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Abstract

We present here a concatenative sample-based saxophone syn-
thesizer using an induced performance model intended for ex-
pressive synthesis. The system consists on three main parts.
The first part provides the analysis of saxophone expressive
performance recordings and the extraction of descriptors re-
lated to different temporal levels. With the obtained descrip-
tors and the analyzed samples, we construct an annotated
sample database extracted directly from the performances.
For the second part, we use the annotations to induce a per-
formance model capable of predicting some features related
to expressivity. In the third part, the predictions of the per-
formance model are used to retrieve the most suitable note
samples for each situation, and transform and concatenate
them following the input score and the induced model.

1 Introduction

Modern concatenative synthesizers have reached nowa-
days high sound quality synthesis and offer a wide range of
synthesis parameters, including some related to expression,
normally at note and transition levels. However, these pa-
rameters must be tuned manually depending on user wishes,
leading to a high effort to represent the expression and/or nat-
uralness that musicians introduce when performing a piece.

In this paper we describe an approach to investigate the
synthesis of jazz saxophone expressive performances based
on concatenating note samples. The aim is to generate an ex-
pressive audio sequence out of an input score by means of
a previously induced performance model and making use of
an annotated saxophone note sample database extracted from
real performances. The architecture of our system can be
summarized as follows. First, given a set of expressive perfor-
mance recordings, we get a description of the audio by carry-
ing out segmentation and characterization at different tempo-
ral levels (note, intra-note, transition) and build an annotated
database of pre-analyzed note segments for being used laterin

the synthesis stage. A performance model is trained using in-
ductive logic programming techniques for matching the score
with the description of the performances that we got when
constructing the database. For synthesizing an audio givena
score, the performance model predicts an expressive perfor-
mance description, from which the most suitable note sam-
ples from the database are retrieved, transformed and con-
catenated. This work conforms an audio analysis/synthesis
preliminary application of the studies on expressive perfor-
mance already started in (Ramirez and Hazan 2005).

Figure 1: Overview of the system architecture

In terms of concatenative synthesis, the author in (Schwarz
2000) presented a general purpose system based on data-driven
unit selection which allows different applications ranging from
high quality sound synthesis to free synthesis. Authors in
(Bonada and Loscos 2003) construct a singing voice synthe-
sizer based on spectral concatenation resulting in a high qual-
ity system with a broad variety of synthesis parameters. Al-
though the synthesis techniques proposed in these works have
set up the basis of the present work, these systems lack of
expressivity knowledge. Previous research in expressive per-
formance synthesis includes a broad spectrum of approaches
and techniques. In (J. Arcos and Serra 1997), it is presented
a case-based reasoning system for generating expressive per-
formances of melodies based on human examples. In (de Poli
et al. 2004), the authors present an approach to modify the
expressive content of a performance in a gradual way using
a linear model to carry out the alterations based on previous
semiautomatic segmentation and modifying melodies both at



symbolic and audio signal levels. Trumpet performance is
studied in (Danneberg and Derenyi 1998) by computing am-
plitude descriptors, and statistical analysis techniquesused
for analyzing trumpet envelopes led to find significant en-
velopes groupings, and to extend the work to a system that
combined instrument and performance models. Authors in
(Dubnov and Rodet 1998) have followed a similar line. We
propose here to use the same database for carrying out learn-
ing and synthesis, having already obtained some preliminary
results on intra-note amplitude features prediction usingfirst
order logic decision trees (Ramirez et al. 2005).

The rest of the paper is organized as follows. Section 2
briefly describes how expressive audio recordings have been
analyzed and annotated. Then, we explain in Section 3 the
procedure for building the performance model. Section 4
outlines how samples are retrieved from the database, trans-
formed, and concatenated. Section 5 concludes and points
out further work.

2 Audio analysis

Expressive performance recordings are automatically an-
alyzed, and a set of low-level descriptors are computed for
each frame. Then, we perform a note segmentation using
low-level descriptor values and fundamental frequency. Us-
ing note boundaries and low-level descriptors, we carry out
energy-based intra-note segmentation, and a posterior intra-
note segment amplitude envelope characterization, as wellas
a transition description. This information will be used for(1)
modeling expressive performance and (2) annotating the sam-
ple database used later in the synthesis stage. We have used
an audio database consisting of 4 jazz standards played at 11
different tempi around the nominal one, played by a profes-
sional musician. Most of the phrases were repeated to test
consistency between performances. We used a total of 3200
notes. The jazz standards recorded wereBody and Soul, Once
I Loved, Like Someone In LoveandUp Jumped Spring.

