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Abstract the synthesis stage. A performance model is trained using in
ductive logic programming techniques for matching the scor

We present here a concatenative sample-based saxophene swith the description of the performances that we got when
thesizer using an induced performance modelintended for exonstructing the database. For synthesizing an audio given
pressive synthesis. The system consists on three main parégore, the performance model predicts an expressive perfor
The first part provides the analysis of saxophone expressiv@ance description, from which the most suitable note sam-
performance recordings and the extraction of descripters r ples from the database are retrieved, transformed and con-
lated to different temporal levels. With the obtained digscr catenated. This work conforms an audio analysis/synthesis
tors and the analyzed samples, we construct an annotategteliminary application of the studies on expressive perfo
sample database extracted directly from the performancesmance already started in (Ramirez and Hazan 2005).
For the second part, we use the annotations to induce a per-
formance model capable of predicting some features relate: P ARalasd
to expressivity. In the third part, the predictions of the-pe Hate Sample —
formance model are used to retrieve the most suitable not E Depeription
samples for each situation, and transform and concatenat
them following the input score and the induced model.
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1 Introduction

. . Figure 1: Overview of the system architecture
Modern concatenative synthesizers have reached nowa-

days high sound quality synthesis and offer a wide range of ) i )
synthesis parameters, including some related to expressio In terms of concatenative synthesis, the authorin (Schwar'z
normally at note and transition levels. However, these pa2000) presented a general purpose system based on data-driv
rameters must be tuned manually depending on user wishedit sélectionwhich allows different applications rargfrom
leading to a high effort to represent the expression andtern Nigh quality sound synthesis to free synthesis. Authors in
uralness that musicians introduce when performing a piece.(Bonada and Loscos 2003) construct a singing voice synthe-
In this paper we describe an approach to investigate th&1Z€" based on spectral conpatenauon resgltlng in a high qu
synthesis of jazz saxophone expressive performances basiy System with a broad variety of synthesis parameters. Al-
on concatenating note samples. The aim is to generate an &x:0ugh the synthesis techniques proposed in these works hav
pressive audio sequence out of an input score by means gft UP the basis of the present work, these systems lack of
a previously induced performance model and making use ofXPressivity knowledge. Previous research in expresgve p
an annotated saxophone note sample database extracted friffnance synthesis includes a broad spectrum of approaches
real performances. The architecture of our system can b@d techniques. In (J. Arcos and Serra 1997), it is presented
summarized as follows. First, given a set of expressivepperf & Case-based reasoning system for generating expressive pe
mance recordings, we get a description of the audio by carnyflormances of melodies based on human examples. In (de Poli
ing out segmentation and characterization at differenptem €t @l- 2004), the authors present an approach to modify the
ral levels (note, intra-note, transition) and build an aated ~ €XPressive content of a performance in a gradual way using

database of pre-analyzed note segments for being usethlater® linear model to carry out the alterations based on previous
semiautomatic segmentation and modifying melodies both at



symbolic and audio signal levels. Trumpet performance is ~Fund. Frequency
studied in (Danneberg and Derenyi 1998) by computing am :_}'-'dic' = - Energy
plitude descriptors, and statistical analysis technicuszs rame - Spectral Centroid
for analyzing trumpet envelopes led to find significant en- “Mote Onset
velopes groupings, and to extend the work to a system the : - Duration
combined instrument and performance models. Authors it Se’;ﬁ;‘zm :> - MIDI Mote
(Dubnov and Rodet 1998) have followed a similar line. We - Mean Energy ,
. - Mean spectral centroid
propose here to use the same database for carrying out lea !
ing and synthesis, having already obtained some preliminar Intra-hote - Begin/End Times
results on intra-note amplitude features prediction usinsg Segment [ - Energy Slope
. .. . - Begin/End Energy Level

order logic decision trees (Ramirez et al. 2005). !

The rest of the paper is organized as follows. Section 2 Transition _

. . . . . S eament :>| - Legato Descriptar |

briefly describes how expressive audio recordings have bee g

analyzed and annotated. Then, we explain in Section 3 the
procedure for building the performance model. Section 4
outlines how samples are retrieved from the database-trans
formed, and concatenated. Section 5 concludes and poin
out further work.

Figure 2: Audio description scheme

&%ntext. However, it could be extended to provide a richer
representation.

