Export 182 results:
Sort by: [ Author  (Desc)] Title Type Year
Filters: First Letter Of Title is M  [Clear All Filters]
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
Ramirez, R., Pérez A., Maestre E., Kersten S., Rizo D., Roman P., et al. (2008).  Modeling Celtic Violin Expressive Performance. International Workshop on Machine Learning and Music, International Conference on Machine Learning. Abstract
Ramírez, M., Martinez J., & Santosa A. (2004).  Model checking constraint-based concurrent Java programs. International Workshop on Constructive Methods for Parallel Programming. Abstract
Ramirez, R., Hazan A., Gómez E., & Maestre E. (2004).  A machine learning approach to expressive performance in jazz standards. ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Abstract
Ramirez, R., & Hazan A. (2005).  Modeling expressive music performance in jazz. International Florida Artificial Intelligence Research Society Conference. Abstract
Ramirez, R., Gómez E., Vicente V., Puiggròs M., Hazan A., & Maestre E. (2006).  Modeling Expressive Music Performance in Bassoon Audio Recordings. Intelligent Computing in Signal Processing and Pattern Recognition. 345, 951-957.
Porter, A., Bogdanov D., & Serra X. (2016).  Mining metadata from the web for AcousticBrainz. 3rd International Digital Libraries for Musicology workshop. 53-56. Abstract
Porcaro, L., & Gómez E. (2019).  A Model for Evaluating Popularity and Semantic Information Variations in Radio Listening Sessions. 1st Workshop on the Impact of Recommender Systems (ImpactRS), at the 13th ACM Conference on Recommender Systems (RecSys 2019). Abstract
Porcaro, L., Castillo C., & Gómez E. (2019).  Music recommendation diversity: a tentative framework and preliminary results. 20th annual conference of the International Society for Music Information Retrieval (ISMIR). Abstract
Ponce León, P., Rizo D., & Ramirez R. (2008).  Melody Characterization by a Fuzzy Rule System. International Workshop on Machine Learning and Music, International Conference on Machine Learning. Abstract
Poliner, G., Ellis D., Ehmann A., Gómez E., Streich S., & Ong B. (2007).  Melody Transcription from Music Audio Approaches and Evaluation. IEEE Transactions on Audio, Speech and Language Processing. 15, 1247-1256. Abstract
Pérez, A., & Bonada J. (2009).  Modeling the influence of performance controls on Violin Timbre. Music and Machine Learning workshop at the European Conference on Machine Learning. Abstract