Description scheme. In order to define a structured set of au-
dio descriptors able to provide information about the expres-
sivity introduced in the performance, we proposed in (Maestre
and Gómez 2004) a broader version of the description scheme
selected for this application (see Figure 2). Here, we define
descriptors related to different temporal scales. Some features
are defined as ’instantaneous’ or related to an analysis frame,
such as energy, fundamental frequency and spectral centroid.
Some other are attached to a certain intra-note/transitionseg-
ment (attack, sustain, release or transition), while descriptors
attached to a certain note are also extracted. We consider that
the proposed features can set up a simple but concise descrip-
tion of dynamics and articulation, adapted to our application

Figure 2: Audio description scheme

context. However, it could be extended to provide a richer
representation.

Audio segmentation and description. First, we get a melodic
description of the audio phrases consisting on the exact onset
and duration of notes, and the corresponding MIDI equivalent
pitch. Notes are segmented using energy computation in dif-
ferent frequency bands and fundamental frequency. Energy
onsets are first detected following a band-wise algorithm that
uses some psycho-acoustical knowledge. In a second step,
fundamental frequency transitions are also detected. Finally,
both results are merged to find the note boundaries. We com-
pute note descriptors using the note boundaries and the low-
level descriptors values. The low-level descriptors associated
to a note segment are computed by averaging the frame values
within this note segment. Pitch histograms have been used to
compute the pitch note of each note segment. A detailed ex-
planation of the methods used for melodic description can be
found in (Gómez et al. 2003). Then, notes extracted from the
recordings are automatically segmented into attack, sustain,
release or transition segments by studying energy envelope
derivatives at different scales. After that, we approximate
linearly the energy contour of each one of the extracted seg-
ments. In order to obtain a descriptor representing brightness,
we extract a frame-averaged spectral centroid of the steady-
state segment of each note. We also extract a legato numer-
ical descriptor for transition segments. More explicit infor-
mation about the procedure for carrying this intra-note and
transition segmentation and characterization can be foundin
(Maestre and Gómez 2004). These descriptors, attached to
each note sample note present in the database, will conform,
together with other musical context descriptors used in the
performance modeling stage, the annotations used for both,
modeling expressive performance, and selecting, transform-
ing and concatenating samples.



Database annotation. The recorded musical phrases are au-
tomatically segmented into notes using the information ob-
tained from the melodic description outlined above. Each
note sample from the performance is then indexed and an-
notated with the data coming from our note and intra-note
segmentation and characterization. Note samples are stored
as sequences of analyzed frames that will be used afterwards
in the audio synthesis stage. We also classify notes into ar-
ticulation groups depending on their context, dividing them
in (1) coming from silence and going to silence, (2) coming
from silence and going to transition, (3) coming from tran-
sition and going to silence, and (4) coming from and going
to transition. This information will be used as a constraint
during the sample retrieval stage in order to match the origi-
nal articulation context of the notes used for synthesizingthe
output performance.

3 Expressive performance modeling

In this section, we briefly describe our approach to ex-
pressive performance modeling. Here we are concerned with
note-level (in particular note duration, note onset, note en-
ergy, and note brightness), transition level (legato), andintra-
note-level (in particular amplitude shape) expressive perfor-
mance features. Each note in the training data is annotated
with its corresponding extracted audio descriptors (see Sec-
tion 2) and a number of score attributes representing both
properties of the note itself and some aspects of the local con-
text in which the note appears. Information about intrinsic
properties of the note includes note duration, note metrical
position, and note envelope information, while information
about its context include the note Narmour group(s) (Nar-
mour 1990), duration of previous and following notes, and ex-
tension and direction of the intervals between the note and the
previous and following notes. With this information, we build
two different models using machine learning techniques.

Note and transition level prediction. In order to induce pre-
dictive models for note duration ratio, onset deviation, note
energy and legato, we have applied inductive logic program-
ming techniques. We used a multi-variate regression tree
model (Ramirez et al. 2005), i.e. a first order logic regression
tree that contains logical tests at its nodes and five-dimensional
vectors at its leaves, each one containing an averaged predic-
tion of duration ratio, onset deviation, energy, and a pair of
values for legato. The accuracy of the prediction model ob-
tained is better than the best of several propositional models
we have investigated. Details of these models can be found in
(Ramirez and Hazan 2005).