. . Audio segmentation and description. First, we geta melodic
2 Audio anal ysIs description of the audio phrases consisting on the exaetons
) , , and duration of notes, and the corresponding MIDI equivtalen
Expressive performance recordlngs are automatically asitch. Notes are segmented using energy computation in dif-
alyzed, and a set of low-level descriptors are computed f0fg ot frequency bands and fundamental frequency. Energy
each frame. Then, we perform a note segmentation usinggets are first detected following a band-wise algorithan th
!ow—level descnptpr values and fundame.ntal frequency: Us qag some psycho-acoustical knowledge. In a second step,
ing note boundaries and low-level descriptors, we carry oufngqamental frequency transitions are also detected.lIina
energy-based intra-note segmentation, and a posteriar int 5 regyits are merged to find the note boundaries. We com-
note segment amplitude envelope characterization, asawell ) 1o note descriptors using the note boundaries and the low-
a transition description. This information will be used @) |\ descriptors values. The low-level descriptors dissed
modeling expressive performance and (2) annotating the sang, 5 note segment are computed by averaging the frame values
ple database used later in the synthesis stage. We have usgghin this note segment. Pitch histograms have been used to
an audio database consisting of 4 jazz standards played at 1L, te the pitch note of each note segment. A detailed ex-
different tempi around the nominal one, played by a profesyanation of the methods used for melodic description can be
sional musician. Most of the phrases were repeated 10 teghnq in (Gomez et al. 2003). Then, notes extracted from the
con5|stency between performances. We used a total of 32qgcordings are automatically segmented into attack, susta
notes. The jazz standards recorded vindy and Souldnce  ojease or transition segments by studying energy envelope
I Loved Like Someone In LovendUp Jumped Spring derivatives at different scales. After that, we approxinat

Description scheme. In order to define a structured set of au- linearly the energy contour of each one of the extracted seg-
dio descriptors able to provide information about the egpre Ments. In order to obtain a descriptor representing briggsn
sivity introduced in the performance, we proposed in (Maest W€ extract a frame-averaged spectral centroid of the steady
and Gomez 2004) a broader version of the description schenfdate segment of each note. We also extract a legato numer-
selected for this application (see Figure 2). Here, we definé@l descriptor for transition segments. More explicitonf
descriptors related to different temporal scales. Sontarfea mation about the procedure for carrying this intra-note and
are defined as 'instantaneous’ or related to an ana|ysi$tramtransition segmentation and characterization can be found
such as energy, fundamental frequency and spectral ceéntroi(Maestre and Gomez 2004). These descriptors, attached to
Some other are attached to a certain intra-note/transiign ~ €ach note sample note present in the database, will conform,
ment (attack, sustain, release or transition), while detays ~ together with other musical context descriptors used in the
attached to a certain note are also extracted. We consiater thPerformance modeling stage, the annotations used for both,
the proposed features can set up a simple but concise descripodeling expressive performance, and selecting, tramsfor
tion of dynamics and articulation, adapted to our applizati Ng and concatenating samples.



Database annotation. The recorded musical phrases are au-have devised a learning scheme based on note classification
tomatically segmented into notes using the information ob-and a posterior class prediction, briefly described asvalo
tained from the melodic description outlined above. EachNotes are represented with vectors containing five features
note sample from the performance is then indexed and arconsidered important for classifying samples into differe
notated with the data coming from our note and intra-notenote qualities in terms of amplitude/loudness: log-attaule,
segmentation and characterization. Note samples aredstorenergy level at the end of the attack segment, sustain darati
as sequences of analyzed frames that will be used afterward®rmalized to note duration, sustain energy slope, and spec
in the audio synthesis stage. We also classify notes into atral centroid (Peeters 2004). Using some of the features an-
ticulation groups depending on their context, dividingrnthe notated for each note, we perform k-means clustering of the
in (1) coming from silence and going to silence, (2) comingwhole sample database, adding to the annotations the cluste
from silence and going to transition, (3) coming from tran- of each note. Then, we build a note cluster prediction model
sition and going to silence, and (4) coming from and goingbased on a first order logic decision tree, which gives us-a pre
to transition. This information will be used as a constraintdiction of the note class given the score descriptors cedlin
during the sample retrieval stage in order to match the-origiat the beginning of this section.

nal articulation context of the notes used for synthesitiey
output performance.

