
TUIO: A Protocol for Table-Top

Tangible User Interfaces

Martin Kaltenbrunner1, Till Bovermann2, Ross Bencina1 and Enrico Costanza3

1 Music Technology Group, IUA, Universitat Pompeu Fabra, Barcelona, Spain.
2 Neuroinformatics Group, Faculty of Technology, Bielefeld University, Germany.

3 Liminal Devices Group, Medialab Europe, Dublin, Ireland.

Abstract. In this article we present Tuio, a simple yet versatile proto-
col designed specifically to meet the requirements of table-top tangible
user interfaces. Inspired by the idea of interconnecting various existing ta-
ble interfaces such as the reacTable* [1], being developed in Barcelona
and the tDesk [2] from Bielefeld, this protocol defines common proper-
ties of controller objects on the table surface as well as of finger and hand
gestures performed by the user. Currently this protocol has been imple-
mented within a fiducial marker-based computer vision engine developed
for the reacTable* project. This fast and robust computer vision en-
gine is based on the original d-touch concept [3], which is also included as
an alternative to the newer fiducial tracking engine. The computer vision
framework has been implemented on various standard platforms and can
be extended with additional sensor components. We are currently work-
ing on the tracking of finger-tips for gestural control within the table
interface. The Tuio protocol has been implemented using OpenSound
Control [4] and is therefore usable on any platform supporting this pro-
tocol. At the moment we have working implementations for Java, C++,
PureData, Max/MSP, SuperCollider and Flash.

1 General Observations

This protocol definition is an attempt to provide a general and versatile commu-
nication interface between tangible table-top controller interfaces and underlying
application layers. It was designed to meet the needs of table-top interactive sur-
faces, where the user is able to manipulate a set of objects. These objects are
tracked by a sensor system and can be identified and located in position and
orientation on the table surface. Additionally we defined a special cursor object,
which doesn’t have a unique ID and doesn’t provide rotation information.

The protocol’s flexible design offers methods for selecting which information
will be sent. This flexibility is provided without affecting existing interfaces, or
requiring re-implementation to maintain compatibility.



2 Implementation Details

The Tuio protocol defines two main classes of messages: set messages and alive

messages. Set messages are used to communicate information about an object’s
state such as position, orientation, and other recognized states. Alive messages
indicate the current set of objects present on the surface using a list of unique
session IDs.

To avoid possible errors evolving out of packet loss, no explicit add or remove
messages are included in the Tuio-protocol. The receiver deduces object lifetimes
by examining the difference between sequential alive messages.

In addition to set and alive messages, fseq messages are defined to uniquely
tag each update step with a unique frame sequence ID. To summarize:

– object parameters are sent after state change using a set message
– on object removal an alive message is sent
– the client deduces object addition and removal from set and alive messages
– fseq messages associate a unique frame id with a set of set and alive messages

2.1 Efficiency & Reliability

In order to provide low latency communication our implementation of the Tuio

protocol uses UDP transport. When using UDP the possibility exists that some
packets will be lost. Therefore, our implementation of the Tuio protocol in-
cludes redundant information to correct possible lost packets, while maintaining
an efficient usage of the channel. An alternative TCP connection would assure
the secure transport but at the cost of higher latency.

For efficiency reasons set messages are packed into a bundle to completely
use the space provided by a UDP packet. Each bundle also includes a redundant
alive message to allow for the possibility of packet loss. For larger object sets
a series of packets, each including an alive message are transmitted. When the
surface is quiescent, emphalive messages are sent at a fixed rate dependent on
the channel quality, for example once every second, to ensure that the receiver
eventually acquires a consistent view of the set of alive objects.

The state of each alive but unchanged object is periodically resent with ad-
ditional set messages. This redundant information is resent at a lower rate, and
includes only a subset of the unchanged objects at each update. The subset is
continuously cycled so that each object is periodically addressed.

Finally, each packet is marked with a frame sequence ID (fseq) message: an
increasing number which is the same for all packets containing data acquired at
the same time. This allows the client to maintain consistency by identifying and
dropping out-of-order packets . To summarize:

– set messages are bundled to fully utilize UDP packets
– each bundle of set messages includes an alive message containing the session

IDs of all currently alive tangible objects



– when the surface is quiescent the alive message is resent periodically

– the state of a cycling subset of alive but unchanged objects is continuously
resent via redundant set messages

– each bundle contains a frame sequence (fseq) message

It should be noted that the retransmission semantics described here are only
one possible interpretation of the protocol. Other possible methods include: (1)
weighting the frequency of retransmission according to recency of value changes
using a logarithmic back-off scheme and, (2) trimming the set of values to be
retransmitted using asynchronous acknowledgments from the client.

