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Abstract 
On top of previous work in automatic violin transcription 
we present a set of straight forward low level descriptors 
for assisting the transcription techniques and saving 
computational cost. Proposed descriptors have been tested 
against a database of 1500 violin notes and double stops. 
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1. Introduction 
Automatic transcription is a problem that has been 
addressed using many different approaches [1]. Most of 
these tackle the problem from an instrument-free 
perspective such as ‘music transcription’ or ‘monophonic 
and polyphonic transcription’. And among the ones that 
specialize on specific sections (drums and percussion) or 
instruments (piano) very few focus on violin [2][3][4].  

In this context, this paper aims a step forward in the 
implementation of a clear-cut violin transcription system 
first described in [5], originally thought to be used for 
distant education and self learning and evaluation. The 
paper introduces a set of low level descriptors by which the 
system can improve its performance and adapt the 
complexity of the analysis algorithms that are being 
applied. The general block diagram of the system is 
represented in figure 1.  

Following sections introduce improvements in the pitch 
estimation; present first derivative zero crossing descriptor 
and modulation descriptor for upper octave polyphony 
detection; and inharmonic descriptor for any other duo-
phony detection. So once the pitch analysis receive a note, 
stability descriptor decides which frames to use for the 
pitch estimation, and inharmonic descriptor decides 
whether pitch estimation algorithm deals with a single note 
or a double-stop regions. For those cases in which 
monophonic pitch analysis has been applied, the upper 
octave descriptors, one of them using the already estimated 

pitch, decide whether the upper octave note has to be given 
as transcription output as well.  

 
Figure 1. General block diagram of the automatic violin 

transcription system where dotted lines represent descriptors, 
triangles represent controls and rounded-end lines represent 

outputs 

2. Note Level Segmentation 
Note Level segmentation uses implementation from 
previous system [5] based on the autocorrelation of the so 
called Note Spectrogram. While this approach is efficient 
sorting out monophonic pitch changes, it sometimes lacks 
of resolution for detecting timbre modulations, amplitude 
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modulations, and pitch modulations. This, far from being a 
drawback, allow the note level segmentation to work free 
of such kind of modulations, which enrich the sound but do 
not define the note itself. However, specific cases such as 
note repetitions, fast performance, or deep modulations 
require from additional processing.  

3. Pitch Analysis 

Previous system [5] already confronted the problem of 
octave errors by means of adding a compression term ruled 
by parameter a (set to 5 in [5]) in the summation of the 
Semitone Band Spectrum (SBS) p(w) as formulated in 
equation:  
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This compressed addition has been proven useful for 
getting rid of lower octave errors. When w is set to be F0/2 
(being F0 the pitch), we add the real fundamental and 
harmonics up to a certain proportional value. If no peak is 
at F0/2 no relevant energy will is added to A(w). However, 
as we discuss in section 3.1.2, this technique does not get 
rid of upper octave errors  

3.1 Improved Pitch Estimation 
A couple of generic modifications (both for monophonic 
and polyphonic pitch estimation) are introduced: steady 
state detection (lightens computational cost and avoids 
transients), and octave error pruning. 

3.1.1 Stability Descriptor 
For each of the note regions outcome by the note-level 
segmentation, a stability descriptor is computed so that 
pitch estimation is performed using only the most stable 
sub segment of the note. This selection is done by means of 
the inverse correlation descriptor, computed as ion [5].  

3.1.2 Upper Octave Pitch Error 
Pitch estimation of monophonic signals is a problem that 
can be considered solved. Only upper octave errors take 
place when analyzing the monophonic note samples using 
the formulation presented in [5]. These errors take offset 
values of 12 or 19 semitones which correspond to the 
second and the third harmonic respectively.  

In order to solve such errors a new term is added in the 
summation of the harmonics in the SBS. This term 
punishes the energy in the sub-harmonics frequencies using 
the following expression: 
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After running several experiments, ß was set to 3. With 
such value we achieved error-free pitch estimation for 
monophonic notes. 