4 Audio synthesis

3 EXpI’VE performance modeling Our system generates the audio sequence based on the
predictions of the performance model and the annotated sam-

In this section, we briefly describe our approach to ex-ple database. First, most suitable samples are selectiag tak
pressive performance modeling. Here we are concerned witimto account the output of the performance model and the cost
note-level (in particular note duration, note onset, nate e of the transformations to be applied. Selected samples are
ergy, and note brightness), transition level (legato),iatrd-  first transformed to fit the predicted note characteristjzs a
note-level (in particular amplitude shape) expressivégeer plying global note amplitude transformation, pitch shifida
mance features. Each note in the training data is annotatdame stretch. After that, samples are concatenated by means
with its corresponding extracted audio descriptors (sae Se of amplitude, pitch, and spectral shape interpolationiagpl
tion 2) and a number of score attributes representing botko the resulting note transitions.

properties of the note itself and some aspects of the local co le retrieval. Using th e d inti : by th
text in which the note appears. Information about intrinsicSeul pie retrieval. Using the note description given by the

properties of the note includes note duration, note métricaP€rformance model, which mg:ludeg a'cluster pred'|ct|oe, th
position, and note envelope information, while informatio system performs sample retrieval inside the predicted clus

about its context include the note Narmour group(s) (Nar—ter in two steps. First, the system re-classifies each pestlic

mour 1990), duration of previous and following notes, and ex note into one of the four articulation groups (see Section 2)

tension and direction of the intervals between the notelaad t depending ?n Its newdcontext by 'OOE'T‘Q at fthe Olatpqthqoti
previous and following notes. With this information, we lolui sequence. In a second step, a search Is performed within the

two different models using machine learning techniques. notes of the predicted cluster belonging to such articutati
group using a euclidean feature-weighted distance veetor.

Noteand transition level prediction. In order to induce pre- every note sample to be retrieved, a initial feature setistns
dictive models for note duration ratio, onset deviationteno ing on MIDI pitch, duration, energy, and spectral centraid i
energy and legato, we have applied inductive logic programused to compute the distance vector. Then, some featuires wil
ming techniques. We used a multi-variate regression trebe added depending on the articulation group to which the
model (Ramirez et al. 2005), i.e. a first order logic reg@ssi predicted note belongs, leading to a variable length featur
tree that contains logical tests at its nodes and five-dimeak  vector. For the first articulation group (isolated note) neav
vectors at its leaves, each one containing an averageccpredfeatures are added. For the second articulation group, two
tion of duration ratio, onset deviation, energy, and a p&ir ofeatures (corresponding to the right side transition) dded:
values for legato. The accuracy of the prediction model oblegato descriptor and pitch interval respect to the nex¢.not
tained is better than the best of several propositional fssode Analogously, for the third and fourth articulation groutiese
we have investigated. Details of these models can be found isame pair of features are added for the left side transition,
(Ramirez and Hazan 2005). and for both transitions respectively. If a candidate nata-s

ple not presenting sustain segment would need to be time-

Intra-note level prediction. In order to construct a predic- stretched by an amount exceeding the duration of one frame,

tive model for intra-note features (e.g. amplitude shape),



itis discarded from the search due to the fact that timedtret of evaluate the quality of the expressivity/naturalnesthef
is going to be applied only in the sustain segment. synthesized performance, we must carry out more extended

Sample transt i d tenation. O th ; auditory tests in order to be able to tune or improve our sys-
mpietransiormation and concatenation. Unce the note o, - This work should be considered as a step towards a

samples have been selected from the predicted cluster-as O%ethodology for the automatic creation of both the perfor-

l';]\ed ngp re,tthle %Sot; rr; ustes s;f)ectr.al procissTg tecglcn'qtumance model and the sample database needed to carry out
(Amatriain et al. ) for transforming each retrievedano expressive synthesis, leaving clear other duties likeypiut

