segments whereas m is the number of repetitive segments in GroupA. 

For the refinement of line segments, we select the first line segment of each group 
in Groupn, and correlate it with the pre-processed features, v(n).  This is for the 
purpose of recovering undetected repetitions that we have missed in the previous 
detection process. We compute the distance measure, E(n), for the selected line 
segment and a sliding window of the same length on the pre-processed features, v(n). 
The distance measure, E(n), is defined as 

2
_

2
( )

( - ( ) )
_

segment len comparedE n
Compared v n

len compared
= ∑∑  

(6) 

 
where Comparedsegment denotes the compared segment features and len_compared, its 
length. v(n)len_compared  represents the nth pre-processed feature sequence with the length 
len_compared.  

To detect significant repetition appearing in the music, we use an adaptive 
threshold based on the computed distances. Excluding the distance of the compared 
segment to itself (which is always zero), we select the lowest occurring distance 
value. To obtain the adaptive threshold, we add a fixed tolerance margin to this value. 
Then, all local minima falling below the threshold are considered to be relevant to the 



occurrence of repetition. We sort the considered local minima based on the distance 
measure in descending order. With the length of the compared segment, we estimate 
and store the corresponding beginning and ending time for each considered local 
minimum and form a set of candidate segments. Here, we disregard those candidate 
segments that overlap with any of the line segments in the group that hold the same 
label as the compared segment based on the assumption that repetitions of a segment 
do not overlap with each other. The remaining candidates are labeled and included in 
the correct group as an omitted repetition from the earlier detection process. Finally, 
we reorganize line segments in the group with an ascending order based on their time 
information. This procedure is similar to the earlier sorting processes of the line 
segments of each group in Groupn. 
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Fig. 5. Detected repetitions correspond to the ground truth annotation of A Hard 

Day’s Night. 

4   Repetitive Segments Compilation 

For generating the music structural description, we select the three most repetitive 
groups, Groupn, (i.e. with the highest number of elements). We compile the repetitive 
segments by lining up all the line segments of these repetitive groups according to 
their labels as shown in Figure 5. If there exists an overlap between two particular 
labels (e.g. A and B as shown in Figure 6), all the overlapped sections of these two 
labels will be given a new label (e.g. C), whereas the non-overlapped sections will be 
given another label (e.g. D). Unlabelled sections between all the labeled segments 
(e.g. E and F) will be given a new label respectively as a new repetition group by 
itself. We then select one line segment of each label and perform another repetition 
detection procedure by correlating it with the pre-processed features, v(n), as 
described in Section  3.4,   this  time  with  the  goal  of finding all the corresponding 
repetitions that appear in the music signal. Finally, the repetition detection process 
terminates when we checked all labels obtained from the previous operation. With the 
labeled line segments, we combine all the repeated labels, with the length of less than 
25 sec to become a single label. This is based on the assumption that structural 
sections in music (i.e. intro, verse, chorus, etc.) are less than 25 sec in length. Figure 7 
shows an example of the integration process of repeated labels. 



 
Fig. 6. Repetitive segments compilation process with generated new labels. 
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Fig. 7. Labelling integration procedure. 

5   Results 

5.1   Data Sets  

In our experiment, we use 2 test sets. The first test set consists of 56 songs from The 
Beatles 70s’ albums, whereas the second test set uses the same audio database as in 
[1], 26 songs by The Beatles from the years 1962-1966. Each song is sampled at 44.1 
KHz, 16-bit mono. For evaluation purposes, we have generated a ground truth by 
manually labeling all the sections (i.e. intro, verse, chorus, bridge, outro, etc.) for all 



songs in both datasets according to the information provided by Allan W. Pollack’s 
“Note On” Series website on song analyses of Beatles’ twelve recording project1. A 
music composer supervised the labeling process and results. 

5.2   Evaluation Measures 

To quantitatively evaluate the segmentation performance, we calculate the precision 
and recall of the generated structural description. We compare the obtained segment 
boundaries for  each of the three descriptors  with manually labeled ground truth 
results. Recall and precision are computed for various degrees of tolerance deviation 
(between 0.3 sec and 3.6 sec) in order to obtain a more complete picture about the 
accuracy and reliability of the segmentation results. 

5.3   Experimental Results 

Figure 8 and Figure 9 show the evolution of precision and recall scores with respect to 
the tolerance deviation for the different pitch class distribution descriptors using test 
set I. From both figures, we have observed a significantly higher performance of 
HPCP compared to PCP and CQP. With the tolerance deviation of 3.6 sec, HPCP has 
achieved accuracy higher than 70% and a reliability of 83%. From our segmentation 
results, it shows that HPCP has outperformed the other tonal descriptors by as much 
as 10% in both precision and recall scores with 3.6 sec of tolerance deviation. T-test 
analysis concludes that the differences are statistically significant beyond the 99% 
confidence level with the p-values<0.01. For the case of PCP and CQP, there is no 
statistically significant difference in their performance on our used test set.  

Figure 10 illustrates both precision and recall scores of the HPCP using test set II 
with respect to the tolerance deviation. From the segmentation results, we can see that 
HPCP has achieved a slightly better performance with its precision and recall rate of 
82% and 84% respectively compared to results documented in [1]. Overall, we have 
reached an F-measure of nearly 83%. However it should be noted that the generality 
of our test sets is quite limited. So far, we have not yet tested our approach on 
different music genres (e.g. heavy metal, techno, or jazz). 

                                                           
1 The Twelve Recording Projects of the Beatles webpage: 

http://www.icce.rug.nl/~soundscapes/DATABASES/AWP/awp-beatles_ projects. html 



 

Fig. 8. Evolution of precision score with respect to the tolerance deviation (sec) for 
the different pitch class distribution features using test set I. 

 

 
Fig. 9. Evolution of recall score with respect to the tolerance deviation (sec) for the 

different pitch class distribution features using test set I. 

 



 
Fig. 10. Evolution of recall and precision rates of HPCP with respect to the tolerance 

deviation (sec) for the different pitch class distribution features using test set II. 

6   Conclusion 

In this paper, we have presented an objective comparison between different tonal 
descriptors for detecting structural changes in music audio. We have also shown the 
validity of the descriptors by comparing our segmentation results to those recently 
published by another researcher [1]. We have seen that the approach employed to 
compute pitch class distribution features has an influence on the performance of 
structural analysis. With our approach (HPCP), we have been able to achieve as high 
as 82% accuracy in identifying appropriate structural boundaries in music with a 
tolerance deviation of 3.6 sec. For ongoing research to further improve the 
segmentation performance, more attention will be given to the following factors: 

• Making use of higher-level analysis techniques (e.g. beat detection or 
phrase detection) to achieve better segmentation truncation with lower 
tolerance deviation. 

• Testing the performance using an annotated database comprising different 
music genres different from “60’s pop music” and containing different 
artists. 
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