Intra-note level prediction. In order to construct a predic-
tive model for intra-note features (e.g. amplitude shape),we

have devised a learning scheme based on note classification
and a posterior class prediction, briefly described as follows.
Notes are represented with vectors containing five features
considered important for classifying samples into different
note qualities in terms of amplitude/loudness: log-attacktime,
energy level at the end of the attack segment, sustain duration
normalized to note duration, sustain energy slope, and spec-
tral centroid (Peeters 2004). Using some of the features an-
notated for each note, we perform k-means clustering of the
whole sample database, adding to the annotations the cluster
of each note. Then, we build a note cluster prediction model
based on a first order logic decision tree, which gives us a pre-
diction of the note class given the score descriptors outlined
at the beginning of this section.

4 Audio synthesis

Our system generates the audio sequence based on the
predictions of the performance model and the annotated sam-
ple database. First, most suitable samples are selected taking
into account the output of the performance model and the cost
of the transformations to be applied. Selected samples are
first transformed to fit the predicted note characteristics ap-
plying global note amplitude transformation, pitch shift and
time stretch. After that, samples are concatenated by means
of amplitude, pitch, and spectral shape interpolation applied
to the resulting note transitions.

Sample retrieval. Using the note description given by the
performance model, which includes a cluster prediction, the
system performs sample retrieval inside the predicted clus-
ter in two steps. First, the system re-classifies each predicted
note into one of the four articulation groups (see Section 2)
depending on its new context by looking at the output note
sequence. In a second step, a search is performed within the
notes of the predicted cluster belonging to such articulation
group using a euclidean feature-weighted distance vector.For
every note sample to be retrieved, a initial feature set consist-
ing on MIDI pitch, duration, energy, and spectral centroid is
used to compute the distance vector. Then, some features will
be added depending on the articulation group to which the
predicted note belongs, leading to a variable length feature
vector. For the first articulation group (isolated note), nonew
features are added. For the second articulation group, two
features (corresponding to the right side transition) are added:
legato descriptor and pitch interval respect to the next note.
Analogously, for the third and fourth articulation groups,the
same pair of features are added for the left side transition,
and for both transitions respectively. If a candidate note sam-
ple not presenting sustain segment would need to be time-
stretched by an amount exceeding the duration of one frame,



it is discarded from the search due to the fact that time stretch
is going to be applied only in the sustain segment.

Sample transformation and concatenation. Once the note
samples have been selected from the predicted cluster as out-
lined before, the system uses spectral processing techniques
(Amatriain et al. 2002) for transforming each retrieved note
sample in terms of amplitude, pitch and duration to match,
in the same terms, the target description given at the output
of the performance model. After that, samples are concate-
nated following the note sequence given at the output of the
performance model. Note global energy prediction is applied
first as a global amplitude transformation to the sample, since
the energy envelope quality is already included in the cluster
prediction. Then, pitch transformation is applied by shifting
harmonic regions of the spectrum by an amount equal to the
pitch interval between retrieved sample and predicted note,
keeping the original spectral shape. After that, time stretch is
applied inside the limits of the sustain segment by repeating
or dropping the required number of frames to match the pre-
dicted duration. As a final step, the system restores the pos-
sible timbre discontinuities occurring within resulting transi-
tions, in the neighborhood of the junction point of each pair
consecutive notes (no silence in between). This is carried out
by smoothing amplitude and pitch contours (approximated by
a third order spline), and interpolating spectral shapes inor-
der to avoid too sharp timbre changes.

5 Conclusion and future work

In this paper, we have presented an approach to investi-
gate the synthesis of jazz saxophone expressive performances
based on concatenating note samples. For our first experi-
ments, we used the same set of saxophone expressive record-
ings for training the performance model and for constructing
the database. Although the system is still in a very prelim-
inary state, first synthesis results are promising. We carried
out some tests synthesizing the same songs used for train-
ing the performance model and for building the sample data-
base, resulting in an acceptable perceptual similarity at higher
tempi. The synthesis of pieces not present in the training set
showed our model to be somehow specific. Abrupt timbre
changes during transitions lead us to think of incorporating
the transition as a sample unity, while note-to-note sudden
loudness/brightness changes demonstrated us that, in terms of
classification, both feature selection and weighting, as well as
the number of clusters, could become a subject of study for
further developments of our system. Further work also in-
cludes studying pitch contour in order to model ’portamento-
like’ transitions and pitch modulations (e.g. vibrato) occur-
ring within sustain segment. Moreover, due to the difficulties

of evaluate the quality of the expressivity/naturalness ofthe
synthesized performance, we must carry out more extended
auditory tests in order to be able to tune or improve our sys-
tem. This work should be considered as a step towards a
methodology for the automatic creation of both the perfor-
mance model and the sample database needed to carry out
expressive synthesis, leaving clear other duties like trying out
other instruments and other classification approaches.
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