§amp|e in terms of amplitude, p'tCh. apd dl."at'on to matChother instruments and other classification approaches.
in the same terms, the target description given at the output

of the performance model. After that, samples are concate-

nated following the note sequence given at the output of thdkefer ences

performance model. Note global energy prediction is applie

first as a global amplitude transformation to the samplegsin ~ Amatriain, X., J. Bonada, A. Loscos, and X. Serra (2002).cSpe
the energy envelope quality is already included in the elust tral processingDAFX Digital Audio Effects, ed. Udo Zdlzer
prediction. Then, pitch transformation is applied by shift Bonada, J. and A. Loscos (2003). Sample-based singing voice
harmonic regions of the spectrum by an amount equal to the ~ Synthesis based in spectral concatenatiorstotkholm Mu-
pitch interval between retrieved sample and predicted, note sic and Acoustics Conferencgtockholm, Norway.

keeping the original spectral shape. After that, time strég Danneberg, R. and I. Derenyi (1998). Combining instrument a
applied inside the limits of the sustain segment by repgatin performance m.Odels for high quality music synthegar-

or dropping the required number of frames to match the pre- nallof New Music Research o . o
dicted duration. As a final step, the system restores the pos- ¢ Poli: G-, S'dclf_mazzaa c. D”?"'fA' Roda, and A. Vidolin
sible timbre discontinuities occurring within resultingsi- E)Ze??ollr)rﬁal\fw?:eelggo:ge di(;g:roof tr?e TéErEeS\S/SIIe;; SS 1N MUsic
tions, in the neighborhood of the junction point of each pair Bubnov. S d)é Rodet (1998). Study of o el
consecutive notes (no silence in between). This is cartig¢d o ubnov, S.and X, Rodet ( ). Study of spectro-temporat-pa

. : . . meters in musical performance, with applications for egpre
by smoothing amplitude and pitch contours (approximated by sive instrument synthesis. IEEE International Conference

a third ordgr spline), aqd interpolating spectral shapeas-in on Systems Man and Cyberneti§sin Diego, USA.

der to avoid too sharp timbre changes. Gomez, E., M. Grachten, X. Amatriain, and J. Arcos (2003).
Melodic characterization of monophonic recordings for ex-
pressive tempo transformations Rroceedings of Stockholm
Music Acoustics Conferenc8tockholm, Sweden.

J. Arcos, R. d. M. and X. Serra (1997). Saxex: a case-based
reasoning system for generating expressive musical perfor
mances. IfProceedings of the International Computer Music

5 Conclusion and future work

In this paper, we have presented an approach to investi-
gate the synthesis of jazz saxophone expressive perfoeaanc

based on concatenating note samples. For our first experi- ConferenceThessaloniki, Greece.

ments, we _u§ed the same set of saxophone expressive re_cord-Maestre' E. and E. Gomez (2004). Automatic characteciaatt
ings for training the performance model and for construgtin dynamics and articulation of monophonic expressive record
the database. Although the system is still in a very prelim- ings. Proceedings of the 118th AES Convention

inary state, first synthes.is. results are promising. We edrri  Narmour, E. (1990).The Analysis and Cognition of Basic
out some tests synthesizing the same songs used for train-  Melodic Structures: The Implication Realization Madel

ing the performance model and for building the sample data- University of Chicago Press.

base, resulting in an acceptable perceptual similaritygier Peeters, G. (2004). A large set of audio features for siityland
tempi. The synthesis of pieces not present in the trainibg se classificationCUIDADO IST Project Report

showed our model to be somehow specific. Abrupt timbre Ramirez, R. and A. Hazan (2005). Modeling expressive music
changes during transitions lead us to think of incorpogatin performance in jazz. IRroceedings of the Florida Artificial
the transition as a sample unity, while note-to-note sudden Intelligence Research Society Confererfele, USA.
loudness/brightness changes demonstrated us that, intérm  Ramirez, R., A. Hazan, and E. Maestre (2005). Intra-noteifea
classification, both feature selection and weighting, dbage prediction model for jazz saxophone performancePio-

the number of clusters, could become a subject of study for ceedings of the International Computer Music Conference
further developments of our system. Further work also in- Barcelona, Spain.

cludes studying pitch contour in order to model 'portamento ~ Schwarz, D. (2000). A system for data-driven concatenative
like’ transitions and pitch modulations (e.g. vibrato) occ sound synthesis. IRroceedings of the COST G-6 Confer-

ring within sustain segment. Moreover, due to the diffi@siti ence on Digital Audio Effect&/erona, Italy.