 

 
Figure 2. Local view of spectrums for typical pitch errors: 
B3 second harmonic confusion error (up), and F4 third 

harmonic confusion error (down). Black dots show mistaken 
fundamental and harmonics, empty dots show the rest of 

original harmonic peaks. 

3.2 One Octave Duo-phony Detection 
Previous system did not consider polyphonies in which one 
of the notes was an octave higher or lower from the other. 
The difficulty of pitch detection in such cases is that there 
is 100% overlap of harmonics, i.e. the harmonic spectra of 
the higher octave note hides under the lower octave note 
harmonics. In order to take into consideration such cases, 
we propose to include a detector in charge of resolving 
whether the note being considered was played together 
with its upper octave note or not.    

Our octave duo-phony detector is based on the analysis 
of the magnitude spectrum modulation around the even 
harmonics (2*k*F0 for k=1,2,3,..), and the zero crossing 
factor of the first derivative of the low-pass filtered 
waveform. 

3.2.1 Modulation Descriptor 
Since the violin is not a perfect tuned instrument [1], the 
assumption is that whenever we have an octave distance 
duo-phony, even harmonics will suffer from amplitude and 
frequency modulations because of the frequency 
juxtaposition. The modulation descriptor is formulated as 
the mean value: 
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where AvSpectogram is the spectrogram averaged along 
time and FSpectrogram is the spectrogram of the input 
signal filtered by the adaptative FIR comb filter which has 
zeros placed over the fundamental frequency and odd 
harmonics, as shown in figure 3.  
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being Fs the sampling frequency and F0 the estimated 
pitch.  

 
Figure 3. Local view (lower spectra) of the F0 dependent 

comb filter (dotted line) and the resulting filtered violin 
average spectra (log magnitude versus frequency index) 

 
Figure 4. Amplitude/Frequency modulation along notes 

(A#3, A#4, A#5, A3, A4, A5, B3, B4, B5, C#4, C#5, C4, C5, 
D#4, D#5, D4, D5, E4, E5, F#4, F#5, F4, F5, G#4, G#5, G3, 

G3, G4, G5) for duo-phonic (+), and solo lower note (.)  
 
Figure 4 shows the values of our modulation descriptor 

along our octave duo-phony recordings. In average terms 
the modulation descriptor obtained in the octave duo-
phonic notes (~1.3e-4) are six times the values obtained for 
the solo notes (~2.2e-5). Notice modulation parameter has 
a strong dependence on performance. Note 26 and 27 refer 
to the same note (G3) but performed in a completely 
different way; in 26 the upper octave is extremely subtle 
and very well tuned.  

3.2.2 First Derivative Zero Crossing Descriptor 
The zero crossing factor of the first derivative of the 

waveform counts the number of times a signal changes 
from decreasing to increasing and vice versa. The 
assumption is that by previously low pass filtering the 
waveform to get rid of the highest frequency components, 
in those cases in which the signal is the summation of two 
components at an octave distance, the descriptor will be 
proportional to the highest pitch.  

 
Figure 5. Updown parameter obtained from 29 files (A#3, 

A#4, A#5, A3, A4, A5, B3, B4, B5, C#4, C#5, C4, C5, D#4, 
D#5, D4, D5, E4, E5, F#4, F#5, F4, F5, G#4, G#5, G3, G3, G4, 

G5) for duo-phonic (+), and lower (.) notes.  
 

Results shown in figure 5 use a 10 point average filter. 
The mean descriptor value obtained in the octave duo-
phonic notes (~0.15) is around twice the mean value 
obtained for the solo notes (~0.08). Lowest values such as 
the one obtained for note 10 (C#4) most of the times are 
due to an extremely softly upper octave note, being this 
note only distinguishable at the release or transition.  

3.3 Duo-phony Detection for Double Pitch Estimation 
The harmonic descriptor is in charge on guiding the pitch 
estimation process by telling if the input note is 
monophonic and thus, it can use straightforward pitch 
estimation techniques or it is polyphonic and thus it 
requires additional processing for the estimation of the two 
notes. Obviously, octave distance duo-phonies should be 
here detected as monophonic.  