2.2 Message Format

Since Tuio is implemented using Open Sound Control (OSC) [4] it follows its
general syntax. An implementation therefore has to use an appropriate OSC

library such as [5] and has to listen to the following message types:

/tuio/[profileName] set sessionID [parameterList]

/tuio/[profileName] alive [list of active sessionIDs]

/tuio/[profileName] fseq (int32)

2.3 Parameters

The parameters defined in this section reflect the object properties we considered
important for an interactive surface interface. Some of these parameters (id, posi-
tion and angle) are retrieved directly by the sensor. Others (speed, acceleration)
are derived from these primary parameters using timing information. Comput-
ing these parameters on the low level side of an tangible user interface system
allows a more efficient computation, since the necessary timing information does
not need to be transferred to clients.

s sessionID, temporary object ID, int32
i classID, fiducial ID number, int32
x, y, z position, float32, range 0...1
a, b, c angle, float32, range 0..2PI
X, Y ,Z movement vector (motion speed & direction), float32
A, B, C rotation vector (rotation speed & direction), float32
m motion acceleration, float32
r rotation acceleration, float32
P free parameter, type defined by OSC packet header

Table 1. semantic types of set messages



A session ID number is assigned to each object. This is necessary to uniquely
identify untagged objects across successive frames, and in the case where multiple
objects tagged with the same classID are simultaneously present on the surface.
The semantic types allowed in a set message are shown in Tab.1.

2.4 Profiles

We define a set of profiles, which apply to most table-style tangible user inter-
faces. This allows the tracking of objects and cursors on two dimensional surfaces
and in special cases also in the 3D space above the table surface. If one of these
predefined profiles doesn’t meet a system’s requirements we also allow so-called
raw profiles that send the raw sensor data, as well as free form profiles, which
allow a user defined set of parameters to be transmitted.

2D Interactive Surface

/tuio/2Dobj set s i x y a X Y A m r

/tuio/2Dcur set s x y X Y m

2.5D Interactive Surface

/tuio/25Dobj set s i x y z a X Y Z A m r

/tuio/25Dcur set s x y z X Y Z m

3D Interactive Surfaces

/tuio/3Dobj set s i x y z a b c X Y Z A B C m r

/tuio/3Dcur set s x y z X Y Z m

raw profile

/tuio/raw_[profileName]

/tuio/raw_dtouch set i x y a

custom profile

/tuio/_[formatString]

/tuio/_sixyP set s i x y 0.57

For the last two profiles the parameters of the set message are in a user defined
format. Raw profiles correspond to a specific sensor type, such as d-touch, and
carry its standard parameters. The completely free-form profile carries its format
within its name, similar to the OSC header.

3 Conclusion

A protocol called Tuio was presented which supports communication of all re-
quired information between the object recognition layer and interaction layer of
a tangible user interface system. This protocol supports communication between
several totally different tangible user interfaces including the reacTable* and
the tDesk. It thus facilitates interaction between people at different locations,
including the possibility of distributed musical performance.



4 Acknowledgments

This work has been partially supported by the European Commission Cost-287
ConGAS action on Gesture Controlled Audio Systems and will be released under
an open source license.

References

1. Kaltenbrunner, M., Geiger, G., Jorda, S.: ”Dynamic Patches for Live Musical Perfor-
mance”. Proceedings of the 4th Conference on New Interfaces for Musical Expression
(NIME 04), Hamamatsu (Japan)

2. Hermann, T., Henning, T., Ritter, H.: ”Gesture Desk - An Integrated Multi-Modal
Workplace for Interactive Sonification”. Int. Gesture Workshop 2003, Genova, Italy.

3. Costanza, E., Shelley, S. B., Robinson, J.: ”D-touch: A Consumer-Grade Tangible
Interface Module and Musical Applications”. Proceedings of Conference on Human-
Computer Interaction (HCI03), Bath, UK, 2003.

4. Wright, M., Freed, A., Momeni A.: ”OpenSound Control: State of the Art 2003”.
Proceedings of the 3rd Conference on New Instruments for Musical Expression
(NIME 03), Montreal, Canada, 2003.

5. Bencina, R.: oscpack http://www.audiomulch.com/~rossb/code/oscpack/