The inharmonic descriptor is based on the spectrum 
peaks distribution along frequency. While most harmonic 
related descriptors base their analysis in a prior knowledge 
of the pitch, our method is blind-pitch. The descriptor 
picks first eight most prominent magnitude spectral peaks 
and measures the divisibility among frequency distances 
defined by all possible different pairs of them. 

The spectral peak detection uses a modification of 
PickPeaks procedure from [6] in which only peaks above a 
lower frequency boundary (which is set to the lowest 
possible violin pitch) are considered, and all peaks below 
an adaptative noise threshold are discarded. Being 
PeakFreq the vector containing sorted frequency positions 
of the peak, the descriptor can be formulated as: 
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                 where  ( ) [ ] xyxyyxres −⋅=  
Most non-duo-phony notes with high inharmonic score 

happen for the highest violin notes, when bow noise 
becomes more significant, spectral peaks become more 
distant among them and some parasite peaks are gathered 
mistakenly. 

 
Figure 6. Inharmonic descriptor obtained from 478 files 

for duo-phonic (+), and monophonic (.) notes.  
 

Pitch estimation technique presented in section 3.1 does 
not straightly fit into duo-phonic pitch analysis. 
Formulations such as (1) and specially (2) do not make 
sense anymore since F0/2 and F0/3 might conflict with 



second note harmonics. Better results can be achieved by 
trying to get two pitches at the time instead of two step 
analyses (analysis, subtraction, and analysis) in a very 
similar way as presented by [7]. 

4. Vibrato Analysis 
In the violin, vibrato is produced by a periodic rolling 
motion of a finger on the string, which produces a 
frequency modulation. Because of instrument body 
resonance, the frequency modulation (FM) generates 
amplitude modulations (AM) in each partial [8]. FM and 
AM nearly always coexist in all musical instruments in a 
way that it is impossible to have frequency vibrato without 
amplitude vibrato but not vice versa [8]. In the case of 
violin vibrato, AM seems to be perceptually more relevant 
than FM [9]. One may naturally conclude AM to be the 
natural feature choice for vibrato detection. However, 
experiments show there is strong correlation between 
fundamental’s FM and partial’s FM while no such 
correlation appears for AM.   

Because of all previous considerations, the vibrato 
analysis proposed for our automatic transcription focuses 
on FM to determine vibrato presence and FM and AM to 
characterize its manifestations. Our current vibrato 
analyzer is implemented on top of Liu’s [10] proposal, 
where the so called Time-Varying Amplitude (TVA) and 
the Time-Varying Frequency (TVF) for the jth harmonic at 
the mth time frame is calculated by formulas: 

 ( ) 2

∑=
j

j
mm

n fSTVA                   (6) 

( ) ( )22

∑∑ ⋅=
j

j
m

j
j

m
j

m
n fSfSfTVF        (7) 

where in our adaptation, j takes values between 0 and 4, 
Sm(f) is the spectrum of frame m, and fj (being f0 the 
fundamental) covers, for every index j, a range of 100 cents 
centered around the jth harmonic frequency.  

 

 
 

Figure 7. TVF (left column) and TVA (right column) for the 
first four harmonics of an A4, performed with vibrato. 

Dashed lines bound considered vibrato regions.  

5. Concluding Remark and Future Work 
This paper has presented the current state of an ongoing 
research project. For our intended application, we have 

studied the problem of note-level segmentation, pitch 
estimation, and vibrato analysis. Experience tells us 
reliable note-level segmentation based solely on audio 
signal is a very challenging goal to achieve. Preliminary 
results show that it is possible to improve note-level 
segmentation with the help of visual cues from associated 
video clips. This approach is currently under progress. We 
also plan to include dynamics attribute extraction in future 
releases since its importance in the educational context, 
especially for advanced students. Regarding pitch 
estimation, although accuracy has been improved due to 
our modifications on previous system, we believe it should 
allow a non fixed scale analysis. This is a very demanding 
requirement for amateur students that are getting to learn 
violin and can perform significantly out of tune. 
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